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Abstract: Detecting abnormal ECG patterns is a crucial area of study aimed at enhancing diagnostic
accuracy and enabling early identification of Chronic Kidney Disease (CKD)-related abnormalities.
This study compares a unique strategy for abnormal ECG patterns using the LADTree model to
standard machine learning (ML) models. The study design includes data collection from the MIT-
BIH Arrhythmia dataset, preprocessing to address missing values, and feature selection using the
CfsSubsetEval method using Best First Search, Harmony Search, and Particle Swarm Optimization
Search approaches. The performance assessment consists of two scenarios: percentage splitting and
K-fold cross-validation, with several evaluation measures such as Kappa statistic (KS), Best First
Search, recall, precision-recall curve (PRC) area, receiver operating characteristic (ROC) area, and
accuracy. In scenario 1, LADTree outperforms other ML models in terms of mean absolute error
(MAE), KS, recall, ROC area, and PRC. Notably, the Naïve Bayes (NB) model has the lowest MAE,
but the Support Vector Machine (SVM) performs badly. In scenario 2, NB has the lowest MAE but
the highest KS, recall, ROC area, and PRC area, closely followed by LADTree. Overall, the findings
indicate that the LADTree model, when optimized for ECG signal data, delivers promising results
in detecting abnormal ECG patterns potentially related with CKD. This study advances predictive
modeling tools for identifying abnormal ECG patterns, which could enhance early detection and
management of CKD, potentially leading to improved patient outcomes and healthcare practices.

Keywords: Chronic Kidney Disease (CKD); machine learning (ML); ECG signal data; LADTree model;
feature selection

1. Introduction

Kidney diseases are rising daily and millions of people worldwide are affected due to
these diseases. Sometimes, this causes a fatal medical ailment leading to place strain on
both patients and the healthcare system [1]. Timely and correct diagnosis of kidney diseases
is only possible due to effective management and treatment [2]. Electrocardiogram (ECG)
data is valuable not only for treating and predicting cardiovascular health but also holds
promise for the early identification and prediction of renal diseases [3]. Traditionally used
to diagnose heart-related issues, ECG readings contain complex patterns that can reflect
various physiological states. The close relationship between kidney function and circulatory
dynamics is well-known, suggesting that variations in ECG signals might indicate changes
related to kidney health [4].

Machine learning (ML) has recently transformed medical science and diagnostics,
demonstrating to be extremely successful in tasks such as categorization, pattern recogni-
tion, and prediction [5]. This has prompted research into using various machine-learning
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algorithms for kidney disease prediction using ECG data [6]. However, creative models are
still required to fully realize the promise of ECG data and improve forecast accuracy.

ECGs are valued for their affordability, accessibility, and quick results in diagnosing
medical conditions. Deep learning algorithms (DLA) are now being applied to ECG
analysis, offering the potential to predict outcomes, identify subclinical disorders, and
reveal systemic phenotypes. CKD patients often exhibit cardiovascular risk factors and
subclinical cardiac changes, including myocardial fibrosis, which may appear early in the
disease. Electrolyte disorders common in CKD, such as hypokalemia and hyperkalemia,
manifest as distinct ECG patterns, aiding in their detection. However, these abnormalities
are subtle and may not be easily discernible by humans, making DLA-assisted screening
valuable for identifying asymptomatic CKD patients who require further evaluation [7].

The need for prompt and non-invasive diagnostic tools underscores the value of
detecting abnormal ECG patterns potentially. Traditional CKD diagnosis primarily relies
on urine and blood tests, such as serum creatinine and glomerular filtration rate, which
can be time-consuming, invasive, and may not immediately reflect disease progression. By
leveraging ECG data, which is readily accessible, this approach offers the potential for early
identification of cardiac issues related to CKD, facilitating timely treatment and ongoing
monitoring of individuals at risk.

This work aims to advance the detection of abnormal ECG patterns by utilizing the
LADTree model. This model incorporates logistic boosting to construct an alternating
decision tree, where each iteration selects a single attribute test as the splitter node. The
model retains per-class weights and a functional response for each training instance. By
minimizing the least-squares error between examples, the functional response is adjusted
to fit the mean value of instances within a specific subset, enhancing the model’s predictive
capabilities for detecting abnormal ECG patterns. The LADTree is compared against several
well-established ML models, including K-nearest Neighbor (KNN), Multilayer Perceptron
(MLP), Naïve Bayes (NB), Support Vector Machine (SVM), and J48-Decision Tree (J48), are
used to assess LADTree’s performance. Accuracy and error rate analysis are the two as-
sessment measures used to evaluate these models. While accuracy is assessed based on
Recall, Precision-Recall Curve (PRC) Area, Receiver Operating Characteristic Curve (ROC)
Area, and Classification Accuracy (CA), error rates are calculated using Kappa Statistics
(KS) and Mean Absolute Error (MAE). Unlike other models, LADTree’s unique hierarchical
structure and interpretability offer significant advantages, making it particularly effective
in capturing complex relationships within ECG data for CKD prediction.

The contribution of this study lies in its detailed exploration of improving the detection
of abnormal ECG patterns potentially linked to CKD through the application of machine
learning approaches, with a particular emphasis on the innovative LADTree model. By
comparing the LADTree model to traditional ML models such as MLP, KNN, SVM, NB,
and J48, the study sheds light on the usefulness of various CKD prediction approaches. The
work ensures the selection of the most relevant and non-redundant features for improved
detection of abnormal ECG patterns by meticulously collecting and preprocessing data,
followed by rigorous feature selection using multiple search approaches. Additionally,
this work comprehensively investigates model performance under various circumstances
by using K-fold cross-validation and percentage splitting for the training and testing
procedures. Both error rate and accuracy evaluation metrics are included in the analysis:
MAE (mean absolute error), recall, ROC (receiver operating characteristic curve), PRC
(precision-recall curve) area, KS (Kappa Statistics), and CA (classification accuracy). This
thorough method offers a clear picture of the advantages and disadvantages of each model.
However, the LADTree model regularly performs better than other machine learning
models on a range of criteria, suggesting that it might be a top choice for abnormal ECG
pattern detection. All things considered, this study improves medical diagnostics by
offering a unique method using ECG signal data for abnormal ECG signal prediction and
by illuminating the relative efficacy of many ML models in this domain.
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The subsequent sections of this paper are structured as follows: Section 2 delineates
the literature review, and Section 3 outlines the research design and methodology. Section 4
elucidates the analysis and discussion of the result, whereas Section 5 encapsulates the
conclusion of the study.

