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Abstract: The compatibility between antioxidant compounds (ACs) and wall materials (WMs)
is one of the most crucial aspects of the encapsulation process, as the encapsulated compounds’
stability depends on the affinity between the compounds, which is influenced by their chemical
properties. A compatibility model between the encapsulant and antioxidant chemicals was built
using machine learning (ML) to discover optimal matches without costly and time-consuming trial-
and-error experiments. The attributes of the required antioxidant and wall material components were
recollected, and two datasets were constructed. As a result, a tying process was performed to connect
both datasets and identify significant relationships between parameters of ACs and WMs to define
the compatibility or incompatibility of the compounds, as this was necessary to enrich the dataset by
incorporating decoys. As a result, a simple statistical analysis was conducted to examine the indicated
correlations between variables, and a Principal Component Analysis (PCA) was performed to reduce
the dimensionality of the dataset without sacrificing essential information. The K-nearest neighbor
(KNN) algorithm was used and designed to handle the classification problems of the compatibility
of the combinations to integrate ML in the model. In this way, the model accuracy was 0.92, with a
sensitivity of 0.84 and a specificity of 1. These results indicate that the KNN model performs well,
exhibiting high accuracy and correctly classifying positive and negative combinations as evidenced
by the sensitivity and specificity scores.

Keywords: antioxidant compounds; encapsulant compounds; wall materials; decoys; principal
component analysis; machine learning; K-nearest neighbors; compatibility model

1. Introduction

Encapsulation is widely used in numerous industries, including food, cosmetics, biol-
ogy, agriculture, and pharmacy [1–3]. The nature of the encapsulation technique involves
stabilizing active compounds using building systems to preserve their physical, chem-
ical, and biological properties under various conditions. There are two main kinds of
encapsulation techniques: physical and chemical. The first uses techniques that influence
intensive properties, such as temperature and pressure [3], whereas the second, chemi-
cal encapsulation, leverages the active compounds’ chemical properties [4]. Due to the
method’s complexity, significant obstacles exist [5] despite the technique’s extensive range
of applications. One of these obstacles is the compatibility between the active compound
and the shell material (encapsulant compound) [6,7]. Among the widespread use of the
technique and the varying amounts of compounds, antioxidant compounds (ACs) are
significant for their properties in the abovementioned industries.

Antioxidants include polyphenols, carotenoids, anthocyanins, catechins, vitamins,
and polyunsaturated fatty acids. They can be found in fruits, vegetables, cereals, and
plants [8,9]. These compounds serve multiple functions. Plants, for example, offer struc-
tural support and defense against environmental factors such as biotic and abiotic stress,
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ultraviolet radiation, and pathogens. On the other hand, consumers benefit from these com-
pounds’ properties, which protect against noncommunicable diseases (NCDs) by acting as
regulators of cellular processes such as enzyme inhibition, gene expression, and protein
phosphorylation. These compounds affect the sensory qualities of fruits and vegetables,
such as bitterness, color, and flavor, resulting in a unique sensory profile for each product
based on the compound present [10]. Due to their capabilities, the bioactive compounds
mentioned above can be utilized in various industries. Nevertheless, these compounds’
capacity is constrained by various obstacles that must be overcome. Nowadays, the bioavail-
ability, bioaccessibility, and bioactivity of antioxidant compounds are issues due to negative
extrinsic factors such as poor stability of compounds in various mediums [11], lack of
transportation vehicles, and challenging absorption [12]. Subsequently, encapsulation
could solve these concerns, promote stability, and pursue maintenance or increase the
stated capabilities [13].

Compatibility between the active and encapsulant compounds (WM) is crucial in
encapsulation. This relevance is due to the affinity between the compounds, influenced
by various chemical properties. Most of the time, suitable matches are complex, requiring
costly and time-consuming trial-and-error experiments [6]. To bridge this gap, the design
and implementation of a computational tool could support decision-making processes re-
garding the time and resources required for this purpose in experimental development [14].
Various tools could be proposed in this regard; however, there have been remarkable
advancements in machine learning (ML) for classification problems in recent years. Several
research studies have considered machine learning (ML) to address the issues of determin-
ing compatibility between substances. Qi et al. suggested utilizing artificial intelligence (AI)
and machine learning (ML) to facilitate drug development and identify protein–protein
interactions and drug target interactions [15]. D’Souza et al. examined the application of
Deep Learning (DL) in several cheminformatics methodologies for predicting the binding
affinity between chemicals and proteins, focusing on the drug–target interaction. Liu
et al. used an unambiguous multiple linear regression (MLR) algorithm to build QSAR
models of the estrogen receptor binding affinity [16]. Rege et al. used a Support Vector
Machine (SVM) regression with bootstrapping for creating and validating QSAR models
to examine the DNA-binding characteristics of a library of aminoglycoside-polyamine
compounds [17]. Rosas-Jiménez et al. employed ML algorithms (MLR, KNN, and RF) to
construct quantitative structure–activity relationship (QSAR) models for cruzain inhibitors.
These models use molecular descriptors to forecast the biological activity of the inhibitors
accurately [18]. Krenn et al. investigated the application of generative models, specifically
variational autoencoders (VAEs), in creating new molecules and predicting their properties
using QSAR models [19]. Using computational methods to anticipate the binding affinity
between compounds and targets significantly increases the likelihood of identifying lead
compounds by minimizing the need for wet-lab studies. ML and DL methods employing
ligand-based and target-based strategies have been utilized to forecast binding affinities,
resulting in time and cost savings in drug discovery endeavors.

Nevertheless, ML is not limited to the pharmaceutical industry when predicting com-
patibility [20]. Piotrowsky discovered that scientific research on the corrosion of aerosol
canisters is extensive but inadequate, and only some of the physical and chemical prin-
ciples can be used to predict corrosion accurately. Additionally, other possible issues are
influenced by many parameters and formula components. Piotrowsky’s paper utilized
a data-driven methodology to address these restrictions and limits to forecast the com-
patibility between a novel product’s formulation and packaging. The model exemplifies
a classification method, a subset of supervised machine learning; it utilizes input values
provided for training to derive a conclusion and produce an output that classifies a dataset
into distinct categories [21]. Periwal et al. proposed a use case for ML in predicting com-
pound compatibility. They assessed the functional similarity between natural compounds
and approved drugs by combining various chemical similarity metrics and physiochemical
properties using a machine learning approach [22]. This study exemplifies the parallels be-
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tween the present and previous studies since both investigations employ machine learning
approaches to examine chemical data and generate predictions. By incorporating a range of
chemical similarity measures and physical features, the machine learning approach enables
a thorough evaluation of compound compatibility.

Therefore, considering a computational tool incorporating ML capabilities could be
advantageous [23]. This work seeks a model with self-learning capabilities and compart-
mental adaptability of the prototype since ML is a data analysis model that automates the
construction of analytic models. The K-nearest neighbors (KNN) algorithm is contemplated
to construct a classification model that determines the compatibility between ACs and
WMs, given its recognized capability in similar classification problems. To ascertain the
compounds’ eligibility for encapsulation, the model aims to assess the compatibility of the
compounds by analyzing the relationships between their molecular descriptors.

