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Abstract: Enzymes play key roles in the biological functions of living organisms, which serve as
catalysts to and regulate biochemical reaction pathways. Recent studies suggest that peptides are
promising molecules for modulating enzyme function due to their advantages in large chemical
diversity and well-established methods for library synthesis. Experimental approaches to identify
protein-binding peptides are time-consuming and costly. Hence, there is a demand to develop a fast
and accurate computational approach to tackle this problem. Another challenge in developing a
computational approach is the lack of a large and reliable dataset. In this study, we develop a new
machine learning approach called PepBind-SVM to predict protein-binding peptides. To build this
model, we extract different sequential and physicochemical features from peptides and use a Support
Vector Machine (SVM) as the classification technique. We train this model on the dataset that we
also introduce in this study. PepBind-SVM achieves 92.1% prediction accuracy, outperforming other
classifiers at predicting protein-binding peptides.

Keywords: enzyme; peptide; binding; support vector machine; physicochemical features; sequential
features

1. Introduction

Enzymes are crucial for the biological functions of living organisms. They serve as
catalysts to catalyze and regulate biochemical reaction pathways [1,2]. Searching ligands to
modulate enzyme functions is one of the central topics for disease diagnosis and therapeu-
tics [3–5]. Recent studies suggest that peptides are promising molecules for modulating
enzyme function due to their advantages in large chemical diversity, biocompatibility, and
well-established methods for library synthesis [6–9]. For example, peptides and their deriva-
tives can be used to inhibit or activate enzyme catalysis, mediate cell receptor response,
and facilitate transmembrane delivery [7,10].

Traditional ligands and drug discovery rely on the synthesis of large chemical li-
braries. High-throughput screening or selection is often used to identify ligands for binding
to a target protein, such as in vitro mRNA display [8], phage display [11], bead-based
library screening [12], protein direct evolution [13], aptamer selection [14], peptide mi-
croarray [7,10,15], and fragment-based design of small molecules [16]. Unfortunately, these
approaches are all very time-consuming and costly. The recent progress of machine learning
(ML) and artificial intelligence (AI) have advanced the chemical discovery process [17]. For
example, by using a dataset of existing molecular libraries with known functions, ML can
be trained to analyze large datasets of ligand structures, sequences, and binding affinities
and to predict potential interactions more accurately [18].
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During the past two decades, a wide range of ML models has been proposed to
predict different types of protein-binding peptides [19–23]. These studies can generally
be categorized into two groups. First are studies that introduced new features to extract
more discriminatory information for the prediction task [24–26]. These studies mainly
extract features based on sequential, structural, physicochemical, and evolutionary-based
information [27,28].

For instance, Yan and Zhou used chemical interactions and physicochemical properties
of amino acids for feature extraction [29]. Later on, Romero-Molina et al. extended the
use of physicochemical properties and also included sequential-based features to predict
protein-binding peptides [24]. In a different study, Wei et al., employed structural features
to detect therapeutic peptides [27]. The structural features are mostly extracted based on
the predicted values of the protein local or secondary structure of the proteins using tools
such as PSIPRED or SPIDER [30–32]. Other studies, such as Akbar et al., used evolutionary
information to add to former types of features for better performance [33].

Recent studies have shifted their focus to using Deep Learning (DL) models to automat-
ically extract features from protein sequences instead of different types of properties [33–36].
However, extracting effective features is still considered a common and effective method to
tackle this problem [37].

The second group of studies aims to use effective ML and DL models to predict protein-
binding peptides. Among traditional machine learning models, Support Vector Machine
(SVM), Random Forest (RF), and Adaptive Boosting have been shown to be very effective
for this task [26,37–42]. As mentioned earlier, recent studies have shifted their focus to
using DL to tackle this problem. However, for smaller datasets, complex DL models cannot
be trained properly. Instead, traditional ML methods demonstrate better performance for
these cases. In addition, studying the explainability of the complex DL models is more
challenging. Therefore, there is a demand for an accurate and explainable model to tackle
this problem. Another challenge is to have reliable and large enough datasets to use as a
benchmark to train machine learning models to predict common protein-binding peptides.
Most of the currently used datasets are either very small or have low resolution.