2. Literature Study

Advanced artificial intelligence (AI) and ML techniques have greatly improved mod-
ern healthcare systems by enabling more accurate patient analysis and customized treat-
ments. Revathy et al.’s work [8] addressed the problems by analyzing and predicting the
condition using a variety of ML models. They conducted a comparative study based on
accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve
(AUC-ROC), and they gave a thorough description of these models. Their research demon-
strated the potential of predictive models to enhance healthcare outcomes and resulted
in the creation of the most effective model for CKD prediction. In their conclusion, they
emphasized the role that machine learning plays in early CKD prediction.

E.P.B. Multia et al. discovered that renal illness may be anticipated through the use of
classification algorithms to analyze patients’ ECG data. According to recent research, people
with kidney illness frequently encounter cardiac problems called cardiorenal syndrome
(CRS), which can result in unexpected cardiac death [9]. ML models can be used by patients
with cardiovascular issues to assess whether cardiovascular illness and CRS are affecting
their kidneys [10]. Another research by Nusinovici et al. examined the effectiveness
of several machine learning models in forecasting hypertension (HTN), diabetes (DM),
cardiovascular disease (CVD), and CKD using fundamental clinical markers [11]. Using
data from 6762 Asian people, they assessed five machine learning models: neural networks
(NN), SVM, random forests (RF), gradient boosting machines, and k-nearest neighbor with
logistic regression (LR). According to their findings, LR was more successful at predicting
CKD and DM, whereas NN and SVM were more successful at predicting CKD and HTN.

In the field of healthcare, clinical disorders must be recognized, prevented, and treated
while simultaneously looking for economical and effective remedies. ML is an essential
tool for accomplishing these objectives. Healthcare uses a variety of data types, including
clinical and claims data. ML approaches analyze the links between diseases and the tests
used to identify them by comparing various diagnostic procedures for each disease to
their clinical relevance [12]. Patients with early-stage CKD might halt or even reverse the
condition’s course by taking the appropriate medical measures. The digitized ECG data for
this model was obtained from the Physionet Database (www.physionet.org, accessed on
30 March 2024), which is combined with the publicly accessible Physikalisch-Technische
Bundesanstalt (PTB) (for renal patients) and Fantasia (for healthy persons) databases. To
assess the framework, more information was obtained from the same source. The method of
testing produced exact findings, differentiating between people who had kidney infections
and those who did not. Using both QT and RR interval values, the research outperformed
the accuracy attained with a single feature, achieving a precision of 97.6% [13,14]. In
a different research, CKD patients were classified from a dataset using seven machine
learning algorithms: NBTree, SVM, J48, MLP, LR, NB, and CHIRP. With an accuracy of
99.75%, CHIRP performed better than the other techniques, proving its usefulness in the
early identification of CKD [15]. Density-based function selection (DFS) and ant colony-
based optimization (D-ACO) were used by Elhoseny et al. [16] to provide an integrated
CKD healthcare system. As used in conjunction with DFS to remove redundant features,
the D-ACO method greatly increased classification accuracy on a benchmark CKD dataset
as compared to earlier techniques.

An effective method for the Kidney Disease Outcomes Quality Initiative (KDOQI)
was developed by a team of internists and nephrologists to help primary care physicians
diagnose and treat CKD, which is defined as having a glomerular filtration rate (GFR)
of 60 mL/min/1.73 m2 and/or signs of renal impairment for at least three months [17].
The estimated glomerular filtration rate (eGFR), which is mostly dependent on blood

www.physionet.org
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creatinine concentration, and the urine albumin-creatinine ratio (UACR) are the two most
often utilized CKD tests in clinical settings. Testing for albuminuria and eGFR is advised
for those with diabetes and/or hypertension, but not for the general public [18].

3. Research Design and Procedure

This study aims to enhance the detection of abnormal ECG patterns, known to be
associated with CDK, by employing the LADTree model with enhanced predictive features.
The LADTree model is compared to several popular machine learning models, including
MLP, KNN, SVM, NB, and J48. These models are compared to the proposed model using
two distinct types of assessment measures: error rate and accuracy evaluation. The error
rate is measured using KS and MAE, whereas accuracy is determined using recall, ROC,
PRC, and CA. Figure 1 shows the entire procedure of this investigation, which is further
detailed in the following.
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Figure 1. Overview of the study’s methodology for abnormal ECG patterns using the LADTree
model and ECG signal data, highlighting the comparison with various machine learning models and
assessment measures.

3.1. Data Acquisition and Preprocessing

The dataset from Data Hub, which included different features from the MIT-BIH
Arrhythmia dataset (Physionet)—a two-lead ECG signal consisting of leads II and V—was
the main focus of this investigation. 279 attributes total across sixteen classes make up this
dataset. Table 1 shows the statistics for each of the specified attributes, whereas Table 2
illustrates the classifications. The MIT-BIH Arrhythmia Dataset provides a range of ECG
recordings that provide meaningful information on cardiac abnormalities, hence the use
of this dataset is justified. Although the dataset primarily focused on arrhythmias, the
ECG patterns displayed in these recordings reflect the cardiac issues frequently observed
in individuals with CKD, such as left ventricular hypertrophy and alterations in heart rate
variability. Numerous studies have shown a connection between renal function and ECG
findings, indicating that certain cardiac irregularities and arrhythmias may be indicators
of the progression of chronic kidney disease [19,20]. Furthermore, the MIT-BIH dataset
facilitates cross-study and technique comparisons by acting as a recognized standard in
the field of cardiovascular research. The study investigates the association between ECG
features and cardiac anomalies using this dataset, therefore bolstering the hypothesis that
ECG analysis might help predict and detect kidney disorders early.