The paper is structured as follows: Section 2 involves gathering and organizing data.
This process includes assessing two databases to analyze the connections between the
encapsulation process and various antioxidants and encapsulant compounds. Afterward,
the model parameters are determined using the RDKit cheminformatics toolkit to extract
the molecular descriptors of each compound. A review of the existing research considers the
associations between the compatibility and incompatibility between substances. To increase
the variety of encapsulant chemicals and the number of possible combinations between
them, the computational tool LIDEB’s Useful Decoys (LUDe) is used to build decoys.
Section 3 establishes the connections between ACs and WMs by identifying comparison
and difference relations, which are determined throughout the cleaning process. Section 4
involves conducting statistical analysis to examine the interrelationships between variables
using tools such as histograms, scatter plots, and Pearson and Kendall correlations. In
Section 5, a Principal Component Analysis (PCA) is performed to decrease the complexity
of the dataset and assess the influence of individuals and variables in each principal
component. Section 6 involves the implementation of K-nearest neighbors (KNN) to predict
the compatibility of the combinations of ACs and WMs. Finally, Section 7 presents some
concluding remarks and insights for further developments.

2. Data Collection and Curation Process

Data collection and curation involve acquiring and organizing raw data from multiple
sources and eliminating discrepancies or missing data. The information is then converted
into a format that is appropriate for analysis. Furthermore, the provided relationships
can offer valuable insights into the data during the preprocessing step and help draw
appropriate conclusions about the connections between compounds.

2.1. Data Collection and Parameters

The first database includes recompiled information on antioxidant compounds (AC-
DB), while the second corresponds to wall materials (WM-DB). The compounds for the AC-
DB were extracted from Phenol-Explorer: Database of Polyphenol Content in Foods [24];
their selection was narrowed based on the number of data found for each compound.
Compounds were selected by assigning a value of 30 or higher to the number of discovered
data. On the other hand, the wall materials were extracted from multiple books, such as
Bioactive Carbohydrate Polymers [25] and Materials for Encapsulation. Chapter 7. Food
Processing and Encapsulation Technologies for Active Food Ingredients and Wall Material
Selection for Spray Drying [26].

For selecting the appropriate parameters, it is crucial to remember that the wall mate-
rial must form a cohesive film with the core material and be chemically compatible and non-
reactive with the core material [7]. In this regard, RDKit, an open-source cheminformatics
toolkit, was utilized to collect the parameters that will shape the model [27]. First, the com-
pounds’ canonical smiles (CS) were extracted, and then, using the CS, molecular descriptors
could be determined by implementing RDKIT in Python. These molecular descriptors
represent the physical and chemical properties of a molecule mathematically. There are
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various types of molecular descriptors, including unidimensional (1D), bi-dimensional
(2D), and three-dimensional (3D) descriptors.

The molecular descriptor’s complexity determines these; similarly, the 1D descriptors
are the simplest to calculate. They represent the information calculated with the molecular
formula of the compound, such as the type of atoms, functional group, and molecular
weight. The 2D descriptors include information regarding the molecule’s size, shape, and
electronic distribution. The 3D descriptors, such as the Polar Surface Area (PSA) and
intramolecular hydrogen bonding, are the most complicated and require the 3D structure
of the molecule to be calculated. In this manner, the following molecular descriptors
were extracted: chemical formula, molecular weight, logP, Hydrogen Bond Donor (HBD),
Hydrogen Bond Acceptor (HBA), Polar Surface Area (PSA), number of heavy atoms,
number of carboxyl groups, number of carbonyl groups, number of hydrogen groups, and
number of acyclic groups [28,29].

Before data curation, it is necessary to analyze the recompiled information and deter-
mine the superficial relationships between the parameters of ACs and WMs.Understanding
the parameters’ meaning and other pertinent information is essential. For this purpose,
bibliographic research was conducted for each parameter. See Appendix A.1.

2.2. Data Curation Process

A literature review was conducted to determine which compounds have previously
exhibited compatibility or incompatibility for encapsulation to establish the relationship
between ACs and WMs. This review was conducted to establish a standard for comparing
the values of the parameters for each compound.

Song et al. [30] discovered that certain peach polyphenols are stable after being en-
capsulated in vitro and in vivo in sodium alginate matrices using Pickering high internal
phase emulsions. Thus, it was assumed that the ACs listed in Table 1 were compatible
with sodium alginate as a wall material. Consequently, a comparison of the case-specific
parameters led to the establishment of the following conclusions:

• In two out of three instances, the molecular weight of the WM was greater than the AC.
• The logP of the WM was always less than the logP of the AC.
• The numbers of HBAs and HBDs of the WM were consistently more significant than

those of the AC.
• In two out of three instances, the PSA of the WM was greater than that of the AC.
• The HAC of the WM was consistently more significant than that of the AC.
• In two out of three instances, the CGCs and CnGCs of the AC were zero and one,

respectively; both parameters were greater or equal for the WM.
• The HGCs and AGCs of the AC were always smaller than the AGCs and AGCs of

the WM.
• There is a direct proportional relationship between the value of the WM and the PSA

such that as the WM increases, so does the PSA.

In this model, the compatibility between AC and WM is evaluated solely based on their
chemical and physical interactions. The influence of the encapsulation type, operational
conditions, and other chemicals was not studied.

Other WMs did not exhibit the same response, and the active component’s encap-
sulation was lost [30] due to temperature and other factors. Under particular conditions,
encapsulating a specific AC with maltodextrin was inefficient. This result led to the con-
clusion that, under normal conditions, maltodextrin cannot be compatible with certain
compounds [31]. Curdlan oligosaccharide, which requires a binding agent and electrostatic
charges to encapsulate compounds, encountered a similar situation; however, it was de-
termined that despite the curdlan’s high encapsulation efficiency, it could not achieve the
same results on its own [32].

Table 1 shows combinations of compounds that, according to the literature, were deemed
incompatible for encapsulation [31,32]. Thus, the following conclusions were reached:
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• In half of the instances, the AC had a greater MW than the WM.
• In every instance, the logP of the WM was less than that of the AC.
• The HBA of the WM was consistently more significant than that of the AC. The WM

had greater values than the AC for the HBD four out of five times.
• In half of the instances, the PSA of the AC was higher than that of the WM.
• In all cases, the CGCs and CnGCs of the AC were more significant than or equal to the

values of the WM.
• The HGCs and AGCs of the WM were always more significant than those of the AC.

Table 1. Comparison of success [30] and failure [31,32] cases and their AC and WM parameters.