This study addresses these two challenges by generating a reliable and relatively
large peptide-binding protein dataset and proposing an explainable machine learning
model. Here, we develop PepBind-SVM to predict protein-binding peptides. To build
this model, we extract different sequential and physicochemical features from peptides
and use an SVM as the classification technique. We train this model on the dataset that
we also introduce in this study. PepBind-SVM outperforms other classifiers in predicting
protein-binding peptides. PepBind-SVM, its source code, and our newly generated protein
binding peptides are publicly available at https://github.com/MLBC-lab/pepbind-SVM
(accessed on 1 September 2024).

2. Dataset Preparation

To generate our own dataset, we first prepared the peptides using an experimental
approach. We then filtered the data to generate a training and independent test set to build
and validate our machine learning models.

2.1. Microarray Fabrication

Here, we use 10,000 20-mer peptides produced at Arizona State University [7,10,43].
These distinct polypeptide sequences were spotted in duplicate onto a glass slide possess-
ing an amino-silane surface coating. Each polypeptide is 20 residues long, with 17 positions
randomly chosen from 19 amino acids (excluding cysteine). The C-terminal three po-
sitions of each peptide was a glycine–serine–cysteine (GSC) linker, which was used for
conjugating peptides to amino-silane surfaces via a maleimide linker, sulfosuccinimidyl 4-
(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC; Pierce, Rockford, IL, USA).
The array printing was done using a Telechem Nanoprint60 (Currently Arrayit, Sunnyvale,
CA, USA) hot spotted approximately 500 pL of 1 mg/mL peptide per feature on glass
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slides with 48 Telechem series SMP2-style 946 titanium pins (Currently Arrayit, Sunnyvale,
CA, USA).

2.2. Microarray Binding

We labeled β-Gal with Alexa Fluor 647 (Invitrogen) and diluted it to 5 nM in bovine
serum albumin (BSA) buffer (1 × PBS with 3% (v/v) BSA and 0.05% Tween 20). The activity
of the labeled β-Gal was ~75% that of the wild type in solution. Binding of enzymes
on the microarray was performed as described in [43,44]. Briefly, a microarray was first
pre-washed with surface cleaning solvent (7.33% (v/v) acetonitrile, 37% isopropyl alcohol,
and 0.55% trifluoroacetic acid in water), followed by the treatment of a capping buffer
(3% (v/v), bovine serum albumin (BSA), 0.02% (v/v) mercaptohexanol, and 0.05% (v/v)
Tween 20 in 1 × PBS) to block any active SMCC linker on the array surface. Then, the
array was incubated with a solution containing 5 nM Alexa 647-labeled β-Gal or PEP-1–
β-Gal complex for two hours, allowing the enzyme to bind with peptides on the array
surface. After washing off unbound enzymes, the array was read by a standard array
reader (PerkinElmer, Waltham, MA, USA) with color scanning using 647 nm laser lines.
The array was then read by a standard array reader (PerkinElmer, Waltham, MA, USA)
with dual color scanning using 488 and 647 nm laser lines.

2.3. Generating Training and Testing Data for the Machine Learning Model

After generating the peptides, we prepared training and testing datasets to build
our machine learning model in the following manner. We first calculated the affinity of
the peptides to interact with proteins and scored each peptide with a number between
0 and 1. After that, we defined a conservative threshold to select protein-binding and
non-binding peptides. In this way, we made sure that the protein-binding peptides in our
dataset are actual binding and positive samples, while non-binding peptides are actual
negative samples. In this way, the model can effectively learn the patterns. Based on the
corresponding scores, the number of protein-binding peptides was much smaller than that
of non-binding peptides.

The number of non-binding peptides was four times more than the number of binding
peptides. We considered this ratio for building our training and testing datasets.

We selected those peptides with over 0.8 (out of 1) affinity of binding to proteins as
positive and those peptides with less than 0.2 (out of 1) affinity of binding to proteins
as negative samples. In this way, our dataset could be more robust and have clear-cut
positive and negative samples. Peptides with binding affinity between 0.2 and 0.8 cannot
be accurately categorized as binding or non-binding. Therefore, to make sure that our true
positive and true negative samples were accurate, we discarded them. The aim of this
study is to accurately identify protein-binding and non-binding peptides. These thresholds
were selected experimentally and by studying the similarity of samples with each other. As
a result, we generated a training dataset containing 1600 samples. This set was balanced
to contain an equal representation of classes, with 800 samples labeled as positives and
800 as negatives. Such a balanced dataset aids in preventing model bias toward the more
dominant class. However, to make sure that our model performs well on the actual data,
we considered the actual imbalance when we built the testing dataset. For the independent
testing, a dataset comprising 1000 samples was prepared. This dataset includes 200 positive
samples and 800 negative samples, intentionally skewed to reflect a real-world scenario
where negative instances are more prevalent than positive ones.