Since a large ECG dataset from CKD patients is difficult to acquire, we sought instead
to use a publicly available MIT-BIH Arrhythmia dataset that contained normal and abnor-
mal ECG signals with known cardiac anomalies. This dataset is useful to the research of
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CKD because of the well-established associations between certain cardiac abnormalities
and CKD, even though Table 1 lists distinct cardiac disorders rather than renal problems.
Research has demonstrated that people with CKD often have unique cardiac problems, in-
cluding left ventricular hypertrophy (LVH), reduced heart rate variability, and certain ECG
abnormalities, such as longer QT intervals and peaked T waves as a result of hyperkalemia.
These cardiac anomalies, which are included in the MIT-BIH dataset, offer important new
information about the cardiovascular consequences of chronic kidney disease. The exten-
sive ECG recordings in the dataset enable researchers to examine trends and characteristics
that could point to the development of CKD.

Table 1. List of class attributes, descriptions, and number of entries [21].

S. No. Class Entries Description

1 Normal 245 Normal

2 VPC 3 Ventricular Premature Contraction (PVC)

3 IC-CAD 44 Ischemic changes (Coronary Artery Disease)

4 1-DAVB 0 1. degree Atrio-Ventricular block

5 LBBB 9 Left bundle branch block

6 SB 25 Sinus bradycardy

7 ST 13 Sinus tachycardy

8 AF 5 Atrial Fibrillation or Flutter

9 OIMI 15 Old Inferior Myocardial Infarction

10 LVH 4 Left ventricular hypertrophy

11 SPC 2 Supraventricular Premature Contraction

12 RBBB 50 Right bundle branch block

13 OAMI 15 Old Anterior Myocardial Infarction

14 3-DAVB 0 3. degree AV block

15 2-DAVB 0 2. degree AV block

16 Others 22 Others

Table 2. Statistics of Selected Attributes.

Attributes Units Description Min Max Mean StdDev

QRS_Duration Milliseconds (ms)
Time taken for
ventricular
depolarization

55 188 88.92 15.364

BN Microvolts (µV) Baseline Noise 0 92 31.23 27.949

CJ ms Conduction Junctions 0 88 7.478 15.359

DK ms Duration of K-wave 0 132 6.327 20.984

DZ ms Delta Z (impedance
change) 0 96 3.814 16.325

EB Count Ectopic Beat 0 112 41.681 16.425

EM Arbitrary units (AU) Ectopic Measure 0 88 3.239 11.531

HR Beats per minute
(bpm) Heart Rate −3.9 6.4 −1.144 1.116

IN ms Interval (possibly RR
or QT interval) −5.5 7 0.868 1.053

IV ms Intrinsic Variability 0 19.2 0.318 1.49

JB µV Junctional Beat −216 268.9 −18.738 23.715

JO µV Junctional Origin −32.9 0 −0.654 3.414

JV Meters per second
(m/s) Junctional Velocity −11.8 18.8 3.895 2.991
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Table 2. Cont.

Attributes Units Description Min Max Mean StdDev

JY µV Junctional Yield −242.4 165.4 −8.269 32.157

KS Dimensionless Kolmogorov-Smirnov
(a statistical measure) −5 8.3 1.722 1.708

LE ms Latency Event −6 6 1.222 1.426

Since ECG can reveal critical cardiovascular issues related to kidney dysfunction,
there is a notable correlation between ECG data and kidney diseases, particularly CKD.
For instance, hyperkalemia, a common condition in CKD, can cause distinctive ECG
changes such as peaked T waves and enlarged QRS complexes, potentially indicating
severe arrhythmias. Additionally, CKD-induced autonomic nervous system dysfunction
often leads to reduced heart rate variability, detectable via ECG. ECG can also identify LVH,
which is prevalent among CKD patients, underscoring the importance of cardiovascular
risk management. Moreover, due to rapid fluid and electrolyte shifts in dialysis patients,
continuous ECG monitoring is crucial for detecting arrhythmias. Certain ECG patterns,
such as prolonged QT intervals, have been linked to CKD progression and increased
mortality risk. Consequently, integrating ECG monitoring into CKD management can
enhance patient outcomes and facilitate earlier detection of complications.

The preprocessing approach consists of two different phases. The data did not have
a structured format at first, thus it was converted into one. The second phase was fixing
missing values. For this aim, mean imputation was used, which substituted missing values
with the mean (average) of observed values inside the associated feature (column). A
common method for handling missing data, especially numerical data, is mean imputation.
The mean input may be formally described using the following equations:

To compute the mean of observed values within a column, the summation of all
non-missing values is divided by the count of those values, denoted by n:

µ =
∑n

i=1 xi

n
(1)

Here, µ signifies the mean, xi denotes each observed value, and n represents the
number of observed values, excluding missing entries. Subsequently, to replace missing
values with the computed mean, the imputed values (ximputed) for the missing data points
are set equal to the calculated mean (µ):

ximputed = µ (2)

This approach efficiently handles missing data by substituting them with a representa-
tive measure derived from existing observed values within the dataset.

3.2. Feature Selection

In the process of feature selection for machine learning or data mining tasks, a dataset
initially comprising 279 features posed a significant challenge due to its complexity. To
tackle this, the CfsSubsetEval method was employed as an attribute evaluator, a common
technique utilized to discern the most crucial features [22]. This method evaluates the
importance of a set of traits by considering both their predictive capability and the level of
redundancy among them. The evaluation involves two key aspects:

Individual Predictive Power (IP), quantifies the predictive strength of each feature
in isolation, which shows how well it can predict the target variable. Several measures
may be used to measure this, depending on the specifics of the issue. Common metrics
for categorization jobs include Mutual Information, Chi-square, and Information Gain.
Correlation coefficients and coefficient of determination (R2) can be applied to regression
tasks. To keep things simple, let’s suppose that a classification task uses Information Gain
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(IG). Information Gain quantifies the decrease in uncertainty or entropy when a feature is
applied to divide the data:

IP(i) = IG(i) = H(Y)− H(Y|Xi) (3)

where, H(Y) is the entropy of the target variable Y, and H(Y|Xi) is the conditional entropy
of Y given feature Xi.

