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Abstract: In pediatric rehabilitation medicine, manual assessment methods for visual–motor in-
tegration result in inconsistent scoring standards. To address these issues, incorporating artificial
intelligence (AI) technology is a feasible approach that can reduce time and improve accuracy. Exist-
ing research on visual–motor integration scoring has proposed a framework based on convolutional
neural networks (CNNs) for the Beery–Buktenica developmental test of visual–motor integration.
However, as the number of training questions increases, the accuracy of this framework significantly
decreases. This paper proposes a new architecture to reduce the number of features, channels, and
overall model complexity. The architectureoptimizes input features by concatenating question num-
bers with answer features and selecting appropriate channel ratios and optimizes the output vector by
designing the task as a multi-class classification. This paper also proposes a model named improved
DenseNet. After experimentation, DenseNet201 was identified as the most suitable pre-trained model
for this task and was used as the backbone architecture for improved DenseNet. Additionally, new
fully connected layers were added for feature extraction and classification, allowing for specialized
feature learning. The architecture can provide reasons for unscored results based on prediction
results and decoding rules, offering directions for children’s training. The final experimental results
show that the proposed new architecture improves the accuracy of scoring 6 question graphics by
12.8% and 12 question graphics by 20.14% compared to the most relevant literature. The accuracy
of the proposed new architecture surpasses the model frameworks of the most relevant literature,
demonstrating the effectiveness of this approach in improving scoring accuracy and stability.

Keywords: deep learning; visual–motor integration; pediatric rehabilitation medicine

1. Introduction

Children’s development can be divided into gross motor skills and fine motor skills.
Gross motor skills (such as running, throwing, and using a racket to hit a ball) play a
crucial role in the development of perceptual and cognitive abilities [1]. Fine motor skills,
on the other hand, are an important aspect of healthy development and can effectively
predict school readiness. Research shows that there is a close relationship between fine
motor control and later achievements (such as reading and writing skills) [2]. Visual–motor
integration has a significant impact on children’s future writing abilities [3]. If visual–motor
integration is insufficient, it may lead to difficulties in writing, which in turn affects learning
performance [4]. From a developmental perspective, visual–motor integration is considered
a prerequisite skill for learning to write [5].

Screening helps to identify potential problems early and provides treatment during
the critical period to avoid negative impacts on children’s learning and development. To
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assess children’s visual–motor integration abilities, experts have developed assessment
tools. By using these tools, professionals can determine if a child’s visual–motor integration
ability meets the standards for their age, thereby providing early guidance and assistance,
helping children overcome writing difficulties, intervening early in learning disabilities,
and improving future learning performance [6].

In the assessment of visual–motor integration abilities, the most commonly used tool
is the Beery–Buktenica developmental test of visual–motor integration, abbreviated as
VMI [7]. This test includes various graphic drawings, ranging from simple lines and circles
to complex cubes and overlapping circles. The test form consists of six boxes, with each
page displaying three graphic items at the top. Children need to draw the corresponding
answer shapes in the area below. Figure 1 shows some of the graphics from the VMI
test manual.
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The VMI assessment is conducted through one-on-one or group testing by profes-
sionals such as occupational therapists or special education teachers. Professionals score
each drawing according to the standards (rules) in the VMI scoring manual (0 or 1 point).
The scoring method for the VMI test awards 1 point per question, for a total of 27 points.
After three consecutive mistakes, no points are given for subsequent questions. The first
three shapes (straight lines, horizontal lines, and shapes) are to be copied after observing
a demonstration by a professional, and these scores are also included in the total score.
The raw score has a maximum of 27 points. After calculating the raw score, it can be
compared with age equivalents from the manual, and additionally, it can be converted to
a standard score and then to a percentile score, which is used to determine if the child is
developmentally delayed.

However, manual assessment methods have some drawbacks, such as time-consuming
scoring processes. Conducting large-scale testing for an entire school would result in
a significant workload for professionals. Therefore, large-scale screening has not been
implemented, leading to some children with minor developmental delays who need help
not being identified early. Additionally, while scoring is based on the VMI scoring manual’s
rules, it still relies on subjective human judgment to determine adherence to the rules. The
assessment manual cannot cover all possible situations to address real-world conditions,
leading to potential discrepancies in scores given by different assessors. Even for the same
professional, scoring standards may change with experience and tenure, causing issues
with consistency. Therefore, there is a need to introduce artificial intelligence technology to
assist in scoring to reduce the time required for assessment and improve scoring accuracy.
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Currently, the most relevant literature on implementing AI for VMI scoring [8] pro-
poses a convolutional neural network (CNN) [9] architecture. The paper connects the
problem images with children’s drawings directly along the channel direction, uses the
tanh function as the activation function at the output nodes, and designs it as a multi-label
task, with results represented as 1, 0, or −1, indicating rule conformity, non-conformity, or
no such rule, respectively. This method results in excessive parameters and high model com-
plexity, affecting training and inference efficiency. Moreover, as the number of questions
increases (from six to twelve), the accuracy of this method significantly decreases, making it
difficult to apply in practical testing scenarios and limiting its practicality and widespread
application. Considering that the accuracy of standardized assessment tools is a key factor
for clinical application, this paper focuses on addressing these issues through in-depth
design and exploration. By improving existing methods, this paper aims to enhance the
scoring accuracy for the same number of questions to achieve more accurate VMI assess-
ment results, thereby improving its reliability and applicability in real-world scenarios.