3. Feature Generation

To encapsulate the complexity and intrinsic characteristics of peptides, we engineered
features based on n-gram models, specifically monograms and bigrams, and incorporated
the peptides’ physicochemical properties. Initially, several n-lengths were computed
recursively. However, no improvement was shown for subsets of length greater than 2.
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Therefore, this study is restricted to monograms and bigrams as a feature set. The feature
generation process is explained as follows.

3.1. Composition and Occurrence (Monogram)

To generate the occurrence, we count the number of each amino acid along the peptide.
It consists of 20 features. To generate the composition, we calculate the frequency of the
amino acid occurrence. To do this, we simply divide the numbers in the occurrence feature
vector by the total number of amino acids in the peptide. It is shown that the performance
of occurrence and composition can be different with respect to the other features being
used and with respect to the problem at hand [45].

3.2. Bigram

In addition to monogram features, we explored the sequential relationship between
amino acids by considering bigram, which is defined as the number of pairs of adjacent
amino acids within the sequences. This approach allows the model to capture the local
sequence context, which can be a determinant of the peptide’s binding capability. Since
there are 20 amino acids, the total number of combinations of pairs is 20 × 20. Hence, the
Bigram feature group consists of 400 features. It has been widely used for different protein
and peptide-related problems and obtained promising results [34].

3.3. Physicochemical Properties

Here, we incorporate the normalized density of 55 physicochemical properties, which
is calculated as follows. For a given amino acid along the peptide sequence, we replace it
with the corresponding value of its property. We then sum them all together and divide the
summation by the length of the peptide, as was done in [46]. These properties include, but
are not limited to, hydrophobicity, charge, and molecular weight. Normalization of these
features ensures that each property contributes equally to the model’s learning process,
preventing any single feature from dominating due to scale differences. These features
were introduced in [46] as the most effective set of physicochemical-based features.

4. Classification Method

In this study, we tried using different classifiers, and, among them, SVM demonstrated
the best performance and is used to build PepBind-SVM. The result of this comparison is
comprehensively presented in the Results and Discussion Section. SVM has been shown as
an effective binary-class classification technique that performs well in similar studies and
specifically for protein-binding peptide prediction in the literature [36–38]. SVM aims to
classify the samples by identifying the maximal marginal hyperplane (MMH) to separate
the data [47]. In this study, the Linear Kernel is used for our SVM model. As shown in
the Result and Discussion Section, using the linear kernel, we obtained the best results
compared to other kernels.

5. Evaluation Methods and Metrics

To evaluate the performance of our model, we used k-fold cross-validation on the
training data and an independent testing set. In k-fold cross-validation, the training data
are divided into k groups. At every step, K-1 of the groups are used for training purposes
while the remaining group is being used for testing purposes. This process is repeated k
times until all groups are being used as the testing set. In this way, we can effectively use
our data for validation. In this study, we use k = 5. To make sure that our model is general,
we also use an independent test set that is not used for training purposes.

For the evaluation of our model’s performance, various metrics, including accuracy
(Acc), Sensitivity (Se), Specificity (Sp), the area under the receiver–operating characteristic
curve (AUC), Matthews correlation coefficient (MCC), and F1-score are used. These metrics
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serve as reliable measures to assess the effectiveness and robustness of the model. The
calculations for each metric are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN,

Sn =
TP

TP + FN,

Sp =
TN

TN + FP,

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN),

F1-score = 2 × Pre × SN
Pre + SN,

where TP represents the count of true positives, TN represents the count of true negatives,
FP represents the count of false positives, and FN represents the count of false negatives.
These five evaluation metrics were used for results achieved for both testing dataset and
five-fold cross-validation.

6. Results and Discussion

In this section, we first present our achieved results and continue with a comprehensive
feature analysis. After that, we discuss the explainability of our model using Shapley
Additive exPlanations (SHAP).