Success Compound MW LogP HBA HBD PSA HAC CGC CnGC HGC AGC

1 Catechin (AC) 290.27 1.46 1 5 110.38 21 0 0 7 3
Sodium Alginate (WM) 418.23 −4.10 12 6 192.44 52 1 1 17 32

2 Estragole (AC) 148.21 3.23 0 0 9.23 11 0 0 2 1
Sodium Alginate (WM) 418.23 −4.10 12 6 192.44 52 1 1 17 32

3 P-coumaric (AC) 164.16 1.50 2 2 57.53 12 1 1 2 0
Sodium Alginate (WM) 418.23 −4.10 12 6 192.44 52 1 1 17 32

Failure Compound MW LogP HBA HBD PSA HAC CGC CnGC HGC AGC

1 P-coumaric (AC) 164.16 1.50 2 2 57.53 12 1 1 2 0
Maltodextrin (WM) 342.30 −4.70 11 8 190.00 23 0 0 14 8

2 Vainillin (AC) 168.15 1.17 4 2 66.76 12 1 1 4 0
Maltodextrin (WM) 342.30 −4.70 11 8 190.00 23 0 0 14 8

3 Curcumin (AC) 368.39 2.95 2 2 93.06 27 0 4 6 3
Curdlan oligosaccharide (WM) 180.16 −2.60 6 5 110.00 12 0 0 7 16

2.3. Decoys Implementation

Due to the need for more information regarding successful and unsuccessful cases
of compound compatibility, implementing decoys was required to increase the quantity
of data and strengthen it. Decoys are putatively inactive compounds generated from a
set of active compounds; these molecules have not been tested against a molecular target.
However, due to their structural features, they are unlikely to bind to the target and
have a high affinity. They can be used to validate virtual screening tools and protocols.
LUDe (LIDEB’s Useful Decoys), a tool developed by the Laboratory of Investigation and
Development of Bioactives (LIDEB) at the National University of La Plata, was used to
generate these molecules [33].

For generating these decoys, the WMs from Table 1 were used as active compounds
to generate these decoys; additionally, scleroglucan was used as the wall material before
generating the decoys. This procedure was due to the compatibility and incompatibil-
ity that the compound showed with different ACs as demonstrated in Ref. [34]. When
encapsulating antioxidant compounds, focusing on the wall materials rather than the
antioxidants themselves is essential. The wall materials are the main protective barrier,
shielding the antioxidants from oxygen, moisture, and light, thus ensuring their stability
and effectiveness [35].

It is crucial to ensure that the wall materials are compatible because any lack of com-
patibility could jeopardize the structural strength of the enclosed product, resulting in early
deterioration or leaking and ultimately making the encapsulation process inefficient [36].
The physical and chemical characteristics of wall materials substantially impact these pro-
cesses. Concentrating on these materials makes it possible to find the most appropriate
candidates that can be consistently employed in different settings [37].

While antioxidant chemicals are important for their functional advantages, they are
usually not the primary concern in decoys. This is because their major activity is within
the core of the enclosed structure, and their interaction with wall materials is typically
limited. The primary focus in the encapsulation process is to prioritize the structural
and barrier properties of the wall materials to achieve optimal efficacy and efficiency [38].
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This method is more economical since wall materials are generally utilized in greater
amounts than antioxidants, making their compatibility a crucial consideration for financial
reasons [39]. After confirming the compatibility of the wall materials, attention can be
directed towards enhancing the stability and functioning of the antioxidant chemicals
present in the encapsulated product.

Parameters with (±) denotation indicate that the value could adapt to a higher or
lower value depending on the magnitude selected (Table 2). For instance, a limit of (±) 10
was established for the molecular weight. As a result, the molecular weight of the decoys
generated will increase or decrease the magnitude by ten of the MW of the active compound.
It will apply to all compounds with limits denoted by the symbol (±). Alternatively, the
fingerprint length was set to 1024; it refers to the size in bits of a molecule’s chemical
space [40]. The similarity metric was selected based on input from Tanimoto Similarity.
This can be described as follows: A′ and B′ are fragments of A and B fingerprint molecule
fingerprints. AB is defined as the set of fingerprints shared by both molecules. The
Tanimoto coefficient ranges from 0 to 1, where 0 indicates that the fingerprints of the
molecules contain no similar bits, and 1 indicates that the fingerprints are identical.

Table 2. Physicochemical features of the decoy [33].

Physicochemical Features Limits

Molecular weight ±10
logP ±0.5
Rotable bonds ±2
Number of H Acceptors ±1
Number of H Donors ±1
Fingerprint ratio ±3
Fingerprint length 1024
Similarity metric Tanimoto Similarity
Maximum similarity allowed 1
Limit of the fraction of the Maximum Common Substructure 1
Maximum similarity allowed between decoys and any of the actives 0.7

Consequently, (A, B) = (AB)/(A + B − AB), the similarity finds all formulas for
molecule A with a Tanimoto coefficient more significant than a predetermined thresh-
old [41]. The threshold value determines the degree of similarity between molecules. The
maximum allowed similarity and the fraction of the maximum common substructure were
set to 1 bit. The maximum allowed similarity between decoys and active compounds was
set to 0.7 bits.

In Table A2 (See Appendix A.2), 32 decoys are listed for the four wall materials
presented. Due to the canonical smiles generated for each compound and the calculation of
the MW using the LUDe program, the MW of the sodium alginate decoys does not match
the limit established. However, this was not considered a problem since the molecular
weight was examined and found consistent with the proposed canonical smile.

3. Relations Stated between AC and WM

Based on the conclusions drawn from the relationship between WMs and ACs in
the successful and unsuccessful compatibility cases (Table 1), see Section 2.2, relations
for merging the WM-DB and AC-DB were defined as shown in Table 3. Combinations
were made between the 32 WMs, which included active compounds and decoys, and the
8 ACs, resulting in 288 total combinations. There are two data types in the new dataset;
the first relates to a comparison between parameters and takes a binary value of one if the
comparison satisfies the requirement and zero otherwise. The second one refers to a delta
between the parameters, the difference between the evaluated WM and AC parameters.
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Table 3. Relations stated between ACs and WMs.

Parameter Description Comparison Quantification

C-MW MW comparison MWPC > MWWM
If comparison is True C-MW = 0
Else: C-MW = 1

∆ MW MW difference between PC and WM - ∆ MW = abs(MWPC − MWWM)

C-logP logP comparison logPPC > logPWM
If comparison is True C-logP = 1
Else: C-logP = 0

∆ logP logP difference between PC and WM - ∆ logP = abs(logPPC − logPWM)

C-HBA HBA comparison HBAPC > HBAWM
If comparison is True C-HBA = 0
Else: C-HBA = 1

∆ HBA HBA difference between PC and WM - ∆ HBA = abs(HBAPC − HBAWM)

C-HBD HBD comparison HBDPC > HBDWM
If comparison is True C-HBD = 0
Else: C-HBD = 1

∆ HBD HBD difference between PC and WM - ∆ HBD = abs(HBDPC − HBDWM)

C-PSA PSA comparison PSAPC > PSAWM
If comparison is True C-PSA = 1
Else: C-PSA = 0

∆ PSA PSA difference between PC and WM - ∆ PSA = abs(PSAPC − PSAWM)

C-HAC HAC comparison HACPC > HACWM
If comparison is True C-HAC = 1
Else: C-HAC = 0

∆ HAC HAC difference between PC and WM - abs(HACPC − HACWM)

C-CGC CGC comparison CGPC > CGWM
If comparison is True C-CGC = 1
Else: C-CGC = 0

∆ CGC CGC difference between PC and WM - ∆ CGC = abs(CGCPC − CGCWM)

C-CnGC CnGC comparison CnGPC > CnGWM
If comparison is True C-CnGC = 1
Else: C-CnGC = 0

∆ CnGC CnGC difference between PC and WM - ∆ CnGC = abs(CnGCPC − CnGCWM)

C-HGC HGC comparison HGPC > HGWM
If comparison is True C-HGC = 1
Else: C-HGC = 0

∆ HGC HGC difference between PC and WM - ∆ HGC = abs(HGPC − HGWM)

C-AGC AGC comparison AGPC > AGWM
If comparison is True C-AGC = 1
Else: C-AGC = 0

∆ AGC AGC difference between PC and WM - ∆ AGC = abs(AGCPC − AGCWM)
- Zero counts - Number of zeros of all the descriptors above
- Classification - If zeroscounts > 2 → Case = 0 (Failure)

Else: Case = 1 (Success)

4. Exploratory Analysis

Before statistical analysis, the dataset containing 288 observations and 22 variables was
separated into success and failure cases. Case-sensitive variables facilitate the separation
of a dataset into two distinct subsets. The first dataset describes the compatibility of the
compound, while the second dataset describes their incompatibility. As a result, a pairs
panel graph was created, which helped illustrate descriptive statistics (Figures 1 and 2).
It is a scatter plot of matrices (SPLOM) with bivariate scatter plots below the diagonal,
histograms on the diagonal, and Pearson’s correlation above the diagonal [42].