Our main contribution is the proposal of a new architecture. The new architecture
optimizes input features by concatenating the problem number and answers and selecting
appropriate channel ratios. Additionally, it optimizes output vectors by designing the task
as a multi-class classification problem. In addition to optimizing input and output vectors,
this paper also proposes improved DenseNet. This involves selecting the pre-trained
DenseNet201 [10] model, which is more suitable for this task, as the backbone architecture
through experiments and adding a new fully connected layer for feature extraction and
classification, using softmax instead of tanh as the final activation function. This new
architecture effectively avoids overfitting, reduces the complexity of output vectors, and
improves accuracy. The results indicate that the proposed architecture and improved
DenseNet in this paper outperform existing methods in terms of accuracy as the number of
questions increases.

The rest of this paper is organized as follows: Section 2 describes the current state of
research on AI applications in child development assessment. Then, Section 3 describes the
new architecture proposed in this paper. Next, Section 4 presents the experimental results.
Finally, Section 5 provides the conclusion.

2. Related Work

In the application of AI for observing gross motor development, Trost et al. [11] used
artificial neural networks (ANNs) to determine adolescent activity types and energy expen-
diture. The test included five types of physical activities: sedentary, walking, running, light
household activities or games, and moderate to vigorous games or sports. De Vries et al. [12]
had children perform activities in an outdoor environment such as sitting, standing, walk-
ing, running, skipping rope, kicking a soccer ball, and riding a bicycle. They primarily used
ANN based on single-axis or tri-axial accelerometer data to identify children’s physical
activity types to improve accuracy in recognizing children’s movements.

In the application of AI for standardized assessment of gross motor development,
Suzuki et al. [1] noted that personal differences among raters could lead to differences in the
assessment results of test subjects. This study used the standardized assessment tool test of
gross motor development-3 (TGMD-3) as the experimental target. TGMD-3 assesses 13 basic
motor skills, divided into two subscales: locomotion skills (e.g., running and jumping) and
ball skills (e.g., kicking and throwing). A new CNN-based deep learning network was
proposed to perform both gross motor classification and assessment simultaneously.

In the application of AI for observing fine motor development, Rodríguez et al. [13]
used augmented reality (AR) materials to allow children to interact via gesture control
devices. The study aimed to use AI to interpret children’s movements in AR, experimenting
with various AI image recognition methods such as CNN, K-NN, support vector machine
(SVM), and decision tree (DT) to provide a mechanism for evaluating and giving feedback
on children’s performance in AR educational materials, ensuring that the motor skills
learned through these AR materials are properly developed.
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In the application of AI for standardized assessment of fine motor development,
Strikas et al. [6] used a CNN model to propose a new framework for evaluating fine mo-
tor skills of students in Greek public kindergartens. The study was based on the Griffiths
Scales No. II children’s development scale and only used subtest D (eye–hand coordination) in
the scale, specifically the drawing person test, which classifies drawings into six levels. The
study utilized the developed deep learning model to categorize children’s drawings into these
six levels. The proposed model could assist teachers and parents in classifying specific drawing
results. In the field of child psychology, there is some literature applying CNNs to the scoring
of children’s drawings, for example, the bender gestalt visual–motor test (BGT). Moetesum
et al. [14] used VGG-16 as a pre-trained model with a transfer learning backbone architecture.
Several years later, they further employed ResNet101 as the backbone architecture for transfer
learning [15]. Ruiz Vazquez et al. [16] similarly applied CNNs to develop a new CNN model
architecture for BGT scoring rules and used transfer learning. Zeeshan et al. [17] applied a
CNN architecture fine-tuned twice to the scoring items of the draw-A-person (DAP) test.