6.1. Selecting a Base Classifier to Build Our Model

To build our model, we use different classifiers for our extracted features. We studied
several classifiers and, among them, chose RF, SVM, and gradient-boosting decision trees
(XGBoost). As discussed in the Introduction Section, these three classifiers have been shown
to be effective methods in predicting protein-binding peptides [26,37–42]. Introduced by
Breiman, Random Forest is considered one of the best ensemble classifiers [48]. Based
on the Bagging approach, RF promotes randomness to obtain better results. For RF, the
employed data are first randomly divided into several groups. Then, for each group, a
base decision tree is used for training using a random subset of a total number of features.
Therefore, both data and features are randomly used to train each decision tree. After
that, the results of all the base learners are combined to present the final classification.
On the other hand, XGBoost is based on a boosting method [49]. In this model, a base
classifier is trained iteratively on a subset of the data, and based on its performance, the
weights for the classified samples are adjusted for the next iteration. In the next iteration,
the weights of those samples that are incorrectly classified are increased to make it more
costly to misclassify them. This process is being repeated several times. In the end, all
those predictors in different iterations are combined to provide the final predictor. For the
XGBoost, the employed base learner is gradient descent as its base learner.

We use these three classifiers with different parameters for our three extracted feature
groups. We use SVM with linear and Radial Basis function kernels. We also use RF with
50, 100, and 200 decision trees. In this way, we can choose the parameters that perform the
best. We used grid search as well as several values manually (those that performed well
for similar studies) to tune our classifiers and optimize them. After careful comparison,
we used the parameters that are general, and also their results were aligned with the
outcome of the grid search to avoid overfitting. The results achieved using these classifiers
for Composition, Occurrence, Bigram, and Physicochemical-based feature groups for the
independent test set are presented in Table 1, Table 2, Table 3, and Table 4, respectively.
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Table 1. Performance of our employed classifiers using composition feature group on the independent
dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 90.6 86.0 91.8 0.730 0.945 0.785

SVM-Linear 92.1 86.0 93.6 0.765 0.937 0.813

RF-50 89.4 84.0 90.8 0.698 0.933 0.760

RF-100 90.8 88.0 91.5 0.740 0.941 0.793

RF-200 90.5 86.5 91.5 0.729 0.944 0.784

XGBoost 90.1 85.5 91.3 0.718 0.942 0.775

Table 2. Performance of our employed classifiers using occurrence feature group on the independent
dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 90.6 86.0 91.8 0.730 0.945 0.785

SVM-Linear 90.4 85.5 91.6 0.724 0.936 0.781

RF-50 90.1 86.5 91.0 0.721 0.944 0.778

RF-100 90.6 86.5 91.6 0.732 0.943 0.786

RF-200 90.4 86.5 91.4 0.727 0.945 0.783

XGBoost 90.1 85.5 91.3 0.718 0.942 0.776

Table 3. Performance of our employed classifiers using the Physicochemical feature group on the
independent dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 91.0 85.5 92.4 0.738 0.942 0.791

SVM-Linear 90.4 85.5 91.6 0.724 0.936 0.781

RF-50 84.3 76.5 86.3 0.570 0.903 0.661

RF-100 84.9 78.5 86.5 0.589 0.904 0.675

RF-200 84.4 79.5 85.6 0.584 0.906 0.671

XGBoost 86.5 82.5 87.5 0.634 0.923 0.710

Table 4. Performance of our employed classifiers using the Bigram feature group on the independent
dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 87.7 78.5 90.0 0.644 0.928 0.719

SVM-Linear 89.6 57.5 97.6 0.647 0.918 0.689

RF-50 78.2 84.0 76.8 0.508 0.880 0.607

RF-100 79.0 85.5 77.4 0.527 0.891 0.620

RF-200 77.0 83.0 75.5 0.487 0.893 0.591

XGBoost 83.3 77.5 84.8 0.556 0.876 0.650

As shown in Tables 1–4, using SVM, we achieve the best results. After SVM, XGBoost
achieves better results than RF. Among different numbers of base learners, using 100, RF
achieves its best results. Still, it performs poorer than SVM and XGBoost. As shown in
Table 1, using SVM with a linear kernel, we achieved 92.1% accuracy, 86.0% sensitivity,
93.6% specificity, 0.765 MCC, 0.937 AUC, and 0.813 F1 score, which outperforms other
combinations. It highlights the importance of the monogram feature group. Also, better
results using linear kernel demonstrate that linear transformation of the input data to a
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higher dimension is better for maintaining the patterns in the data. In other words, the
underlying pattern in the data can be expressed in a linear manner.