Note that to visualize the correlation between parameters, the variance cannot be
zero (σ2 ̸= 0), which means that all observations have the same value for the evaluated
parameter. The parameters above with zero variance (σ2 = 0) were removed from their
respective datasets. First, the following parameters were eliminated from the success
dataset: C-MW, C-HBA, C-PSA, C-HAC, and Case. C-HBA and Case parameters were
removed from the collection of failure data. The behavior of these parameters by their
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respective datasets allowed for the determination of the significance of each in establishing
the compounds’ compatibility or incompatibility.

dlogP

0
.0

1
.0

0
.0

1
.0

0
.0

1
.0

0
.0

1
.0

0
.0

1
.0

0 4

0.0 1.0

0.12

C−HBD

0.61

0.20

dHBD

0 8

0.0 1.0

−0.04

−0.04

0.07

C−CGC

−0.21

−0.36

−0.29

0.01

dCGC

0 3

0.0 1.0

−0.09

−0.06

−0.15

−0.05

0.00

C−CnGC

−0.32

−0.27

−0.25

0.14

0.61

−0.04

dCnGC

0 6

0.0 1.0

0.04

−0.04

−0.01

−0.03

0.13

−0.04

0.04

C−HGC

0.48

0.04

0.51

0.26

0.08

−0.16

0.04

0.19

dHGC

0 20

0.0 1.0

0.05

0.03

−0.01

0.02

−0.09

0.03

−0.05

−0.34

−0.05

C−AGC

0
4−0.38

−0.18

0
8

−0.33

0.21

0
30.67

−0.04

0
6

0.50

0.18

0
2
0

0.34

−0.14

0 30

0
3
0dAGC

Figure 1. Pairs panel success dataset.
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Figure 2. Pairs panel failure dataset.

4.1. Histograms

This type of graphic provides information about the representation of the data distribu-
tion, allowing the pattern, shape, and characteristics of the data to be observed. Moreover,
the Gaussian distribution, represented by the curve superimposed on the histogram and
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also known as the normal distribution, is a continuous probability distribution that reveals
the underlying characteristics of the data.

The shape of the Gaussian curves allowed the data distribution to be determined. If
the curve is bell-shaped, the data are evenly distributed around the mean, with an equal
number of values on both sides as determined by the mean (µ) and standard deviation (σ)
simultaneously. It may also exhibit bimodal forms or skewness in both directions. When
the distribution has a longer tail on one side, the skewness indicates a greater frequency of
values in the direction of the trend. Positive skewness indicates that the tail reaches higher
values, whereas negative skewness indicates that the tail reaches instead lower values.

On the other hand, bimodal distributions have two distinct peaks, indicating the
existence of two separate groups or phenomena. Referring to the spread of the histogram,
the standard deviation, which represents the spread of the distribution, describes the range
of values covered by the histogram. The greater the spread, the greater the range of values,
indicating that the data tend to be more dispersed. In contrast, a narrower spread indicates
a more concentrated distribution, with values clustered closely around the mean. The
standard deviation quantifies the dispersion or variability of the data [43,44].

Each dataset parameter shows some similarity in their respective data behavior. The
following parameters described the same data behavior for success and failure datasets,
analyzed by Gaussian distribution and data spread: ∆MW shows a bimodal distribution,
which refers to two different and separate clusters of data and no spread. The C-logP
does not exhibit Gaussian distribution and highly spread bars, which indicates that the
data are highly spread with significant variability. Referring to ∆HAC, the Gaussian
distribution is bimodal and low spread, C-AGC does not exhibit a Gaussian distribution
and has widely dispersed data. ∆HBA and ∆HBD, on the other hand, indicate the same
Gaussian distribution for both datasets but different data spreads. ∆HBA shows a bimodal
distribution and low data spread, where the information cluster is low spread. Regarding
∆HBD, the data of this parameter exhibit right negative skewness, which indicates that
the data distribution is not symmetric. Most of them are located on the left side of the
distribution, with fewer values to the right. ∆ logP, C-HBD, ∆PSA, C-CGC, ∆CGC, C-CnGC,
∆CnG, C-HGC, and ∆AGC exhibit different Gaussian distributions expressed in Table 4, as
well as low, high, and medium spread. Low means the data are not spread, medium data
are regularly spread, and high means the data have a wide range of values. Lastly, ∆HGC
neither share a similar Gaussian distribution nor a similar spread.

Table 4. Gaussian distribution and spread of histograms.

Parameter
Success Dataset Failure Dataset

Gaussian Distribution Spread Gaussian Distribution Spread

C-MW - - Bimodal High
∆MW Bimodal No Bimodal No
C-logP - High - High
∆logP Bimodal No Right negative skewness No

∆HBA 1 Bimodal Low Bimodal No
C-HBD - High Bimodal High
∆HBD Right negative skewness Low Right negative skewness Medium
C-PSA - - Bimodal High
∆PSA Right negative skewness No Bimodal No

C-HAC - - Bimodal High
∆HAC Bimodal Low Bimodal Low
C-CGC - High Bimodal High
∆CGC Right negative skewness Medium Bimodal Medium

C-CnGC - High Bimodal High
∆CnG Right negative skewness Medium Bimodal Medium

C-HGC - High Bimodal High
∆HGC Bimodal Low Right negative skewness No
C-AGC - High - High
∆AGC Bimodal No Right negative skewness No

1 C-HBA is disregarded because it has identical values across all combinations in both failure and success datasets.
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It is important to note that the data exhibiting a high spread pertain to the comparison
parameters, which is attributable to the binomial data type of this parameter. On the
other hand, the ∆ parameters do not exhibit high spread in any of the cases, only no, low,
or medium spread, which corresponds to the type of data, indicating that the difference
between ACs and WMs is not too spread and has more consistent values.

4.2. Scatter Plots

This type of graph displays relationships between variables whose behavior can
be determined by characteristics such as direction, strength, and shape. The first one
determines whether there is a positive, negative, or no apparent relationship between
variables; positive relationships indicate that as one variable increases, the other tends to
increase as well; negative relationships indicate the opposite, where if one variable increases,
the other tends to decrease; and no apparent relationships indicate that the variables are
unrelated or independent. Regarding the strength, it indicates how clustered the data of
both variables are; if the data exhibit a tighter cluster, it indicates a stronger relationship,
whereas a decrease in this strength could indicate a moderate or weak relationship. The
form that identifies whether the relationship is linear or nonlinear, shown by the trending
line, is a straight trending line for a linear relationship and a curve or nonlinear trending
line for a nonlinear relationship [44,45].