In the scope of fine motor skills, visual–motor integration refers to the ability to
coordinate the eyes and hands to perform operations in a stable and efficient manner. This
ability is crucial for children’s future academic development. Relevant research on this
ability is as follows:

Kim et al. [18] collected drawings from 20 children, including preschoolers and elemen-
tary school students, using a tablet. Children drew numbers (i.e., 0–9) and letters (i.e., A–F)
with a digital pen on the tablet. A random forest classifier was used to classify the children’s
ages. A total of 130 feature sets were analyzed, achieving an accuracy of about 82%, but the
ability to correctly draw angles and curves was overlooked. Polsley et al. [2] expanded on
Kim et al.’s [18] work by adding features focused on curve and angle recognition. They
classified children’s digit sketches on a tablet into mature or immature categories using
a random forest. The final results showed better classification accuracy with the random
forest, with accuracy rates of 85.7% for curves and 80.6% for angles. Polsley et al.’s [2] task,
however, lacked standardized tools with normative research and fixed testing processes,
making it impossible to apply results to different regions or countries or to clearly define
cutoff scores for identifying children with borderline or delayed developmental abilities.

Lee [8] conducted the most relevant research for this study. The goal was to apply
AI to evaluate visual–motor integration using the most common standardized assessment
tool, VMI. A new CNN-based model was proposed to learn the rules of these assessment
tools and to apply them to VMI scoring while also explaining the scoring comments and
results. The model consists of two stages: Stage one involved inputting the children’s drawn
answer images and the images of the test items from the manual through two separate CNNs,
each producing two feature maps. Stage one also involved experimenting with the CNN
architecture to see if incorporating residual modules improved feature extraction performance
for this task. The two feature maps were combined through subtraction or concatenation to
form a single feature map for input into stage two. Stage two CNN performs classification
to predict if the scoring criteria are met. The output nodes used multi-label output, with
six nodes corresponding to the maximum of six rules. The tanh function was used as the
activation function, outputting values from 1 to −1. Outputs of 1 and −1 represented scores
of 1 and 0, respectively, with the remaining nodes set to 0 if the standard was less than 6. The
final experimental results showed that using residual modules and concatenation for scoring
six types of items achieved the best performance with an accuracy of 82.26%, but accuracy
decreased to 69.7% when the task was extended to twelve items.

Based on the literature review, the most relevant study is Lee’s [8] 2022 research on AI
applications for VMI scoring. This study’s framework showed significant limitations when
handling more items. Considering that the accuracy of standardized assessment tools is a key
factor for clinical applicability, this paper will use the most relevant literature as a starting
point for in-depth design and exploration. By proposing an improved new framework, this
paper aims to enhance the accuracy of scoring for the same number of items to achieve more
accurate VMI assessment results and improve its reliability and applicability in practical use.
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3. Method
3.1. Dataset and Data Preparation

The dataset used in this study was provided by the Occupational Therapy Depart-
ment of National Taiwan University. This dataset contains hand-drawn sketch data from
preschool children aged 3 to 6 years old and includes 12 types of drawings from the Beery
VMI test. Each hand-drawn answer is saved as an image, totaling 8610 images of children’s
hand-drawn answers. The distribution of these images across categories is uneven, de-
pending on the difficulty of the different shapes. For example, drawing straight lines is
relatively simple for most children, so the number of images with “incorrect straight lines”
is much smaller compared to the number of images with “correct straight lines”. A task
is classified into different categories based on the number of rules met. For instance, if a
task has N rules, it will have N + 1 categories (meeting 0 to N conditions). Overall, the data
distribution among different categories is imbalanced. According to the classification of
error rules, the category with the fewest original images has 16 images, while the category
with the most has 800 images, resulting in a 50-fold difference. Therefore, it is necessary to
balance the data volume for each category through data augmentation methods.

To augment the data for each category, this study employs computer vision techniques
(OpenCV), including rotation, stretching, scaling, and skewing. It is important to note that
rules impose significant restrictions on shape variations. For example, when using rotation
for augmentation, it must be considered that some tasks will not be scored if horizontal
lines form an angle greater than 15 degrees with the horizontal axis, while other tasks can
be rotated arbitrarily without concern for the angle. When extending or shortening length,
it must be ensured that some rules stipulate that line lengths must not be less than 1/16 inch.
Additionally, shape distortions will change the aspect ratio, so it is important to adhere
to rules that restrict the aspect ratio to less than 2:1. Furthermore, OpenCV was used to
supplement parts of the drawings that were not completed according to the rules. Through
these methods, a dataset of 20,365 images was ultimately generated. When separating
training and validation datasets, 1/10 of the original images was randomly selected as the
validation dataset. The selected validation data were not included in the training dataset,
and the training dataset does not contain any augmented data based on images selected
for the validation set. Augmented data were used exclusively for the training dataset and
were not included in the validation dataset.