Redundancy (R), measures the similarity or duplication between pairs of features,
often using metrics like Pearson’s correlation coefficient, which frequently results in de-
creased efficacy when both variables are included in the model. Metrics such as Pearson’s
correlation coefficient for continuous characteristics and other similarity measures for
categorical features can be used to quantify this.

For continuous features, Pearson’s correlation coefficient is used:

R(i, j) =
cov

(
Xi, Xj

)
σXi σXj

(4)

where, cov
(
Xi, Xj

)
is the covariance between features Xi and Xj, σXi and σX j are the

standard deviations of Xi and Xj, respectively.

Given a subset of features denoted as S, and the Total Predictive Power (TP)
of this subset: TP(S) = ∑i∈S IP(i)

(5)

Total Redundancy (TR) within S:

TR(S) = ∑i ̸=j R(i, j) f or all i, j in S (6)

To strike a balance between predictive power and redundancy, a scoring function
called the Consistency Score is employed. This score is calculated as the ratio of TP to the
square root of the sum of TR and TP within the subset:

Consistency(S) =
TP(S)√

(TR(S) + TP(S))
(7)

By incorporating both predictive power and redundancy metrics, the Consistency
Score facilitates the selection of feature subsets that offer valuable data for predictive
modeling while minimizing redundancy. This iterative process of evaluating feature
subsets based on their Consistency Scores aids in identifying the most informative and
non-redundant set of features for subsequent machine learning or data mining tasks.

CfsSubsetEval finds the subset S that maximizes the Consistency score by applying
sophisticated searching strategies such as evolutionary algorithms and greedy forward
selection. By removing unnecessary data, this technique guarantees that the selected
characteristics provide insightful information to the prediction model.

Particle Swarm Optimization (PSO), Best First (BF), and Harmony Search (HS) are the
three different search techniques used by CfsSubsetEval. These feature selection techniques
were used to extensively examine and determine which ECG features were most helpful
in CKD prediction. Every approach offers a different viewpoint on feature selection. PSO,
as a population-based optimization strategy, allows dynamic feature subset creation; BF
methodically adds or eliminates features to optimize a scoring function; and HS offers
an element of unpredictability while repeatedly refining feature subsets. The objective
was to thoroughly investigate the feature space, identify the most pertinent characteristics
for improved CKD prediction with ECG data, reduce redundancy, and finally raise the
accuracy and performance of the model.

a. Harmony Search: CfsSubsetEval and the heuristic approach to optimization At-
tributes are chosen via Harmony Search (HS). It starts by increasing arbitrary feature subsets
repeatedly. The consistency score (CS) (see Equation (5)), where the degree of redundancy
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in subset S is measured by TR(S) and the forecasting capacity is assessed by TP(S). Each
cycle’s new harmonies (characteristic subsets) are generated by combining the previously
existing ones, with little squeezes made to accommodate variance. It is much saved if the
harmonious arrangement improves the CS score. After a favorable number of rounds, this
technique includes the United States while still meeting convergence standards. In the end,
the set of rules selects the feature subset with the highest CS rating.

b. Best First Search: Using CfsSubsetEval and Best First (BF) Search, feature selection
is improved by repeatedly adding or removing features to increase the CS:

Let S be an empty feature subset, to begin with. Find CS(S) by using the main function.
Assess possible removals and additions of features: if a function is added, it will improve
CS(S); if a feature is removed, it will complement CS(S), thus it will be removed from the
subset. Until a halting requirement is satisfied, this procedure is repeated. In the end,
choose the feature subset with the highest CS rating.

TP(S) measures predictive power and TR(S) measures redundancy in the subset S as
discussed in Equation (5).

c. Particle Swarm Optimization Search: Particle Swarm Optimization (PSO) for
at-tribute selection in CfsSubsetEval works by creating a population of feature subsets.
Particles (which are subsets) adjust their locations (features) mathematically based on
known coordinates and their velocity. To maximize the CS, TP and TR must be balanced
(see Equation (5)):

Particles update positions and velocities following:

v_i(t + 1) = w ∗ v_i(t) + c1 ∗ rand1 ∗ (p_best_i − x_i(t)) + c2 ∗
rand2 ∗ (g_best − x_i(t))

(8)

x_i(t + 1) = x_i(t) + v_i(t + 1) (9)

After iterations, select the feature subset with the highest CS score, optimizing at-
tribute selection.

Table 2 shows that all of these search methods found unique feature groups. We next
utilized the finishing operation to choose the subset of features according to the majority
vote method. We choose just those features that yield additional information about the
purpose of the study and are selected by two or all three search strategies. The following is
how this operation is expressed mathematically:

• Let F represent the collection of all possible features.
• F1, F2, and F3 are the feature subsets determined by the three distinct feature selection

algorithms.
• Fselected is the final subset of features selected using the majority vote method.

The following is the mathematical equation for our ending operation:

Fselected = { f ∈ F || {i ∈ {1, 2, 3} | f ∈ Fi} |≥ 2} (10)

By using your different feature selection strategies, this equation selects features from
at least two of the three feature subsets. This is a majority vote method, meaning that the
final subset has the characteristics selected by the majority of the approaches.

3.3. ML Models, Training, and Performance Evaluation

This study seeks to enhance the accuracy of detecting abnormal ECG patterns using the
LADTree model and ECG signal data. Table 3 compares the derived prediction models to
many traditional machine learning methods. There are two unique approaches to training
and evaluation. First, the percentage splitting strategy is utilized, with 70% of the dataset
dedicated to training each model and the remaining 30% to testing. Second, a K-fold
cross-validation approach is used, with K equal to 10. This approach enables a thorough
evaluation of the model’s performance by systematically partitioning the dataset into
subsets for training and testing, revealing insights into their prediction capabilities under
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various validation techniques. While Table 4 presents the list of benchmarked models used
in this study.

Table 3. List of Selected Features using each Searching Method [21].