Thus, the scatter plots of the pair panels graph for both datasets demonstrate the
same behavior for most data. The lack of apparent direction, weak strength, and linear
relationships between the comparison parameters can be attributed to the nature of the data
for this variable type. Furthermore, outliers are typically responsible for the poor clustering
of the data. In contrast, there are usually no apparent relationships, weak strength, and
nonlinear form between ∆ variables. Regarding the relationship between comparison and
∆ variables, there was no discernible direction, weak strength, and a nonlinear or linear
shape, depending on the variables involved.

4.3. Pearson and Kendall Correlations

The Pearson correlation coefficient, frequently denoted by the symbol r, measures the
linear relationship between two continuous variables. It quantifies the degree to which the
variables move linearly together. The Pearson correlation coefficient ranges from −1 to +1,
where −1 represents a perfect negative linear relationship, +1 represents a perfect positive
linear relationship, and 0 represents the absence of a linear relationship [46,47]. In contrast,
the Kendall correlation coefficient, denoted by τ (tau), is a rank-based correlation measure.
It evaluates the strength and direction of the relationship between variables based on their
ranks or ordinal positions. Kendall correlation applies to continuous and discrete variables,
making it useful for analyzing nonlinear and nonparametric relationships [46–48].

Pearson and Kendall correlations serve the same purpose of evaluating the strength
and direction of the relationship between variables, but they are not simple measures. They
differ in their underlying assumptions and data processing, adding a layer of interpretability.

Figure 3 displays the strength and direction of the linear relationship between variables
for Pearson correlation plots. Positive correlations are indicated by ascending values and
more vibrant red hues, negative correlations by descending values and more vibrant
purple hues, and no correlation by middle-ground values and white hues. For a Kendall
correlation plot, Figure 4 depicts the strength and direction of the monotonic relationship
between variables. Similarly, positive and negative correlations are presented, emphasizing
monotonicity rather than linearity.

Figure 3a depicts a robust positive linear correlation between ∆ variables. On the
other hand, except for ∆HBD and ∆logP, the C-logP parameter exhibits a negative or no
linear correlation with the remaining parameters. In contrast, in Figure 3b, the variables in
the upper portion of the graph have a positive linear relationship, whereas the variables
in the left portion from C-CGC to C-AGC and in the right lower portion have negative
linear relationships. Comparing the Pearson correlation results of the success and failure
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datasets reveals contradictory behaviors, indicating that the correlations referring to the
comparison values vary based on the case-sensitive decision. Thus, comparison variables
do not exhibit correlations for determining compatibility, whereas they exhibit a negative
linear correlation for determining incompatibility.
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Figure 3. Pearson correlation matrices. (a) Success dataset. (b) Failure dataset.
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Figure 4. Kendall correlation matrices. (a) Success dataset. (b) Failure dataset.

In contrast, Kendall correlations reveal positive monotonic correlations between most
delta variables and C-CGC and C-HGC. In contrast, the remaining comparison variables
and ∆logP exhibit negative monotonic or nonmonotonic correlations for Figure 4a. Regard-
ing Figure 4b, it is determined that the correlations in the upper right portion of the graph
display positive monotonic correlations between the variables and a small proportion of
negative monotonic correlations dispersed throughout the entire graph. This graph dis-
plays more positive monotonic correlations than Figure 4b, which displays fewer variables
with no monotonic correlations.

In conclusion, the Pearson and Kendall correlations for the analysis of the success
dataset (Figures 3a and 4a) exhibit a similar distribution of correlations around the vari-
ables. In contrast, the correlations between the variables in the graphs for the failure
dataset (Figures 3b and 4b) differ significantly, with Figure 3b exhibiting stronger positive
correlations than Figure 4b.

5. Principal Component Analysis (PCA)

PCA is one of a series of approaches for representing high-dimensional data in a
lower-dimensional, more manageable format without sacrificing too much information.
PCA is one of the most straightforward and reliable dimension-reduction techniques. It is
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also one of the oldest and has been repeatedly rediscovered in other domains; therefore, it
is also known as the Karhunen=-Loève transformation, the Hotelling transformation, the
method of empirical orthogonal functions, and singular value decomposition [49]. In this
manner, a PCA was performed on each dataset (success and failure) by a singular value
decomposition of the centered and scaled data matrix (mean 0, variance 1) and by not using
eigen on the covariance matrix [50]; the obtained results are presented in Table 5.

Table 5. PCA results: Components distribution.

Success Dataset Failure Dataset

PC1 PC2 PC3 PC1 PC2 PC3

Standard deviation 2.26 1.83 1.18 2.41 1.97 1.72
Proportion of variation 0.32 0.21 0.09 0.31 0.21 0.16
Cumulative proportion 0.32 0.53 0.61 0.31 0.51 0.67

PCA transformed the original variables into a set of principal components (PCs) by
reducing the dimensionality of the variables and identifying patterns and structure in
multivariate datasets [42]. The standard deviation quantifies the dispersion or spread
of the data along each PC; more significant standard deviation values indicate a greater
spread along the respective PC. In contrast, the variation proportion represents the total
variability in the data explained by each principal component, with larger values indicating
that the respective PC captures a more significant amount of variability in the data. Lastly,
the cumulative proportion represents the cumulative amount of total variation explained
by a set of PCs; this value provides insight into the total amount of variation captured
by a combination of PCs, where higher cumulative proportion values indicate that these
principal components explain a more significant proportion of the total variation in the
data [42,50,51].

PC1 has the most significant standard deviation across both datasets, indicating that
it captures the most data variability. PC1 explains 32% total variation in the success
data and 31% in the failure data, according to the relatively high proportion of variation
values for PC1. The cumulative proportion for PC1 demonstrates that it alone accounts
for a significant portion of the total variation, indicating its importance in describing the
overall patterns and structure of the data. PC2 has a lower standard deviation than PC1 in
both datasets, indicating that it captures less variability but is still statistically significant.
Despite being smaller than PC1, the PC2 proportion of variation values is still significant,
indicating that PC2 explains the additional 21% of the variation in both datasets. The PC2
cumulative proportion demonstrates its contribution to capturing additional variation,
enhancing the PC1 representation of the data. PC1 and PC2 represent 32% and 21% of the
values, respectively, for a total coverage of 53% and 51% of the data in the success and
failure datasets. PC3 has the lowest standard deviation of all principal components in both
datasets, indicating that it captures the slightest variance. PC3 explains less variation than
PC1 and PC2 because its proportion of variation values is the lowest. PC3 contributes to
capturing additional variation, albeit to a lesser extent than PC1 and PC2.