The children’s hand-drawn answers were scanned into PDF files and underwent a
series of processing steps, including segmentation, cropping, binarization, denoising, and
compression, and were ultimately saved at a resolution of 500 × 500 pixels. During training,
these images were resized to 224 × 224 pixels to meet the model’s input requirements.
After inputting at 224 × 224 pixels, the pixels were not adjusted during channel slicing and
combining, so the final channels remained at 224 × 224. Figure 2 uses question 11 as an
example to show the difference between an image before and after augmentation.
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3.2. System Architecture

The new architecture implemented in this study is described as follows: By selecting
appropriate channel ratios, the task numbers and answer features are concatenated to form
input feature maps, thereby optimizing the task’s input channel and feature structure. This
design improves the efficiency and accuracy of data processing, ensuring the stability and
reliability of subsequent analysis processes. Next, the improved DenseNet proposed in
this study is used as the classifier for the task. The improved DenseNet is based on the
pre-trained DenseNet201 model, which was experimentally selected as a suitable backbone
architecture for this task, with a new fully connected layer added for feature extraction and
classification. Softmax is chosen over tanh as the activation function to further enhance
the model’s performance and stability. Additionally, the task is designed as a multi-class
classification to optimize the structure of the output vector, reducing the complexity of the
output vector and improving accuracy. Moreover, to achieve the goal of clinical application,
an AI scoring system application software with a user interface was implemented. The
model’s prediction results are imported into a scoring rule decoding system, which decodes
and identifies errors in the answers based on a set of rules. According to the rules in the
scoring manual, all results are summed and the raw scores are calculated. As an example,
the rule for question 2 is that the horizontal line should be more than half and the vertical
line should not exceed 30◦. Figure 3 uses question 2 as an example to show answers that
satisfy and do not satisfy the rule. Subsequently, the system performs norm referencing to
convert the raw scores into standard scores and achievement levels and finally displays
the detailed results and performance of the children in the VMI scoring test. This entire
process ensures the accuracy and fairness of the scoring, making the final results reliable
and valuable for reference. The following section provides a detailed description of how
the architecture is integrated through the experimental content of each stage. Figure 4 is
the new architecture proposed in this paper.
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4. Experiments
4.1. Selection of Pre-Trained Backbone Architectures

When dealing with classification problems with relatively small amounts of data,
using pre-trained convolutional neural network (CNN) backbone architectures to enhance
model performance is an effective strategy. We selected four different pre-trained models
for experimentation: ResNet50, ResNet101, DenseNet201, and InceptionResNetV2 [19].
The reason for choosing these four models lies in their varying depth and architectural
characteristics, which provide diverse feature extraction capabilities. These models have all
been pre-trained on the ImageNet dataset [20], which includes a large number of images
such as strawberries, balloons, and dogs covering a wide range of object types. The pre-
trained models, having undergone initial training with this rich image data, possess strong
feature extraction abilities that are crucial for the specific tasks in this study.

As shown in Figure 5, we initially used questions 12 and 13, which have complex
scoring rules, from the datasets as inputs for the pre-trained models in the experiment.
We froze 97% of the network layers of the selected pre-trained models and added a new
connection layer, then fine-tuned these pre-trained models and performed the prediction
tasks. From the results, we observed which pre-trained model performed better and had
higher accuracy for this task, indicating a better fit for this type of task. The pre-trained
model with the highest accuracy was selected as the backbone architecture for the next
phase of the experiment.
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4.2. Optimizing Input Features

In this phase of the experiment, the aim is to reduce the number of input channels
and data complexity by replacing the original question images with question numbers.
This optimization design aims to maintain model performance and improve accuracy
as the number of scoring questions increases. The input for training is designed as a
four-dimensional data array with the structure batch size, height, width, and channels.

The experiment consists of different combinations of four data sources: zero arrays,
question number arrays, question images, and answer images. The goal is to evaluate
the impact of different input combinations on model performance. For the questions,
straight-line images from question 1 (same as question 4) are used. The objectives are to
observe the following:

1. To observe if using a zero array as a baseline channel reduces interference and en-
hances the model’s focus on hand-drawn answer images and question images.

2. To observe if repeating the hand-drawn answer image information strengthens the
model’s learning of answer image features, thereby improving classification accuracy.

3. To observe if simplifying question images to numbers reduces data complexity and
assesses the impact of such simplification on model performance.

4. To observe if repeating the same data can enhance the information from hand-drawn
answer images while simplifying the complexity of question inputs.