As shown in Table 4, Bigram’s results are lower than those of other feature groups.
This demonstrates that, with respect to the number of generated features (400), Bigram
does not provide significant discriminatory information compared to other feature groups.
Comparing the results in Tables 1 and 2 shows that we can achieve slightly better results by
using composition. As discussed in [45] and considering the similar nature of composition
and occurrence feature groups, we just use the composition feature group for the next step,
which is the combination of all feature groups.

6.2. Selecting the Input Feature Groups to Build Our Model

Next, we combine composition, physicochemical, and Bigram feature groups and use
our classifiers on the independent test set. The result of this experiment is shown in Table 5.

Table 5. Performance of our employed classifiers using a combination of the composition, physico-
chemical, and Bigram feature groups on the independent dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 82.5 67.5 86.2 0.499 0.853 0.606

SVM-Linear 90.4 86.0 91.5 0.725 0.936 0.781

RF-50 85.0 78.0 86.7 0.589 0.907 0.675

RF-100 84.9 79.0 86.3 0.591 0.908 0.676

RF-200 86.3 82.0 87.3 0.628 0.922 0.705

XGBoost 89.2 84.5 90.3 0.695 0.942 0.757

As shown in Table 5, using a combination of different feature groups, we achieve lower
results for all the metrics. It shows that we do not add extra discriminatory information,
considering the number of additional features when combining these feature groups.
Considering the number of added features, Bigram might have the highest weight in
reducing the performance. Therefore, in the next step, we just use the combination of
composition and physicochemical feature groups. The result of this experiment is shown
in Table 6.

Table 6. Performance of our employed classifiers using a combination of the composition and
physicochemical feature groups on the independent dataset.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 88.8 80.0 91.0 0.673 0.918 0.741

SVM-Linear 90.2 85.5 91.4 0.720 0.936 0.777

RF-50 87.4 80.5 89.1 0.645 0.924 0.719

RF-100 87.7 83.0 88.9 0.660 0.931 0.729

RF-200 88.2 84.0 89.3 0.673 0.935 0.740

XGBoost 89.6 86.0 90.5 0.708 0.943 0.768

As shown in Table 6, adding a physicochemical-based feature group reduces the
performance compared to using composition or occurrence alone. It again highlights that
the discriminatory information presented in the physicochemical-based feature group is
already captured in the occurrence and composition feature group. It is actually in line with
the fact that the necessary information for understanding the protein sequence is already
embedded in its amino acid sequence [50]. To validate and investigate the generality and
robustness of achieved results, we use our employed classifiers on the composition and
the combination of all three feature groups (composition, Bigram, and physicochemical-
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based feature groups) using five-fold cross-validation. The results of these experiments are
presented in Tables 7 and 8, respectively.

Table 7. Performance of our employed classifiers on the composition feature group using five-fold
cross-validation.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 88.4 84.5 92.4 0.760 0.925 0.871

SVM-Linear 89.1 85.4 92.9 0.784 0.931 0.887

RF-50 87.4 85.0 89.8 0.750 0.932 0.871

RF-100 88.2 86.1 90.4 0.765 0.937 0.880

RF-200 87.6 85.7 89.6 0.754 0.938 0.874

XGBoost 87.8 86.1 89.6 0.758 0.937 0.876

Table 8. Performance of our employed classifiers using a combination of the composition and
physicochemical feature groups using five-fold cross-validation.

Model Acc (%) Sn (%) Sp (%) MCC AUC F1-Score

SVM-RBF 77.7 68.8 86.6 0.564 0.859 0.756

SVM-Linear 88.4 85.3 91.5 0.769 0.930 0.880

RF-50 83.2 80.6 85.7 0.665 0.903 0.827

RF-100 83.8 81.1 86.5 0.678 0.910 0.833

RF-200 84.0 81.6 86.5 0.682 0.910 0.836

XGBoost 87.4 86.3 88.6 0.749 0.934 0.873

As shown in Tables 7 and 8, although the results are lower than those reported on the
independent test set, the trend is still similar. As shown in these tables, using the SVM
classifier and composition as the input feature group, we achieve better performance than
using the combination of all the employed feature groups. This highlights the generality
of our achieved results. The lower results achieved on the five-fold cross-validation can
be associated with using far fewer samples to test our model. Using five-fold cross-
validation, we use just 80% of our data to train the model, compared to using 100% of the
data when we use an independent test set. As a result, we use an SVM classifier with a
linear kernel and composition feature group to build PepBind-SVM. PepBind-SVM, its
source code, and our newly generated protein binding peptides are publicly available at
https://github.com/MLBC-lab/pepbind-SVM (accessed on 1 September 2024).