Search Method Selected Features

PSO Search
AH, BO, BN, BV, CZ, CJ, DM, DK, DZ, DS, DO, EY, EM, EB, FT, FA,
GO, GE, HR, HL, HT, IN, JD, JJ, JH, JB, JY, JP, JO, JV, KS, KH, KY, LE,
r_wave, t_interval, qrs_duration = 37

Best First Search AU, CJ, DK, DD, DA, DZ, DN, EB, HR, HJ, IV, IN, IT, IH, JV, JB, JY, KS,
LE, LG, q-t_interval, heart_rate, qrs_duration, t_interval, T = 25

Harmony Search BN, BI, BY, DK, DB, EF, EB, EN, EM, FC, FB, FO, GR, HR, HN, IV, IJ,
JO, JB, KS, KO, KU = 22

Ending Operation BN, CJ, DK, EB, LE, JO, JV, JY, IN, EM, DZ, IV, JB, KS, HR,
qrs_duration = 16

Standard measures like recall, the Classification Accuracy (CA) [23,24], the Receiver
Operating Characteristic (ROC) area, the Precision-Recall Curve (PRC) area [25,26], the
Kappa Statistics (KS) [27], and the Mean Absolute Error (MAE) [28,29] are used to evaluate
the performance. The four values in the confusion matrix produced by the machine
learning model are True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN). These metrics are obtained from this matrix.

Recall =
TP

TP + FN
(11)

CA =
TP + TN

TP + FP + TN + FN
(12)

KS =
Po − Pe
1 − Pe

(13)

The percentage of situations in which the predicted and actual classifications match is
shown by Po (Observed Agreement) in this equation, whereas the percentage of cases where
agreement would be anticipated just by chance is indicated by Pe (anticipated Agreement
by Chance).

MAE =
∑n

i=1|yi − xi|
n

(14)

In this case, N is the number of samples, xi is the true (actual) label or value, and I yi is
the predicted label or value.

Receiver Operating Characteristic (ROC) Area: The ROC area is calculated by utiliz-
ing the ROC curve to graph TPR vs. FPR at different decision thresholds. Often, software
libraries or numerical integration are used to determine the ROC area.

Precision-Recall Curve (PRC) Area: The PRC area is obtained by utilizing the PRC
curve to graph Precision vs. Recall at different decision criteria. Software library tools or
numerical integration are frequently used to compute the PRC area.

Table 4. List of the Models Employed in this Study Compared with the Projected Model.

ML Models References

Multilayer Perceptron (MLP) [30–32]

K-Nearest Neighbor (KNN) [31–33]

Support Vector Machine (SVM) [34–36]

Naïve Bayes (NB) [31,37,38]

J48-Decision Tree (J48) [29,32,39]
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3.4. Classification Task Definition

In this work, the classification aim is to use ECG signal data to identify abnormal ECG
patterns. The objective is to develop a model that can accurately categorize ECG signals
into patterns indicative of potential CKD and non-CKD categories. Traditional machine
learning models, such as NB, SVM, MLP, KNN, and J48, are contrasted with the LADTree
model-based categorization approach. To guarantee the robustness and trustworthiness of
the findings, these models are evaluated under two distinct scenarios: percentage splitting
and K-fold cross-validation.

3.5. Proposed Methodology (LADTree)

The error threshold for creating regression trees is established using the Least Absolute
Deviation (LAD) method, but Logical Analysis of Data provides an alternate classification
methodology in the optimization literature. In LAD, a binary classifier is created by
learning logical phrases that successfully differentiate positive and negative samples in a
dataset [40,41]. The LAD model’s central premise is that a binary point covered by positive
patterns but not negative ones is considered positive, and vice versa for negative patterns.
A LAD model is built by creating a wide collection of patterns and choosing a subset that
matches these assumptions while ensuring that each pattern meets particular prevalence
and homogeneity requirements. LADTree, a binary target variable classifier, learns logical
expressions to differentiate between positive and negative samples, employs a logistic
strategy for multiclass alternating decision tree generation, and can handle more than two
class inputs. It also performs additive logistic regression [42,43]. The overall procedure of
the LADTree is presented in Algorithm 1.

Algorithm 1: LADTree

Input:
- Dataset: A set of instances with features and class labels
Output:
- Decision tree model for classification
1. Start
2. Check if the stopping criteria for tree construction are met for the current dataset.
3. If stopping criteria are met:

a. Create a leaf node for the current dataset containing the majority class.
b. Return the created leaf node.

4. Else:
a. Find

the best split for the current dataset using logistic regression.
b. If no optimal split is found:

i. Create a leaf node for the current dataset containing the majority class.
ii. Return the created leaf node.

c. Else:
i. Split the dataset into left and right subsets based on the best split.
ii. Recursively apply the LADTree algorithm to the left and right subsets.
iii. Create a decision node with the best split and its corresponding child nodes.
iv. Return the created decision node.

5. End

The offered algorithm describes how to build a decision tree model for classification
using the LADTree technique. It begins by determining if the halting requirements for
tree building are fulfilled for the current dataset. If the requirements are satisfied, the
algorithm generates a leaf node with the majority class and returns it. Otherwise, it applies
logistic regression to determine the appropriate split for the dataset. If no optimal split is
discovered, a leaf node with the majority class is generated and returned. If an optimum
split is discovered, the dataset is partitioned into left and right subsets according to this split.
The LADTree method is then performed iteratively on each subset, resulting in decision
nodes with the best split and their child nodes. This procedure continues until each subset’s



Algorithms 2024, 17, 406 11 of 20

stopping conditions are fulfilled, resulting in a decision tree model for categorization. The
tree-stopping criteria, finding the best split, splitting the dataset, and calculating deviance
are presented in Algorithm 2:

Algorithm 2: StoppingCriteria(Dataset)

1. Determine the stopping criteria for tree construction (e.g., maximum depth, minimum samples
per node).
2. Return true if the stopping criteria are met; otherwise, return false.