By comparing and analyzing the effects of different input combinations on model
performance, the optimal input optimization strategy can be identified to improve model
accuracy and stability in multi-question scoring situations. The combination structure is
shown in Table 1.
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Table 1. Channels and data combinations.

Channel 1 Channel 2 Channel 3

Zero Array Sketch Question
Sketch Sketch Question

Zero Array Sketch Question No.
Sketch Sketch Question No.

4.3. Optimizing Output Vectors

We designed the task as a multi-class classification problem, where the number of
classes is determined based on the combinations of rules satisfied. Although the number of
classes increases with the number of questions, each image will ultimately have only one
predicted class with the highest probability to reduce the complexity of the output vector
and improve accuracy. This study adopts 12 questions, with the current task subdivided
into 34 classes, representing different question numbers and rules satisfied.

4.4. Optimizing and Training the Model

The model training experiment is divided into two stages, including modifications to
the model architecture and improvements in classification efficiency. The details of each
experimental stage are described as follows:

4.4.1. Training the Improved DenseNet Classifier

We propose an improved DenseNet model, termed improved DenseNet, aimed
at enhancing the model’s adaptability and performance for specific classification tasks.
DenseNet201 was chosen as the base backbone architecture due to its excellent performance
in previous experiments. We made a series of improvements and adjustments to better
meet our needs.

First, we removed the original fully connected top layer of DenseNet201 and intro-
duced a new Global Average Pooling (GAP) 2D layer, which reduces the dimensionality
of feature maps to two dimensions, facilitating a more efficient feature extraction process.
Additionally, we added two new fully connected layers with 1024 and 256 neurons, re-
spectively, using the ReLU activation function. These designs are intended to enhance
the model’s non-linear processing capabilities, thus improving learning and prediction
efficiency. Finally, the model’s output layer uses the Softmax activation function to convert
output values into probabilities between 0 and 1, ensuring that the sum of probabilities for
all labels is 1 for multi-class classification.

During the model training process, we performed gradual fine-tuning, progressively
unfreezing the backbone architecture’s parameters to enhance the model’s adaptability
and performance for this task. These improvements and adjustments enable improved
DenseNet to handle complex multi-class classification tasks more effectively, achieving
higher levels of accuracy and stability. These measures are expected to significantly im-
prove the model’s performance in practical applications, providing a foundation for future
research and applications.

4.4.2. Improved DenseNet Feature Extraction Combined with Machine
Learning Classification

To further enhance classification speed, this study utilizes features extracted by the
feature extractor trained in the previous phase and employs a traditional machine learning
classifier based on stochastic gradient descent (SGD) for training. We compared the accuracy
and training time of this approach. The core of this process lies in obtaining high-quality
feature representations through the optimized feature extractor and then using these
features to train a more efficient classifier. Compared to deep learning models, traditional
machine learning classifiers have faster training speeds, so we aim to significantly reduce
the model training time while maintaining accuracy.
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Support vector machine (SVM) is a supervised learning model that can effectively
perform classification tasks. In the standard SVM training process, methods such as
sequential minimal optimization (SMO) [21] are commonly used to solve this quadratic
optimization problem. However, the SMO method can result in excessively long training
times when dealing with large datasets [22]. In big data analysis, combining the use of
stochastic gradient descent (SGD with hinge loss) to train SVMs with hinge loss can achieve
better training speed while maintaining good classification performance [23]. Gradient
descent is used in the process of finding the minimum and updating weights. This makes
SGD an effective tool for training SVMs and other deep learning models, and it is widely
applied in various machine learning tasks. Therefore, this paper uses SGD as the traditional
machine learning classifier.

The feature extractor from the previous phase of experiments, which underwent pre-
training and fine-tuning with deep learning models, possesses strong feature extraction
capabilities. This experiment uses these extracted features to train an SGD-based classifier
and compares the results with those from the original deep learning model. SGD classifiers
are widely used in traditional machine learning due to their high computational efficiency
and fast convergence [23]. Thus, using an SGD classifier with fixed features can significantly
improve training speed. Training time and accuracy were recorded during the experiment
and analyzed for comparison.

4.5. Implementation of AI Assessment and Scoring Application

To demonstrate a clinically applicable scenario, we developed an evaluation software
application that provides a convenient platform for importing patient test images and
performing automated AI scoring. The software uses the trained model to predict and
score, outputting seven sets of numeric codes. These codes are further converted by the
application into raw scores and mapped to age-related data using predefined rules, norms,
score conversion tables, and comments to generate standardized scores and achievement
levels. Additionally, the application includes an intuitive user interface that enables medical
professionals to easily operate and obtain the necessary information.