Table 6 displays the contribution of each variable to PC1 and PC2 for the success and
failure datasets. With respect to the PC1 of the success dataset, MW is the variable that
contributes the most to PC1, followed by ∆HAC and ∆HBA. C-HBD, C-CnCG, and ∆logP
are the variables that contribute the least to PC1. Referring to PC2, HBD is the variable that
contributes the most, followed by ∆logP and ∆PSA, while C-AGC, C-CGC, and C-HGC
contribute the least. Regarding PC1 of the failure dataset, the variables that contribute
the most are C-MW, C-HAC, and ∆PSA, while the variables that contribute the least are
CnGC, C-AGC, and C-HBD. Regarding PC2, the variables that contribute the most are
∆HAC, ∆MW, and C-AGC, while the variables that contribute the least are ∆AGC, ∆CGC,
and ∆CnGC.
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The data presented in Table 6 can also be represented as bar graphs indicating the
percentage contribution of each variable to the PC. Figures 5 and 6 depict the contribution
of the variables as bar graphs.

Table 6. PCA results: Variables contribution.

Success Dataset Failure Dataset

PC1 PC2 PC1 PC2

Variable Contribution Variable Contribution Variable Contribution Variable Contribution

∆MW 17.67 ∆HBD 22.65 C-MW 11.71 ∆HAC 18.58
∆HAC 17.37 ∆logP 21.00 C-HAC 11.66 ∆MW 17.44
∆HBA 12.93 ∆PSA 10.86 ∆PSA 9.60 C-AGC 10.48
∆AGC 10.92 ∆HGC 9.14 ∆HBD 9.24 C-CnGC 9.57
∆HGC 10.86 ∆AGC 7.22 ∆HBA 8.85 C-HBD 9.45
∆PSA 9.69 ∆CGC 6.47 C-CGC 8.14 C-PSA 5.68

∆CnGC 6.59 ∆CnGC 6.46 ∆logP 6.80 C-CGC 4.83
∆CGC 5.54 ∆HBA 5.47 ∆HGC 6.65 C-HGC 4.78
C-logP 4.50 C-logP 5.47 C-PSA 4.53 ∆PSA 4.00
C-CGC 2.54 C-HBD 2.88 C-HGC 3.86 ∆HGC 3.49
∆HBD 0.42 C-CnGC 1.01 ∆CGC 3.74 C-logP 3.21
C-AGC 0.32 ∆HAC 0.59 ∆AGC 3.48 ∆HBA 2.37
C-HGC 0.32 ∆MW 0.27 ∆MW 2.93 ∆logP 1.64
C-HBD 0.24 C-AGC 0.26 C-CnGC 2.53 ∆HBD 1.53

C-CnGC 0.10 C-CGC 0.18 C-logP 2.47 C-MW 1.29
∆logP 0.00 C-HGC 0.07 ∆HAC 1.72 C-HAC 1.24

∆CnGC 1.06 ∆AGC 0.42
C-AGC 0.62 ∆CGC 1.0 × 10−3

C-HBD 0.41 ∆CnGC 1.2 × 10−5
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Figure 5. Success dataset contribution of variables for PC. (- - -) Dashed line indicates that the
variables whose values are above the line account for 30% of the total contribution of the PC.

The contributions of each variable can also be represented as vectors, whose magni-
tude, direction, and angle provide insight into the behavior of the variable’s contribution to
the PC. Figure 7 depicts the contribution of the variables in vectors.

In terms of the contribution and relationship between variables and their contribution
to the PCA, variables with the most extended vectors contribute the most to the PC, whereas
the magnitude of the angle between variables represents the correlation between variables;
if the angle is slight, it indicates a positive, strong correlation between variables, indicating
that they tend to vary together, whereas variables with a large angle between them have a
low or negative correlation. Another factor is the direction of the respective vector, which
indicates that the variable has an inverse relationship to the other variables and may have
opposing effects on the PC [50,51].
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Figure 6. Failure dataset contribution of variables for PC. (- - -) Dashed line indicates that the
variables whose values are above the line account for 30% of the total contribution of the PC.
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Figure 7. Vectors for contribution variables for PC. (a) Success dataset. (b) Failure dataset.
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Individual contribution is another way of visualizing the contribution of the PC, rep-
resenting how much each variable contributes to the PC. Nonetheless, this representation
is not optimal if a variable’s values are highly diverse. In this way, the individual contri-
bution to PC was adequately accounted for in the comparison variables with only two
binomial values.

Upon comparing the contribution of individuals in the success and failure datasets
for the same variables, it was discovered that the individuals in the success dataset exhibit
more clustering than those in the failure dataset. In contrast, the success dataset exhibits
more outliers. Thus, the clustering between individuals indicates the existence of relation-
ships between the observations [52]. The combination of ACs and WMs determines these
relationships among individuals. Due to the evaluation of the compatibility or incompati-
bility of the combinations, an additional significant conclusion is that individuals with a
zero value are less prevalent in the success dataset than in the failure dataset. It was also
observed that the individuals in the success dataset have a more consistent form along
the graph in all variables than those in the failure dataset. Similarly, the success dataset
contains more individuals per unit area than the failure dataset.

6. Automatic Learning Approach

ML is a subfield of artificial intelligence (AI) concerned with implementing com-
putational algorithms that improve performance based on historical data [53]. An ML
strategy consists of three essential components: data, representation, and model. The data
refer to previously curated dataset information that has been recompiled, followed by the
representation, which is the numerical translation of the input information for use in the
model, where the selection of variables or features that will comprise the model input can
have a significant impact on the model’s performance, and finally, the model, which is
the mathematical representation of the process. The model, which can be categorized in
different ways, is the mathematical representation of the process (unsupervised, supervised,
active, or transfer learning). In general, the term ML can be applied to any method that
implicitly models correlations within datasets [54,55].

Based on the recompiled data, the supervised learning strategy was chosen. This
strategy, which involves the ML task of learning a function that translates an input to an
output based on example input–output pairs, is supervised learning. It infers a function
from a set of training instances labeled with training data. Supervised ML algorithms
require external supervision. Train and test datasets are created from the input dataset.
The training dataset contains output variables that require prediction or classification. All
algorithms extract patterns from the training dataset and apply them to the test dataset for
prediction or classification.

There are numerous techniques within the supervised learning methodology, including
linear regression, logistic regression, K-nearest neighbors (KNN), Naïve Bayes, decision
trees, and more. However, selecting a technique depends on the desired features and
the data type. In this approach, the best-suited technique for the model porpoise was
determined by recompiling the crucial information of each technique [56]. The KNN
technique was chosen based on the recompiled information about the technique that
must correspond to the purpose of the model, which is determining the compatibility or
incompatibility of AC and WM compounds, and the available information, which is labeled,
noncontinuous, and noise-free. In this manner, the KNN technique was implemented in R,
considering a data split of 70% training, 10% validation, and 20% test sets (Figure 8). The
model was trained using k-fold cross-validation with hyperparameter tuning to choose the
best-performing model. The validation and training sets were used in a data combination
to retrain (refit) the model, and the test set was used for the classification model for the
compatibility prediction.
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Figure 8. Classification model approach.

Initially, the binary data of the variable “case” were substituted with the strings “yes”
and “no” to signify whether there was compatibility or incompatibility. The variable was
subsequently transformed from a vector into a factor or category. The raw data, consisting
of 288 observations and 21 variables, were divided into three datasets: training, validation,
and test. The division was performed in a ratio of 70:10:20. To enhance the strength and
reliability of the model, k-fold cross-validation and hyperparameter optimization were
conducted simultaneously on the training dataset.