Achieving the best results using SVM with linear kernel as the classifier and composi-
tion as feature group, which are relatively simple combinations, can be directly related to
the employed dataset. We prepared the dataset with several control cases to make sure that
it is a very clear representation of protein-binding and non-binding peptides. Achieving
promising results using this combination demonstrates that if we use proper data with
high resolution and clarity, finding the pattern in the data is much more straightforward.
It is important to highlight that despite promising results, we still have a long way to
go to solve this problem. Hence, for our future study, we aim at using structural and
evolutionary based features to tackle this problem. We also aim to use a complex deep-
learning model to solve this problem. One of the limitations of this study is regarding data
cleaning. We cleaned up our data using a binding affinity of less than 0.2 for non-binding
peptides and over 0.8 for binding peptides. This threshold enables us to make sure that our
positive samples and negative samples are correct. In the future, we aim to collect more
data and experimentally validate the proper threshold or try other thresholds with more
extensive data.

Another limitation of this study is that our model is designed to identify protein-
binding and non-binding peptides. However, it is not able to identify peptides with

https://github.com/MLBC-lab/pepbind-SVM
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binding affinity between 0.2 and 0.8 (uncertain proteins). Our future direction is to identify
a proper threshold, which would be validated experimentally with the help of experts, for
uncertain peptides and identify them.

Finally, since the employed dataset is new and was generated by us, there is no
previous work with which to compare our model. However, we share this dataset along
with this article for future studies to evaluate their model. Our future direction is also
to use complex yet explainable models to tackle this problem. Next, we investigate the
explainability of the proposed model using SHAP.

6.3. SHAP for Interpreting Model Feature Relation and Black Box Model Explanation

Shapley Additive exPlanations (SHAP) is a widely used method for interpreting
machine learning models [51]. Studies have used this method to elucidate the decision-
making processes of machine learning models across various types of biological data [52,53].
This technique is created based on the shapely values from cooperative game theory. Each
feature in the data plays the role of the cooperative player. SHAP explains the output
of machine learning models by assigning each feature an importance value for a specific
prediction. Note that we considered top XAI methods such as SHAP, LIME [54], and
ELI5 [55], and ultimately chose SHAP since it has been successfully used for similar
problems and obtained promising results [56,57]. Shapely values present a fair method for
allocating rewards among participants involved in a collaborative game. In such a game, a
group of N players collaborates to generate a total payout of v. Shapely value ϕi assigns a
fair payout to each player based on their contribution. A feature with a higher magnitude
of SHAP value indicates a significant contribution of that feature to the prediction. The
Shapley value ϕi is calculated using the following equation:

ϕi = ∑
s⊆F

|S|!(|F| − |S| − 1)!
|F|!

[
f
(

xs∪{i}

)
− f (xs)

]
where F is the set of all features, and S is a subset of features that does not contain feature
i. As shown in this equation, ϕi is computed by considering all possible feature subsets S
and evaluating how the prediction changes by including or excluding features i. In this
study, we investigated both local and global explanations using SHAP. Local explanations
are focused on providing a deeper understanding of individual predictions, while global
explanations provide insight into the overall behavior of the model [58]. Our goal is
to gain a comprehensive understanding of how each feature contributes to the model’s
decision-making in peptide-binding site prediction.

We begin by examining local explanations through the computation of SHAP values
for our test dataset. We generate a waterfall plot based on all n-gram occurrence and n-gram
composition features for n = 1 and n = 2. A waterfall plot is used for local explanation
utilizing the SHAP values calculated for a single instance. Figure 1 illustrates waterfall
plots for four distinct instances randomly selected from the test dataset.