The software’s functionalities are particularly focused on the following aspects:

1. Raw Score: The total score obtained by the patient in the test.
2. Standard Score: The conversion of the raw score into a standardized score using the

Z-score method, which helps in fairly comparing patient performance across different
ages and backgrounds.

3. Achievement Level: Classification of the patient into different achievement levels,
such as excellent, good, average, weak, or very weak, based on the standardized score,
providing a more detailed assessment of abilities.

Additionally, the application can identify specific rule deficiencies in patients, provid-
ing valuable information for medical professionals in diagnosis and treatment planning.
However, due to the limitations in data collection, the application currently cannot accu-
rately identify individual rule errors for questions 14 and 15.

4.6. Comparison with Existing Work

The most relevant literature presents a two-stage architecture based on CNN. The first
stage involves concatenating feature maps of questions and answers along the channel direction
to obtain input data, followed by classification using a second-stage CNN with a tanh activation
function for result interpretation. The final design uses multi-label outputs, with each result
producing six labels represented by 1, 0, and −1, indicating whether the rules are met, not
met, or not applicable, respectively. These results are matched with a predefined set of
evaluation rules to provide corresponding explanations. When the architecture incorporates
residual modules and feature concatenation, the training accuracy for six questions reaches
a maximum of 82.26%. However, these designs lead to overly complex input features and
numerous possible output vector combinations (a total of 36 combinations). When the number
of questions increases to twelve, the accuracy significantly drops to 69.7%.
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In this paper, we propose a new architecture. Our contribution lies in optimizing the
input features by concatenating question numbers and answers and choosing appropriate
channel ratios to reduce the number of features, channels, and overall model complexity
that result from directly concatenating questions and answers, effectively avoiding overfit-
ting. Additionally, the new architecture optimizes the output vector. By designing the task
as multi-class classification, the complexity of the output vector is reduced, and accuracy
is improved. In addition to optimizing input features and output vectors, we introduce
improved DenseNet. The experiment selects the pre-trained model DenseNet201 [10] as
the backbone architecture, which is suitable for this task, and adds new fully connected
layers for feature extraction and classification, using softmax instead of tanh as the final ac-
tivation function. This design leverages the feature extraction capabilities of the pre-trained
model while tailoring feature learning and extraction to specific problem requirements.
Furthermore, we implemented an AI scoring system application with a user interface,
integrating the classified prediction results into a rule-decoding system that calculates raw
scores, performs norm-based standard score conversion, and achieves level conversion.
These processes ensure the accuracy of the prediction results. Based on the predictions
and decoding rules, this paper can provide detailed evaluations of answer penalties, such
as unmet specific conditions. In addition to improving classification efficiency and accu-
racy, it offers a basis for penalties, providing targeted guidance for children’s training and
improvement in future clinical applications, thus enhancing children’s abilities. Through
the proposed improvements, we hope to provide a more efficient and accurate result for
automated scoring systems.

5. Results and Discussion

This chapter details the experimental results for selecting pre-trained models, opti-
mizing input channel data, training the improved DenseNet model, integrating machine
learning classifiers, and implementing the software application

5.1. Results of Pre-Trained CNN Selection Experiments

During the process of selecting pre-trained model parameters, it was found that a
more complex model does not necessarily yield better performance. In fact, the model’s
performance depends on various factors, including its structure, the number of parameters,
and its adaptability to specific tasks.

In the experiments, DenseNet201 demonstrated superior performance on unseen
datasets. The validation loss and testing loss of DenseNet201 were lower compared to other
pre-trained models, indicating that this model has higher generalization capability when
handling new data. The gap between training loss and validation loss for DenseNet201
was smaller, suggesting lower overfitting. Overfitting refers to a situation where a model
performs well on training data but poorly on validation data. Lower overfitting indicates
that DenseNet201 can better balance performance between training data and unseen data,
thus enhancing its reliability in practical applications.

Based on these observations, this paper decided to choose DenseNet201 as the back-
bone architecture for the model. Specifically, this paper utilizes parts of DenseNet’s struc-
ture, combined with improvements, to achieve optimal performance for the specific task
in this study. Tables 2 and 3 show the experiment results of the pre-trained model for
questions 12 and 13, respectively.

Table 2. Pre-trained model experiment results for question 12.

Model Epoch Training Loss Validation Loss Validation Accuracy (%) Testing Loss Test Accuracy (%)

ResNet50 46 0.0227 1.8164 93 0.7265 91
ResNet101 13 0.1031 0.6472 88 0.7629 88

DenseNet201 1 0.0889 0.1358 96 0.1247 95
InceptionResNetV2 30 0.0065 0.1597 96 0.6192 93
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Table 3. Pre-trained model experiment results for question 13.

