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Abstract: In this paper, we introduce a Meshfree Variational-Physics-Informed Neural Network.
It is a Variational-Physics-Informed Neural Network that does not require the generation of the
triangulation of the entire domain and that can be trained with an adaptive set of test functions. In
order to generate the test space, we exploit an a posteriori error indicator and add test functions only
where the error is higher. Four training strategies are proposed and compared. Numerical results
show that the accuracy is higher than the one of a Variational-Physics-Informed Neural Network
trained with the same number of test functions but defined on a quasi-uniform mesh.
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1. Introduction

Physics-Informed Neural Networks (PINNs) are a rapidly emerging numerical tech-
nique used to solve partial Differential equations (PDEs) by means of a deep neural
network. The first idea can be traced back to the works of Lagaris et al. [1–3], but,
thanks to the hardware advancements and the existence of deep learning packages like
Tensorflow [4], Pytorch [5] and JAX [6], they have recently became popular since the works
of Raissi et al. [7,8], published in [9]. In its original formulation, the approximate solution
is computed as the output of a neural network trained to minimize the PDE residual on a
set of collocation points inside the domain and on its boundary.

The growing interest in PINNs is strictly related to their flexibility. In fact, with minor
changes to the implementation, it is possible to solve a huge variety of problems. For
example, exploiting the nonlinear nature of the involved neural network, nonlinear [10,11]
and high-dimensional PDEs [12] can be solved without the need for globalization methods
or additional nonlinear solvers. Moreover, by changing the neural network’s input dimen-
sions or suitably adapting the loss function, it is possible to solve parametric [13,14] or
inverse [15,16] problems. When external data are available, they can also be used to guide
the optimization phase and improve the PINN accuracy [17].

In order to improve the original PINN proposed in [9] and to adapt it to solve specific
problems, several generalizations have been proposed. For example, the deep Ritz method
(DRM) [18–20] looks for a minimizer of the PDE energy functional and, in the deep Galerkin
method (DGM) [21–23], an approximation of the L2 norm of the PDE residual is minimized.
It is also possible to exploit domain decomposition strategies [24,25] as in the conservative
PINN (CPINN) [26], in the parallel PINN [27], in the extended PINN (XPINN) [28], or in
the Finite Basis PINN (FBPINN) [29]. Moreover, it is even possible to change the neural
network architecture or the training strategy as in [14,30–35]; between the methods based on
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different architectures, we highlight some works based on the novel Kolmogorov–Arnold
Network (KAN) [36] architecture [37,38] and on a Large Language Model (LLM) [39]. More
extensive overviews of the existing approaches can be found in [40–43]. In the context
of the current work, an important extension is the Variational-Physics-Informed Neural
Network (VPINN) [44,45], where the weak formulation of the problem is used to construct
the loss function.

In this work, we focus on VPINNs. As discussed in [44–47], in order to train a VPINN,
one needs to choose a suitable space of test functions, compute the variational residuals
against all the test functions on the basis of such a space, and minimize a linear combination
of these residuals. Since a spatial mesh is required to define the test functions, the VPINN
cannot be considered a meshfree method, even though it is an extension of the PINN, which
is meshfree. In this work, we present an adaptive Meshfree VPINN (MF-VPINN) that does
not require a global triangulation of the domain but is trained with the same loss function
and neural network architecture of a standard VPINN. Note that the MF-VPINN and
the original VPINN can solve the same differential problems because the neural network
is trained with the same loss functions. We also highlight that they can solve problems
where the solution has low regularity that cannot be solved with standard PINNs, for
example, in the presence of singular forcing terms, thanks to the weak formulation of the
PDE without introducing further approximations or regularizations. However, one of the
VPINN’s limitations is that a triangulation of the entire domain is required to define the
test functions. Generating it may be very expensive or even impractical for very complex
geometries (like, for example, the ones in [48]) and in moderate- or high-dimensional
problems, for which automatic mesh-generation algorithms do not exist. For such domains,
it is therefore highly advisable or computationally necessary to use a meshfree method
such as the original PINN or the proposed MF-VPINN. Moreover, when dealing with
complex geometries for which a mesh can be hardly generated, the refinement of the mesh
for adaptive methods can be very difficult. In this paper, we describe an algorithm that
solves the problem and provides a reliable solution.

The paper is organized as follows. In Section 2, we introduce the problem we are
interested in. In particular, we focus on the problem discretization in Section 2.1 and on the
MF-VPINN loss function in Section 2.2. Then, an a posteriori error estimator is presented
in Section 2.3 and used in Section 2.4 to iteratively generate the required test functions.
Numerical results are presented in Section 3. In Section 3.1, we describe the model imple-
mentation and some strategies to improve the model efficiency, in Section 3.2 we compare
different approaches to generate the test functions and compare their performance and, in
Section 3.3, we analyze the role of the error estimator introduced in Section 2.3. Similar
tests are performed on a different problem in Section 3.4 to describe possible extensions
on more complex domains. Finally, we conclude the paper in Section 4 and discuss future
perspectives and ideas.