Figure 9 illustrates the implementation of the k-fold cross-validation, specifically using
repeated cross-validation with 10 sets of folds. The data were divided into 10 subsets
(folds) for cross-validation, and repeated cross-validation was performed three times. The
model underwent training using k-1 folds and was assessed on the remaining fold [57].
The process was iterated three times, with each fold used as the validation set once. A
single estimation was obtained by averaging the results from each iteration. This method
reduces the variability and offers a more comprehensive performance measurement for
the model [58]. The Receiver Operating Characteristic (ROC) curve was employed [59] to
assess the effectiveness of various hyperparameter configurations, specifically, the number
of neighbors used. The ROC curve is a visual depiction that demonstrates the diagnostic
capability of a binary classifier system as the discrimination threshold changes [60]. By
graphing the sensitivity (true positive rate) against the specificity (false positive rate), it
was able to determine the ideal number of neighbors that maximized the area under the
curve (AUC), achieving a balance between sensitivity and specificity. Figure 10 displays
the ROC curve with repeated cross-validation, indicating the optimal number of neighbors
as seven. The AUC value for this configuration is 0.993.

Figure 9. Implemented cross-validation approach [57].
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Figure 10. ROC curve. Hyperparameter optimization.

Therefore, to determine the best-performing model on the train set, the optimized
model was retrained using the train–validation set, which combines the train and validation
set. Ultimately, the model was applied to the unseen test set to evaluate its performance.
The model’s performance was evaluated using the confusion matrix and statistical features.
Table 7 presents the statistical metrics for assessing the model’s performance.

Table 7. KNN model results.

Parameter Information

Number of K-neighbors 7
Accuracy 0.923

95% CI (0.815, 0.979)
Kappa 0.845

McNemar’s Test p-Value 0.134
Sensitivity 0.84
Specificity 1

Positive Predictive Value 1
Negative Predictive Value 0.87

Prevalence 0.481
Detection Rate 0.403

Detection Prevalence 0.404
Balanced Accuracy 0.92

Positive Class No

The confusion matrix is a tool utilized to assess the effectiveness of a classification
model by comparing the predicted labels with the true labels [61]. The decomposition of
the confusion matrix is as follows:

• True Negatives (TN): There were 21 instances in which the model accurately pre-
dicted “No”.

• False Positives (FP): There were 4 occurrences where the model made an incorrect
prediction of “Yes” when the true label was “No”.

• False Negatives (FN): These refer to the instances where the model incorrectly pre-
dicted a negative outcome (“No”) when the actual label was a positive outcome
(“Yes”). In this case, there were no instances of false negatives.

• True Positives (TP): There were 27 instances where the model accurately predicted “Yes”.

The confusion matrix assesses the classification model’s performance by comparing
predicted and actual labels. The model accurately classified 21 instances as incompatible
(No) and 27 instances as compatible (Yes), leading to a high overall accuracy. The model
exhibited four instances of false positives, where it erroneously classified instances as
“Yes” instead of “No”, and zero instances of false negatives, indicating flawless recall with
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a sensitivity of 100%. The model has a specificity of 84%, accurately identifying most
negative cases. Additionally, it has a precision of 87% for compatible (Yes) predictions,
indicating that 27 out of 31 “Yes” predictions were correct. Overall, the model demonstrates
robust performance, particularly in accurately identifying positive cases, albeit with a slight
inclination to incorrectly predict compatible (Yes) cases.

The model’s accuracy, the proportion of accurate predictions relative to the total num-
ber of samples, was 0.923. The confidence interval (CI) of the accuracy shows the predicted
range of values within which the accuracy will fall, in this case (0.815, 0.979), indicating a
high confidence level in the estimated accuracy. Kappa denotes the Kappa statistic, which
quantifies the agreement between the expected and actual class labels, considering the
probability of chance agreement. A Kappa score 0.845 indicates significant agreement
outside chance [62]. McNemar’s test p-value indicates the p-value from McNemar’s test,
which evaluates the significance of any changes in error rates between the two models. In
this instance, the p-value is 0.134, showing no statistically significant difference between
the error rates of the evaluated models [63]. Sensitivity represents the actual positive rate
or the proportion of positive samples accurately identified as positive [64].

In this instance, the sensitivity is 0.84, indicating that the model accurately recognizes
84% of positive samples. Specificity denotes the true negative rate or the proportion of
actual negative samples accurately categorized as negative. A specificity of one suggests
that the model correctly detects 100% negative samples [64]. The Positive Predictive Value is
the proportion of samples anticipated to be positive that are, in fact, positive. In this instance,
the positive predictive value is one, which indicates that around 100% of the anticipated
positive samples are positive. A negative predictive value of 0.87 suggests that around
87.1% projected negative samples are negative [65]. Prevalence denotes the frequency or
proportion of positive samples within a dataset [66]. In this instance, the prevalence is
0.481, which indicates that around 48.1% of samples are positive. The detection rate is
the fraction of positive samples that the model correctly classifies as positive. A detection
rate of 0.403 suggests that the model detects or identifies 40.3% of positive samples. The
detection prevalence is the proportion of projected positive samples that are positive. In
this instance, the detection prevalence is 0.404, which indicates that approximately 40.4%
of the anticipated positive samples are positive [64]. Balanced accuracy is the average
of sensitivity and specificity and measures classification performance as a whole [67]. A
balanced accuracy of 0.92 means that positive and negative samples are correctly classified.
The positive class column identifies the label or class regarded as positive. In this instance,
“No” is the positive class. Root Mean Square Error (RMSE) is a metric utilized to assess the
precision of predicted values by computing the average discrepancy between predicted
probabilities and actual outcomes [61]. It is especially advantageous for assessing models
that generate probabilities instead of solely class labels. The classification model obtained
an RMSE of 0.228, suggesting that the model’s predicted probabilities are highly accurate
and closely match the actual class labels. This demonstrates the model’s effectiveness in
making dependable predictions.

Overall, the results indicate that the KNN model performs effectively, exhibiting a high
and balanced accuracy. As evidenced by the sensitivity and specificity scores, it performs
well in correctly categorizing positive and negative combinations. Positive and negative
predictive values reflect the model’s ability to reliably predict positive and negative cases.

7. Conclusions and Recommendations

Computer modeling is the most effective method for evaluating the compatibility
between active compounds (ACs) and wall materials (WMs). It eliminates the need for time-
consuming trial-and-error experiments and enhances our understanding of their chemical
compatibility. Utilizing decoys is beneficial for preserving the precision of parameter and
variable patterns in the presence of data constraints. Data purification is an essential and
critical step in implementing statistical and Principal Component Analyses. It facilitates
the identification of correlations between variables and the consolidation of data while
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retaining crucial information. This process is essential before model development. The
developed model has proven its accuracy in compatibility assessments, highlighting the
efficacy and capacity of this supervised learning approach to integrate new data. Applying
model evaluation techniques like k-fold cross-validation and optimizing the number of
neighbors improves the reliability and precision of the results. This approach explicitly
targets concerns related to overfitting and robustness.