Model Epoch Training Loss Validation Loss Validation Accuracy (%) Testing Loss Test Accuracy (%)

ResNet50 49 0.0144 0.9082 82 1.2796 72
ResNet101 18 0.0424 0.4895 79 0.63 73

DenseNet201 15 0.0257 0.3794 86 0.2442 89
InceptionResNetV2 9 0.0403 0.6244 85 0.5755 80

5.2. Results of Optimizing Input Channel Data

The final experimental results show that the model performed best when Channel 1
and Channel 2 contained the answer features and Channel 3 contained the question number
feature. This combination not only effectively reduced the complexity of the data but also
improved the accuracy and stability of the model. Specifically, this configuration reduced
interference from extraneous information while maintaining the model’s efficient learning
capability, leading to better training results. The results also indicate that using a zero
array might lead to information loss; although it successfully reduced complexity, it also
diminished model performance.

This finding suggests that by carefully selecting the data content of the input channels,
the training efficiency and performance of deep learning models can be significantly
improved. Simplifying the question images to question number features and effectively
combining them with answer features not only simplifies the data structure but also helps
the model converge more quickly, achieving optimal prediction accuracy. Table 4 shows
the results of optimizing input channel data.

Table 4. Results of optimizing input channel data.

Channel 1 Channel 2 Channel 3 Accuracy

Zero array Sketch Question 69%
Sketch Sketch Question 69%

Zero array Sketch Question no. 75%
Sketch Sketch Question no. 93%

5.3. Results of Model Optimization and Training

The results of model adjustment and training experiments are presented in two phases,
as described in the following sections.

5.3.1. Results of Training Improved DenseNet

The experimental results indicate that the model proposed in this paper outperforms
the four model architectures of Lee [8] in terms of accuracy, whether with 6 questions or
12 questions. Improved DenseNet achieved an accuracy of 95.13% for 6-question graphics
and 89.84% for 12-question graphics. Specifically, the model demonstrated better accuracy
across multiple evaluation standards, whether in small-scale tests (6 questions) or larger-
scale tests (12 questions).

In contrast, the four model architectures in the most relevant literature showed slightly
inferior accuracy for the same number of questions. This indicates that the model proposed
in this paper has stronger stability and adaptability when handling different numbers
of questions. Particularly when the number of questions increased to 12, the model in
this paper still maintained high accuracy, whereas the accuracy of models in the relevant
literature significantly declined.

These results provide strong evidence for the superiority of the model proposed in this
paper, especially in the application value in multi-question testing scenarios. The model
demonstrates efficient performance under different testing conditions through effective
feature extraction and classification methods, supporting its practical application. Table 5
shows the results of training improved DenseNet classification.
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Table 5. Results of training improved DenseNet classification.

Model 6 Questions Accuracy (%) 12 Auestions Accuracy (%)

[8] residual + concatenation 82.26 69.7
[8] residual + subtraction 80.65 71.21
[8] plain + concatenation 79.03 74.24

[8] plain + subtraction 75.81 71.21
Improved DenseNet 95.13 89.84

After training with 12-question graphics, to further enhance the model’s adaptability
to the task, fine-tuning with unfreezing layers was conducted. During the process of
adjusting the number of frozen layers for improved DenseNet, it was found that when
the number of frozen layers reached 90%, the model’s accuracy significantly improved
and performed excellently. Specifically, as the number of frozen layers decreased, the
number of epochs required to achieve accuracy exceeding 90% was significantly reduced,
indicating that the model could adapt to new data more quickly and training efficiency
was greatly improved.

However, as the number of frozen layers was further reduced, although training
time was significantly shortened, it also led to a decrease in model accuracy. This is be-
cause unfreezing more layers makes the model parameters more flexible but also more
susceptible to noise and specifics in the training data, thereby reducing the model’s gener-
alization capability.

In the experiment of unfreezing layers, it was found that while unfreezing improved
model performance, the improvement was not significant. It is hypothesized that this is
due to DenseNet201 being pre-trained on the ImageNet dataset. The ImageNet dataset
contains over 20,000 categories, such as “cat”, “dog”, “balloon”, or “strawberry”, each
with hundreds of color images that have high complexity and diversity. Therefore, when
transferring these pre-trained models to the black-and-white geometric images studied in
this paper, excessive training may lead to overfitting due to the significant differences in
features and complexity compared to ImageNet images.

Therefore, the experimental results in this paper show that while unfreezing some
layers can increase model flexibility to a certain extent, excessive unfreezing may backfire
and lead to decreased model performance. In transfer learning, it is crucial to reasonably
select the number of frozen layers to balance between improving training efficiency and
model accuracy. Table 6 shows the performance of improved DenseNet with frozen layers.