2. Problem Formulation

Let us consider the following second-order elliptic problem, defined on a polygonal or
polyhedral domain Ω ⊂ Rn with a Lipshitz boundary Γ = ∂Ω:{

Lu := −∇ · (µ∇u) + β · ∇u + σu = f in Ω ,
u = g on Γ ,

(1)

where µ, σ ∈ L∞(Ω), β ∈ (W1,∞(Ω))n satisfy µ ≥ µ0, σ − 1
2∇ · β ≥ 0 in Ω for some

constant µ0 > 0, whereas f ∈ L2(Ω) and g = ū|Γ for some ū ∈ H1(Ω).
In order to derive the corresponding variational formulation, we define the bilinear

form a and the linear form F as

a : V ×V → R , a(w, v) =
∫

Ω
µ∇w · ∇v + β · ∇w v + σw v , (2)
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F : V → R , F(v) =
∫

Ω
f v ; (3)

where V is the function space V = H1
0(Ω). We denote by α ≥ µ0 the coercivity constant of

a and by ∥a∥ and ∥F∥ the continuity constants of a and F. Then, the variational formulation
of Problem (1) reads as follows: Find u ∈ ū + V such that

a(u, v) = F(v) ∀v ∈ V . (4)

2.1. Problem Discretization

In order to numerically solve Problem (4), one needs to choose suitable finite-dimensional
approximations of the trial space ū + V and of the test space V. A Galerkin formulation is
considered when we consider a finite-dimensional space Vtrial

h for the trial space ū + Vtrial
h

and a finite-dimensional test space Vtest
h , with Vtrial

h = Vtest
h ; whereas a Petrov–Galerkin

formulation is considered otherwise. In this work, we consider a Petrov–Galerkin for-
mulation in which the trial space is approximated by a set of functions VNN of the form
VNN = ū + Vtrial

h , with Vtrial
h represented by a neural network suitably modified to en-

force the Dirichlet boundary conditions, and the test space is a space Vh of piecewise
linear functions.

The neural network considered in the following is a standard fully connected feed-
forward neural network. Given the number L of layers and a set of matrices Aℓ ∈ RNℓ×Nℓ−1

and vectors bℓ ∈ RNℓ , ℓ = 1, . . . , L containing the neural network’s trainable weights, the
function w : Rn → R associated with the considered neural network architecture is:

x0 = x,

xℓ = ρ(Aℓxℓ−1 + bℓ), ℓ = 1, . . . , L− 1,

w(x) = ALxL−1 + bL.

(5)

where ρ : R→ R is a nonlinear function applied element-wise to the vector Aℓxℓ−1 + bℓ.
In this section, we use ρ(x) = tanh(x); other common choices include, but are not lim-
ited to, ρ(x) = ReLU(x) = max{0, x}, ρ(x) = RePU(x) = max{0, xp} for 1 < p ∈ N,
ρ(x) = 1/(1 + e−x) and ρ(x) = log(1 + ex). Note that, in order to represent a function
w : Rn → R, the layer widths Nℓ of the first and last layers are chosen as N0 = n and
NL = 1. We denote by WNN the set of functions that can be represented as in (5) for
any combination of the neural network weights and by wNN the vector containing all the
trainable weights of the neural network.

The function w defined in (5) is independent of the differential problem that has to be
solved and is, in most papers on PINNs or related models, trained to minimize both the
residual of the equation and a term penalizing the discrepancy between w|Γ and g. Instead,
we add a non-trainable layer B to the neural network architecture in order to automatically
enforce the required boundary conditions without the need to learn them during the
training. As described in [49], the operator B acts on the neural network output as

Bw = ϕw + ḡ, (6)

where ϕ : Ω→ R is a function vanishing on Γ and strictly positive inside Ω, and ḡ : Ω→ R
is a suitable extension of g : Γ→ R. The advantages of such an approach are also described
in [50]. Then, the discrete trial space approximating ū + V can be defined as

VNN = {vNN ∈ ū + V : vNN = Bw for some w ∈WNN} .

On the other hand, the discrete test space Vh is not associated with the neural network
and only contains known test functions. In standard VPINNs, one generates a triangula-
tion T of the domain Ω and then defines Vh as the space of functions that coincide with
a polynomial of order p ∈ N inside each element of T . Instead, we want to construct
a discrete space Vh of functions independent from a global triangulation T . Moreover,
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since in [47] it has been proven that the VPINN convergence rate with respect to mesh
refinement decreases when the order of the test functions is increased, we are interested
in a space Vh that only contains piecewise linear functions. For the sake of simplicity, we
only consider the case where n = 2; the discussion can be directly generalized to the more
general case n ∈ N.