Function: FindBestSplit(Dataset)
1. Initialize best_split as null and best_deviance as infinity.
2. For each feature in the dataset:

a. For each value in the feature:
i. Split the dataset into left and right subsets.
ii. Calculate the deviance using logistic regression.
iii. If the calculated deviance is less than the best_deviance:

A. Update best_deviance with the calculated deviance.
B. Update best_split with the current feature and value.

3. Return the best_split.

Function: SplitDataset(Dataset, feature, value)
1. Initialize left_subset and right_subset as empty subsets.
2. For each instance in the dataset:

a. If the feature value of the instance is less than or equal to the given value:
i. Add the instance to the left_subset.

b. Else:
i. Add the instance to the right_subset.

3. Return left_subset and right_subset.

Function: CalculateDeviance(left_subset, right_subset)
1. Calculate the deviance using logistic regression models based on the given subsets.
2. Return the calculated deviance.

These functions are essential to the LADTree technique, which is used to build logistic
regression-based decision trees. The “StoppingCriteria” function defines the conditions that
determine when to stop the tree construction process, such as reaching a maximum depth
or having a minimum amount of samples per node. It returns true if these requirements are
fulfilled, suggesting that further splitting of the dataset is not required. The “FindBestSplit”
function determines the optimum split in the dataset that maximizes class separation. It
iterates over each feature and value combination, dividing the dataset and computing
deviation with logistic regression. The split that produces the lowest deviation is chosen
as the best split and returned. The “SplitDataset” function partitions the dataset into left
and right subsets depending on a given feature and value. Instances with feature values
less than or equal to the provided value are placed in the left subset, while those with
higher values are placed in the right subset. The subsets are then returned for further
processing. Finally, the “CalculateDeviance” function calculates the deviation using logistic
regression models based on the subsets created by the “SplitDataset” function. This
deviation measurement quantifies the difference between observed and expected class
probabilities, which helps to determine the appropriate split for the decision tree. These
functions work together to simplify the iterative process of building a decision tree model
with the LADTree algorithm, ensuring that optimal splits are located while adhering to set
stopping conditions.

4. Results Analysis and Discussion

This study focuses on detecting abnormal ECG patterns using the LADTree model.
The efficacy of the proposed LADTree model is compared to traditional ML models using
error rate and accuracy analysis as benchmarks. Training and testing procedures are carried
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out in two different ways: scenario 1 involves percentage splitting, in which the dataset is
partitioned into training and testing sets based on a specified percentage, and scenario 2
uses K-fold cross-validation, in which the dataset is divided into K subsets for training and
testing iteratively. These different criteria enable a thorough evaluation and comparison
of the LADTree model’s performance with known ML techniques in the context of CKD
prediction using ECG data.

4.1. Scenario 1

In this case, the model training and testing are performed using the percentage splitting
criteria. The data is split into 70% and 30% for training and testing respectively. Figure 2
shows the MAE values for ML models used to detect abnormal ECG patterns from ECG
signal data. Notably, the NB model has the lowest MAE of 0.048, showing higher predictive
accuracy than the other models. In contrast, the SVM model has the greatest MAE (0.132),
signifying substantially inferior predictive ability. The MLP and LADTree models have
modest MAE values of 0.057 and 0.059, respectively, but the KNN and J48 decision tree
models have MAE values of 0.073 and 0.065.
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Figure 2. Comparison of Mean Absolute Error (MAE) Values for Machine Learning Models in Pre-
dicting Chronic Kidney Disease (CKD) from Electrocardiogram (ECG) Signal Data Using Percentage
Splitting Criteria.

Figure 3 shows the KS values for ML models used to predict abnormal ECG patterns
from ECG signal data. The Kappa Statistic measures inter-rater agreement or classification
accuracy for categorical outcomes, with values closer to one indicating higher agreement
or classification performance. In this scenario, the LADTree model has the highest KS
value (0.634), indicating the best agreement between projected and observed classifications
among the models tested. Following closely is the MLP model, which has a KS score of
0.585, showing a high level of agreement. The NB model also has a comparatively high KS
value of 0.553, which indicates strong classification accuracy. In contrast, the KNN and J48
decision tree models have KS values of 0.315 and 0.466, respectively, showing moderate
agreement. Notably, the SVM model has the lowest KS value of 0.314, signifying lower
classification performance than the other models. Overall, the analysis indicates that the
LADTree, MLP, and NB models beat others in terms of classification accuracy for CKD
prediction, however, the SVM model performs poorly based on Kappa Statistic values.
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Figure 3. Comparison of Kappa Statistic (KS) Values for Employed Models in Predicting Abnormal
ECG Patterns Using the Percentage Splitting Criteria.

Figure 4 shows that the LADTree model consistently surpasses the other models in all
three metrics: recall, ROC area, and PRC area. With a recall of 0.779, the LADTree model
outperforms all other models in detecting positive cases of renal disease. Furthermore, its
ROC area of 0.864 indicates a better classification capacity than the other models. Further-
more, the LADTree model obtains a PRC area of 0.75, demonstrating an excellent balance
of accuracy and recall. This overall result implies that the LADTree model is well-suited to
the task of predicting renal illness, with high accuracy in detecting positive instances and
good precision. While competing models, such as MLP and NB, perform competitively in
some measures, the LADTree model consistently outperforms all tested criteria. Based on
the data reported, the LADTree model should be considered the leading choice for renal
disease prediction.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 20 
 

suited to the task of predicting renal illness, with high accuracy in detecting positive in-
stances and good precision. While competing models, such as MLP and NB, perform com-
petitively in some measures, the LADTree model consistently outperforms all tested cri-
teria. Based on the data reported, the LADTree model should be considered the leading 
choice for renal disease prediction. 

 
Figure 4. Comparison of Performance Metrics Across Employed Machine Learning Models for Ab-
normal ECG Patterns Prediction using the Percentage Splitting Criteria. 

The accuracy analysis of the applied machine learning models provides useful infor-
mation about their efficacy in predicting renal illness is presented in Figure 5. The LAD-
Tree model outperforms the other models, with an accuracy of 77.942%, suggesting that 
it can accurately anticipate the outcome in about 78% of situations. This demonstrates the 
LADTree algorithm’s ability to appropriately categorize occurrences of renal illness. The 
MLP model follows closely behind with an accuracy of 75%, demonstrating its outstand-
ing overall performance in classification tasks. The NB model also performs competitively, 
with an accuracy of 71.323%, indicating its usefulness in medical diagnosing tasks. How-
ever, other models, such as SVM, J48, and KNN, have significantly lesser accuracies of 
65.441%, 64.706%, and 54.412%. These findings indicate that the models’ efficacy varies, 
with SVM and J48 performing moderately and KNN displaying the lowest accuracy in 
this job. Overall, the accuracy study emphasizes the need to choose the best machine learn-
ing model adapted to the dataset’s features to attain optimal predictive performance in 
renal illness prediction. 