Future research should prioritize incorporating a broader spectrum of molecular de-
scriptors to ensure comprehensive model validation and accurate performance evaluation.
Moreover, creating a publicly accessible tool would facilitate the evaluation of compound
compatibility and enhance the dataset utilized to enhance the model. By exploring alterna-
tive supervised models and optimizing the hyperparameters of each model, one can gain
deeper insights into determining compatibility. By utilizing different mathematical tools in
the models, a more comprehensive understanding of the data can be achieved, allowing
the discovery of additional relationships that need to be considered.

Improvements in computing power and algorithm development are expected to re-
duce some of the current limitations, increasing the accessibility and reliability of these
techniques [68]. Their predicted accuracy can be significantly improved by incorporating
machine learning and artificial intelligence (AI) into molecular dynamics (MD) and dock-
ing. This is achieved by detecting patterns and correlations that may be overlooked by
conventional approaches [69]. In the future, implementing molecular dynamics (MD) and
docking for compatibility assessments will probably require a hybrid strategy that combines
computational predictions with experimental validation. This integrated approach can
exploit the advantages of both computational and empirical methodologies, providing a
more thorough and effective way of evaluating compatibility. As computational techniques
advance, they will become more valuable in assessing compatibility alongside traditional
experimental methods and offering a greater understanding of molecular interactions.

Supplementary Materials: The databases of decoys, phenolic, and wall material registers used in this
paper are available as supplementary materials in the online version https://www.mdpi.com/article/
10.3390/a17090412/s1. These databases include the smiles obtention, the compound name (phenolic
and wall material databases), and the molecular descriptors obtention, with their corresponding links
for further information.
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Appendix A

Appendix A.1. Parameters

Table A1. Bibliographic review of parameters.

Parameter Definition Ref.

Canonical smiles Translate the three-dimensional structure of a chemical into a string of symbols that computer
software can readily interpret [70]

Molecular weight (MW) Mass of a single molecule of a compound in a unified atomic mass unit; it is calculated from the
atomic masses of the constituents [71]

https://www.mdpi.com/article/10.3390/a17090412/s1
https://www.mdpi.com/article/10.3390/a17090412/s1
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Table A1. Cont.

Parameter Definition Ref.

LogP

Measured partition coefficient between two phases; it is derived from lipophilicity (lp), which is the
ability of a molecule to mix with an oily substance and is measured by its interaction with a lipid.
Another way to interpret logP is as the solute concentration in the organic and aqueous partitions. A
compound with a negative logP value is more attracted to the aqueous phase, indicating its
hydrophilic nature. If the logP value is 0, the molecule is evenly distributed across the lipid and
aqueous phases. If the logP value is larger than 0, the compound is lipophilic.

[72]

Hydrogen Bond Acceptors (HBAs) Number of hydrogen atoms that can be incorporated into a molecule due to the presence of a partial
negative charge on the atom that is covalently bonded to hydrogen (mostly NOF) [73]

Hydrogen Bond Donors (HBDs) Number of hydrogen atoms that can be donated to a molecule when a highly polar hydrogen atom is
bonded to a strongly electronegative atom, primarily, nitrogen, oxygen, or fluorine [73]

Polar Surface Area (PSA) Polar portion of a molecule and is proportional to the molecule’s solubility [74]

Heavy atom count (HAC) Total number of nonhydrogen (’heavy’) atoms in its chemical structure. All nonhydrogen component
atoms, including carbon, nitrogen, oxygen, sulfur, and halogen, are treated equally, regardless of size. [75]

Carboxyl groups (CGCs)
Functional groups are formed when hydroxyl (OH) and carbonyl groups are bonded to a single
carbon atom (C). This forms a polar, highly electronegative, and weakly acidic group capable of
hydrogen bonding through proton donation and acceptance

[76]

Carbonyl groups (CnGCs) Consist of the bond C=O; carbon is bonded to two other atoms, in which the structure of the carbonyl
bond influences the stability and reactivity of carbonyl compounds [77]

Hydroxyl groups (HGCs)
Simple structures consisting of an oxygen atom with two lone pairs covalently bonded to a hydrogen
atom. Adding a hydroxyl group to numerous organic compounds transforms them into alcohols and
increases their water solubility.

[76]

Acyclic groups (AGCs) Number of non-ring-forming linear carbon chains. These groups can reveal a molecule’s size, shape,
and flexibility. [78]

Appendix A.2. Decoys

Table A2. Wall materials and respective decoys [33].

Compound MW LogP HBA HBD PSA HAC CGC CnGC HGC AGC
Curdlan 180.16 −2.60 6 5 110 12 0 0 7 16
DC1 177.16 −3.28 6 5 102.18 12 0 0 6 4
DC2 178.14 −3.01 6 4 107.22 12 1 1 6 4
DC3 176.17 −2.99 5 6 116.8 12 0 0 4 4
DC4 177.16 −3.44 5 5 110.02 12 0 1 4 4
DC5 178.14 −3.01 6 4 107.22 12 1 1 6 4
DC6 177.16 −2.87 5 5 110.02 12 1 1 4 4
DC7 178.14 −3.63 6 5 118.22 12 0 2 5 6
DC8 182.15 −2.86 5 5 101.15 12 0 0 5 6
DC9 177.16 −3.05 5 4 113.01 12 0 1 5 4
DC10 188.18 −3.07 6 5 116.74 13 0 0 4 5
DC11 177.16 −2.87 5 5 110.02 12 1 1 4 5
DC12 185.15 −2.99 6 5 151.81 13 0 2 0 0
DC13 175.18 −2.87 5 4 84.16 12 0 0 4 5
Scleroglucan 714.50 −7.20 20 12 317 46 0 0 27 4
DS1 704.63 −8.12 21 12 362.32 48 2 2 26 16
DS2 705.69 −7.57 21 12 319.73 47 0 0 26 16
Maltodextrin 342.30 −4.70 11 8 190 23 0 0 14 8
DM1 342.30 −5.40 11 8 189.53 23 0 0 14 8
DM2 342.30 −5.40 11 8 189.53 23 0 0 14 8
DM3 342.30 −5.40 11 8 189.53 23 0 0 14 8
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Table A2. Cont.

Compound MW LogP HBA HBD PSA HAC CGC CnGC HGC AGC
Sodium Alginate 418.23 −4.10 12 6 192.44 52 1 1 17 32
DA1 754.92 1.53 15 6 218.84 55 0 1 0 7
DA2 749.98 1.97 14 6 197.07 52 1 1 18 35
DA3 748.01 1.87 14 5 185.87 52 1 1 16 32
DA4 757.83 1.73 14 4 221.29 54 4 7 13 38
DA5 741.92 1.67 14 5 201.75 52 1 4 15 31
DA6 743.93 1.47 14 6 204.91 52 1 3 16 31
DA7 755.86 1.93 13 5 215.22 54 3 6 12 42
DA8 749.81 2.26 14 4 218.21 54 4 6 13 33
DA9 740.72 1.68 14 6 247.61 54 0 7 10 13
DA10 746.98 1.97 14 5 181.17 52 1 1 18 34
DA11 743.89 1.42 15 4 199.98 52 2 3 18 25
DA12 743.89 1.42 15 4 199.98 52 2 3 18 25
DA13 750.75 1.70 15 5 232.65 54 2 8 15 24
DA14 748.78 1.41 14 4 212.42 54 5 5 14 47

Rows shown in grey correspond with the wall material.
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