The upper two subfigures (Figure 1a,b) depict instances for which the model shows
strong confidence in assigning them to the positive class. The lower two subfigures
(Figure 1c,d) show two instances for which the model exhibits strong confidence in as-
signing them to a negative class. Additionally, the plot provides compelling evidence
in favor of utilizing only occurrence-based features in constructing tools for predicting
peptide binding sites since among 840 n-gram features, the top 20 contributing features are
all generated by calculating the occurrence/composition of amino acids in the sequence.
This highlights that n-gram occurrence/composition features are able to provide distin-
guishable characteristics for peptide-binding site prediction. In addition, amino acids with
electrically charged side chains, such as Arginine (R), Lysine (L), Aspartic Acid (D), and
Glutamic Acid (E), constantly demonstrate higher values. It shows that charged amino
acids are more likely to have an important impact on the binding or non-binding properties
of the peptides.
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Figure 1. Local explanations using waterfall plots for n-gram occurrence and n-gram composition
features for the values of n = 1 and n = 2. A prediction f(x), for instance, x, and its deviation from
E[f(x)] could be measured as the sum of the feature importance values (SHAP values) of individual
features. (a) Instance with positive prediction (p = 0.92) (b) Instance with positive prediction (p = 0.97)
(c) Instance with negative prediction (p = 0.08) (d) Instance with negative prediction (p = 0.5).
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To further investigate the efficacy of amino acid occurrence-based features in our task,
we delved into global-level explanations. Leveraging the SHAP library, we computed the
global feature importance, which provides a holistic view of each feature’s contribution
to the model’s predictions across the entire dataset. We computed the global feature
importance by taking the mean absolute SHAP values across all samples. Figure 2 depicts
the top 20 features contributing towards model prediction across all samples. In addition,
we generated a summary plot using the violine plot type from the SHAP library, which
displays the distribution and density of SHAP values for their respective feature. In Figure 3,
we present a violine summary plot highlighting the top feature filtered from the pool of
840 n-gram features. Together, these figures strongly indicate the pivotal role of amino acid
occurrence-based features in driving the model’s prediction.
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Figure 2. Global feature importance for n-gram occurrence and n-gram composition features is
computed by taking the mean absolute SHAP values across all samples. This plot provides insights
into the overall contribution of individual features to the model’s prediction across all samples in the
dataset. Only the top 20 contributing features are shown.

Finally, we explore both the local and global explanations for Monogram occurrence
features. We observed that using monogram features alone for training our machine
learning model yields the best performance in distinguishing protein-binding peptides
from non-binding peptides. Figure 4 shows the waterfall plot for four instances from the
test dataset. Figure 4a,b depict two samples for which the model predicts positive sites, and
Figure 4c,d show samples for which the model is showing strong confidence in assigning
them to the negative class.
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Figure 4. Local explanations using waterfall plots for monogram occurrence features. A prediction
f(x), for instance, x, and its deviation from E[f(x)] could be measured as the sum of the feature
importance values (SHAP values) of individual features. (a) Instance with positive prediction
(p = 0.91) (b) Instance with positive prediction (p = 0.96) (c) Instance with negative prediction (p = 0.11)
(d) Instance with negative prediction (p = 0.06).

Moreover, we generate a global feature importance plot using SHAP values, as de-
picted in Figure 5. Additionally, we generate a violine summary plot (Figure 6) for mono-
gram features, which provides a compact representation of the distribution and variability
of SHAP values for each feature.
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7. Conclusions

Peptides are considered important macromolecules for modulating enzyme function
due to their advantages in large chemical diversity, biocompatibility, and well-established
methods for library synthesis. Experimental approaches to identify functioning peptides,
such as those that are protein binding, are time-consuming and costly. Hence, there is a
demand to build a fast and accurate computational approach to tackle this problem. In
this study, we proposed PepBind-SVM, a new machine learning-based model to accurately
predict protein-binding peptides. To build such a model and make sure that it is able to
identify binding patterns in peptides, we generate a new experimentally validated dataset
that is released alongside this article.

We then investigate different feature sets and classifiers to identify the most effective
combination. Finally, we comprehensively investigate the explainability of our model
using SHAP. Our analysis demonstrates the importance of amino acids with electrically
charged side chains playing an important role in protein-binding or non-binding prop-
erties of the peptides. As mentioned earlier, here we focused on proposing an accurate,
explainable machine learning model to tackle this problem. Therefore, our proposed
method is relatively simple. However, despite the simplicity and due to the generation of a
well-prepared dataset, PepBind-SVM obtained promising results. PepBind-SVM achieves
92.1% prediction accuracy, outperforming other classifiers in predicting protein-binding
peptides. For our future study, we aim to investigate other sources of features, such as
structural and evolutionary attributes. We also aim to use more sophisticated deep-learning
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models. PepBind-SVM, its source code, and our newly generated protein-binding peptides
are publicly available at https://github.com/MLBC-lab/pepbind-SVM (accessed on 1
September 2024).
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