 
Figure 5. Comparison of Machine Learning Model Accuracy in abnormal ECG patterns Using the 
Percentage Splitting Criteria. 

MLP KNN SVM NB J48 LADTree
Recall 0.75 0.544 0.654 0.713 0.647 0.779
ROCA 0.836 0.661 0.708 0.86 0.746 0.864
PRCA 0.721 0.502 0.511 0.766 0.593 0.75

0.75

0.544
0.654

0.713
0.647

0.779
0.836

0.661 0.708

0.86
0.746

0.864

0.721

0.502 0.511

0.766

0.593

0.75

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Re
ca

ll,
 R

OC
, a

nd
 P

RC
 A

na
ly

sis

75

54.412
65.441

71.323
64.706

77.942

0

20

40

60

80

100

MLP KNN SVM NB J48 LADTree

Ac
cu

ra
cy

 A
na

ly
sis

Employed Machine Learning Models

Figure 4. Comparison of Performance Metrics Across Employed Machine Learning Models for
Abnormal ECG Patterns Prediction using the Percentage Splitting Criteria.

The accuracy analysis of the applied machine learning models provides useful infor-
mation about their efficacy in predicting renal illness is presented in Figure 5. The LADTree
model outperforms the other models, with an accuracy of 77.942%, suggesting that it
can accurately anticipate the outcome in about 78% of situations. This demonstrates the
LADTree algorithm’s ability to appropriately categorize occurrences of renal illness. The
MLP model follows closely behind with an accuracy of 75%, demonstrating its outstanding
overall performance in classification tasks. The NB model also performs competitively,
with an accuracy of 71.323%, indicating its usefulness in medical diagnosing tasks. How-
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ever, other models, such as SVM, J48, and KNN, have significantly lesser accuracies of
65.441%, 64.706%, and 54.412%. These findings indicate that the models’ efficacy varies,
with SVM and J48 performing moderately and KNN displaying the lowest accuracy in this
job. Overall, the accuracy study emphasizes the need to choose the best machine learning
model adapted to the dataset’s features to attain optimal predictive performance in renal
illness prediction.
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Figure 5. Comparison of Machine Learning Model Accuracy in abnormal ECG patterns Using the
Percentage Splitting Criteria.

4.2. Scenario 2

In this case, the model training and testing are performed using the K-fold cross-
validation criteria, where the value for K is selected as 10. K-fold cross-validation is
also a standard model training and testing criteria previously used in different stud-
ies [15,29,44,45]. Figure 6 shows the MAE analysis, providing insights into the performance
of ML models for detecting abnormal ECG patterns using ECG signal data. Each model’s
MAE value reflects itss performance, with lower numbers indicating higher performance.
Among the models, the NB model has the lowest MAE of 0.054, followed by the MLP model
at 0.062. Both methods produce slightly better CDK predictions from ECG readings. In
contrast, the SVM model has the greatest MAE of 0.132, suggesting less accurate predictions
than the other models. The KNN model has a significantly higher MAE of 0.07. Decision
tree-based models, such as J48 and LADTree, perform relatively well, with MAE values of
0.068 and 0.069.
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Figure 6. Mean Absolute Error Analysis of Abnormal ECG Patterns on Employed Machine Learning
Models Using ECG Signal Data with K-fold Cross-Validation.

Figure 7 shows the KS values for each ML model used to detect abnormal ECG patterns,
highlighting the agreement between predicted and actual results while accounting for
chance agreement. The NB model had the best level of agreement across the models, with
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a Kappa score of 0.477, indicating significant agreement above chance and confirming its
usefulness in predicting CDK outcomes. Following closely, the LADTree model has a Kappa
score of 0.467, indicating a moderate to significant level of agreement over chance. The MLP
and J48 models also have reasonable agreement with KS (0.446 and 0.453, respectively). In
contrast, the SVM and KNN models had lower levels of agreement, with Kappa values of
0.297 and 0.326, respectively, indicating room for improvement in their prediction ability.
Overall, the KS analysis emphasizes the different levels of agreement between the models’
predictions and actual abnormal ECG patterns, providing valuable insights into their ability
to detect these patterns.
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Figure 7. Kappa Statistic (KS) Values for Employed Machine Learning Models Used in Predicting
Abnormal ECG Patterns Using K-Fold Cross-Validation.

Figure 8 shows the performance measures for ML models used to detect abnormal ECG
patterns, including recall, ROC area, and PRC area. Among the models, the NB model has
the best overall performance, with notable scores in recall (0.662), ROCA (0.789), and PRCA
(0.62), indicating its effectiveness in correctly identifying positive CKD cases, distinguishing
between positive and negative instances, and maintaining a balance between precision and
recall. The LADTree model comes in second place, with recall, ROCA, and PRCA scores
of 0.673, 0.793, and 0.602, respectively. Meanwhile, the MLP, J48, and SVM models show
moderate performance in detecting abnormal ECG patterns and distinguishing between
classes, while the KNN model lags with lower scores across all metrics, indicating relatively
weaker performance in detecting these patterns.
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Figure 8. Performance Measures (Recall, ROCA, PRCA) of Machine Learning Models for Predicting
Abnormal ECG Patterns using K-Fold Cross-Validation.