Table 6. Performance of improved DenseNet with frozen layers.

Frozen Layers Accuracy (%) Training Time (mins) Epoch

100% 89.84 58 13
95% 90.88 60 16
90% 90.99 57 12
85% 90.57 40 10
80% 90.07 29 8

5.3.2. Results of Improved DenseNet Feature Extraction Combined with SGD Classification

Although the final accuracy of the classifier using SGD (with hinge loss as the loss
function) was reduced, it showed significant advantages in classification efficiency. Specifi-
cally, the SGD classifier could achieve accuracy similar to more complex methods within
fewer training epochs. This indicates that although there is some loss in final accuracy, it is
acceptable because it results in a substantial reduction in overall training time.

The study found that the rapid convergence property of the SGD classifier allows
it to complete training in a shorter time. This is particularly important for applications
that require rapid model iteration and deployment. For example, in tasks that demand
real-time responses and quick decision making, the improved classification efficiency can
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significantly enhance the overall performance of the system. Although the decrease in
accuracy is a non-negligible issue, this trade-off is reasonable and valuable when balancing
efficiency and accuracy.

Additionally, the SGD classifier also excels in resource utilization. With reduced
computational resources and time required for training, the SGD classifier can achieve
high classification performance under limited hardware conditions, which is a significant
advantage for resource-constrained scenarios. Therefore, despite a slight decrease in
accuracy, the SGD classifier still holds considerable application value due to its significant
advantages in training efficiency and resource utilization.

More importantly, the efficiency of the SGD classifier is not only reflected in the training
process but also in the inference phase of actual applications. The model’s simplicity
results in faster inference speeds, making the SGD classifier more competitive in real-
time applications. For example, in real-time data processing and instant decision-making
systems, the efficient inference capability of the SGD classifier can significantly enhance
system responsiveness and processing efficiency.

In summary, while using the SGD stochastic gradient descent classifier (with hinge
loss) for classification results in a reduction in final accuracy, it can substantially shorten
overall training time by reducing the number of training epochs and resource consumption.
This trade-off between efficiency and accuracy makes the SGD classifier still invaluable in
specific application scenarios. However, since accuracy is the most crucial criterion for this
task, the next stage of software application implementation will omit SGD as the classifier
and use the model with 90% of the improved DenseNet training frozen, applying this
model for classification. Table 7 shows the experimental results, with the combination of
SGD recording the time taken for feature extraction and classification separately.

Table 7. Results of improved DenseNet (90% frozen) combined with SGD classifier.

Model Name Accuracy (%) Epoch Training Time (mins) Testing Time (s)

Improved DenseNet 90.99 12 57 10
Improved DenseNet

+ SGD classifier 90.45 3 Feature extract: 22
Classification: 1

Feature extract: 9.8
Classification: 0.027

5.4. Results of Implementing the AI Assessment and Scoring Application

To realize and demonstrate the application of the scoring system, we developed
an AI-based assessment and scoring application. Users are first required to fill in basic
information such as name, birthdate, and test date and upload hand-drawn graphics of
children. Figure 6 is an example image of a participant completing the test, uploaded to
the application as input for the model. After completing these steps, users can activate
the internal model for automatic scoring of the graphics. The model extracts features
and scores each uploaded graphic, and once scoring is complete, the software displays
important data on the interface, including raw scores, standard scores, and achievement
levels, which helps assess the child’s overall performance in the test. Additionally, the
software provides a dedicated area showing the scoring rules that the child did not meet,
which is significant for parents and teachers to improve targeted teaching and training.
The performance of the application in the experiment demonstrated its feasibility and
effectiveness in practical applications. Through precise data processing and a user-friendly
interface design, the software not only enhances scoring accuracy and efficiency but also
provides unmet standards, offering strong support for the assessment and development
training of children. Figure 7 shows the initial screen of the software application.
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6. Conclusions

Ensuring accuracy in model output is a key focus in AI applications for VMI assess-
ments. This paper introduces a framework capable of maintaining the accuracy of AI
applications for multiple VMI scoring tasks. The final experimental results show that using
our input features and output vector architecture with the proposed improved DenseNet
model increased accuracy by 12.8% for 6-question graphics and by 20.14% for 12-question
graphics compared to the most relevant literature. The accuracy of both our architecture
and the proposed improved DenseNet model surpasses that of the model architectures in
the most relevant literature, demonstrating the effectiveness of our approach in improving
scoring accuracy. Future research directions include improving the balance between SGD
classification efficiency and accuracy, expanding the number of assessment tool questions,
and enhancing model accuracy.
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