Figure 9 shows the accuracy values of the applied ML models in detecting abnormal
ECG patterns using ECG signal data. Among the models, the LADTree model has the best
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accuracy of 67.257%, followed by the MLP model at 66.372%. These findings show that
both models have rather better prediction ability in reliably diagnosing cases of CKD using
ECG data. In contrast, the KNN model has the lowest accuracy of 56.195%, indicating that
it has worse predictive ability than other models. The SVM and J48 models have accuracies
of 63.053% and 65.255%, suggesting reasonable performance levels. The NB model has an
accuracy of 66.15%, which is competitive with MLP and J48.
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Figure 9. Accuracy Values of Employed Machine Learning Models for Predicting Abnormal ECG
Patterns Using Electrocardiogram (ECG) Signal Data Based on the K-Fold Cross-Validation Criteria.

4.3. Discussion

The study focuses on detecting abnormal ECG patterns using ECG data, specifically
evaluating the performance of the LADTree model compared to other standard ML models.
The analysis includes two scenarios: scenario 1, which uses percentage splitting for training
and testing, and scenario 2, which uses K-fold cross-validation. In scenario 1, the models’
prediction ability is assessed using MAE and KS. While the NB model has the lowest MAE,
showing stronger prediction accuracy, the LADTree model outperforms KS, demonstrating
superior classification accuracy. Moreover, the LADTree model consistently excels in
the recall, ROC, and PRC metrics, showcasing its ability to effectively detect abnormal
ECG patterns while maintaining a balance of accuracy and recall. Although the NB and
MLP models also show competitive MAE values, the LADTree model maintains strong
performance across various metrics. The NB model demonstrates notable efficiency in
predicting CKD based on agreement with actual results. However, the LADTree model
stands out in terms of recall, ROC area, and PRC, underscoring its suitability for identifying
abnormal ECG patterns. In terms of accuracy, the LADTree model again proves to be the
top performer, demonstrating its reliability in diagnosing conditions related to abnormal
ECG data.

Furthermore, the superior performance of the LADTree model is evident. Its robust-
ness to noise and outliers, combined with its capability to handle both numerical and
categorical data, makes it particularly effective. This allows LADTree to capture complex
relationships within ECG signals and reliably aid in the identification of abnormal patterns.
Furthermore, the hierarchical structure of LADTree improves interpretable decision-making,
allowing for the discovery of significant variables critical for CKD prediction. However,
greater investigation into how LADTree’s decision-making process varies from other mod-
els, as well as its computing efficiency, would give a more complete explanation of its
superiority. Overall, while the research offers valuable insights, addressing these underly-
ing aspects and concerns will enhance our understanding of the findings and underscore
the LADTree model’s advantages in detecting abnormal ECG patterns.

Comparing LADTree’s performance against that of J48, another decision tree, is another
factor. The decision tree algorithms J48 and LADTree are renowned for their interoper-
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ability, which is essential in medical applications. Nonetheless, the observed inequalities
in performance can be explained by significant variances in their underlying structures
and processes. Combining boosting with decision trees, the LADTree is an alternating
decision tree type that can handle more complicated connections and provide predictions
with a better degree of accuracy. It combines many trees to capture a wider variety of
patterns in the data, which is especially useful for complex datasets like ECG signals used
to forecast chronic kidney disease. J48, an algorithmic implementation of C4.5, on the other
hand, constructs a single decision tree according to criteria related to information gain or
gain ratio. J48 performs relatively poorly when dealing with the increased complexity and
noise seen in medical data, even though it is successful with simpler datasets. Because
of its sturdy construction, the LADTree is better able to handle noise and outliers, which
enhances prediction accuracy and dependability.

The study’s limitations derive basically from its dependence on a single dataset, the
MIT-BIH Arrhythmia database, which may not completely represent the various ECG pat-
terns found in the general population with CKD. As a result, the findings’ generalizability
may be restricted since the model’s performance varies among different ECG datasets or
populations. Furthermore, while the study compares multiple machine learning models,
the emphasis on only a selection of models may obscure other potentially useful methods
that might improve CKD prediction accuracy. Furthermore, the research recognizes the rel-
evance of feature selection; yet, investigating advanced feature selection approaches other
than those used may provide different outcomes. The LADTree model’s interpretability is
promising, but its computational efficiency and resource consumption compared to simpler
models like Naïve Bayes may pose challenges for practical deployment in clinical settings.
These limitations highlight the need for more studies to test and refine the findings over
a wide range of datasets, as well as to improve the suggested approach’s applicability in
realistic circumstances.

5. Conclusions

This study aimed to enhance the prediction of abnormal ECG patterns using ECG
signal data and ML models. It compared the LADTree model with several well-known
ML algorithms, including MLP, KNN, SVM, NB, and J48. Comprehensive testing and
analysis provided valuable insights into the performance of these models for detecting
abnormal ECG patterns. Our results constantly showed that the LADTree model performed
better in terms of mistake rate and accuracy evaluation measures. Notably, the LADTree
model continuously performed better on measures including MAE, KS, recall, ROCA,
PRCA, and overall accuracy. The study also emphasized how crucial feature selection is
to improving machine learning models’ capacity for prediction. All things considered,
these results highlight the promise of the LADTree model and underscore the significance
of effective feature selection in optimizing the detection of abnormal ECG patterns using
ECG signal data. Through the use of many feature selection methods, such as Particle
Swarm Optimization, Best First Search, and Harmony Search, we were able to find non-
redundant and relevant features for CKD prediction using ECG data. Overall, this study’s
findings demonstrate the potential of machine learning models, especially the LADTree
model, to support the early identification and diagnosis of CKD using data from ECG
signals. These findings have important ramifications for the creation of sophisticated
diagnostic instruments and individualized healthcare programs meant to enhance CKD
management and lower the rates of morbidity and death connected with the disease. To
improve the clinical value and dependability of ML models, additional research in this field
may concentrate on improving feature selection techniques, maximizing model parameters,
and verifying the models’ performance on bigger and more varied datasets.

Future research for this study might include investigating ensemble approaches that
mix different ML models, including the LADTree model, to potentially improve prediction
accuracy. Furthermore, using deep learning for CKD prediction using ECG data shows
potential. It would be advantageous to conduct larger-scale investigations with various
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datasets, validate model robustness, and improve interpretability using approaches such as
attention processes. Furthermore, including real-time monitoring capabilities in created
models might allow for early identification and continuous monitoring of CKD develop-
ment, leading to improved diagnosis and management of this common medical illness.
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