Let P̂ ⊂ Rn be a reference patch. In the following discussion, P̂ can be any arbitrary
star-shaped polygon with NP̂ vertices and the dimension of its kernel strictly greater than
zero. Nevertheless, in the numerical experiments, we only consider the reference patch
P̂ = [0, 1]2 to avoid any unnecessary computational overhead. LetM = {Mi}

npatches
i=1 be a

set of affine mappings such that Mi : P̂→ Pi ⊂ Ω, where we denote as Pi the patch obtained
transforming the reference patch P̂ through the map Mi. We assume that P = {Pi}

npatches
i=1 is

a cover of Ω, i.e., ∪npatches
i=1 Pi = Ω, and we admit overlapping patches.

Let us consider the triangulation T̂ = {T̂j : 1 ≤ j ≤ NP̂} of P̂ obtained by connecting
each vertex with a single point cP̂ in its kernel. It is then possible to define a piecewise linear
function φ̂ vanishing on the border of P̂ such that φ̂(cP̂) = 1 and φ̂|T̂j

∈ P1(T̂j), for any

j = 1, . . . , NP̂. Then, we define the discrete test space Vh as Vh = span{φi : i = 1, . . . , npatches},
where φi ∈ V is the piecewise linear function:

φi(x) =

{
φ̂(M−1

i (x)), x ∈ Pi,
0, x /∈ Pi.

(7)

We remark that the only required triangulation is T̂ , which contains only NP̂ triangles
(in the numerical tests in this paper, NP̂ = 4). Instead, there exists no mesh on Ω and
the test functions φi and their supports Pi are all independent. Therefore, the proposed
method is said to be meshfree. A simple example of a set of patches P with npatches = 7 on
the domain Ω = [0, 1]2 is shown in Figure 1. For the sake of simplicity, in this work, we
consider a squared reference patch P̂ with cP̂ coinciding with its center, and we let each
mapping Mi represent a combination of scalings and translations.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Figure 1. Graphical representation of a set {Pi}
npatches

i=1 obtained from a squared reference patch P̂ with
cP̂ in its center covering the domain Ω = (0, 1)2.

Using the introduced finite-dimensional set of functions VNN and Vh, it is possible to
discretize Problem (4) as follows: Find uNN ∈ VNN such that

a(uNN, v) = F(v) ∀v ∈ Vh . (8)
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2.2. Loss Function

In this section, we derive the loss function used to train the neural network. It has to
be computable, and its minimizer has to be an approximate solution of Problem (1). We
highlight that, when a standard PINN is used, the loss function can be seen as a discrete cost
penalizing the residual of (1) directly. In this context, instead, the loss function penalizes
the variational residuals of (4) as in standard VPINNs. This is the key difference that
differentiates the VPINNs (and its extension proposed in this manuscript) from the other
generalizations of the original PINN introduced in Section 1.

Let us consider a quadrature rule of order q ≥ 2 on each triangle Tj ∈ T̂ , j = 1, . . . , NP̂,

uniquely identified by a set of nodes and weights {(ξ̃ j
ℓ, ω̃

j
ℓ) : ℓ ∈ ITj}. The nodes and

weights of a composite quadrature formula of order q on P̂ can be obtained as

{(ξ̂ℓ, ω̂ℓ) : ℓ ∈ I P̂} =
NP̂⋃
j=1

{(ξ̃ j
ℓ, ω̃

j
ℓ) : ℓ ∈ ITj}.

Then, the corresponding quadrature rule of order q of an arbitrary patch Pi is defined as{
(ξi

ℓ, ωi
ℓ) : ℓ ∈ I P̂|ξi

ℓ = Mi(ξ̂ℓ), ωi
ℓ = ω̂ℓ

area(Pi)

area(P̂)

}
. (9)

Using the quadrature rule in (9), it is possible to define an approximate restriction on
each patch of the forms a and F as follows:

ai
h(w, v) = ∑

ℓ∈I P̂

[µ∇w · ∇v + β · ∇w v + σwv](ξi
ℓ)ωi

ℓ ≈ aPi (w, v) , (10)

Fi
h(v) = ∑

ℓ∈I P̂

[ f v](ξi
ℓ)ωi

ℓ ≈ FPi (v) , (11)

where aPi (w, v) and FPi (v) are defined as in (2) and (3) but restricting the supports of the
integrals to Pi. We remark that, since it is not possible to compute integrals involving a
neural network exactly, we can only use the forms ai

h and Fi
h in the loss function. Exploiting

the linearity of a(w, v) and F(v) with respect to v to consider only the basis {φi}
npatches
i=1 of Vh

as set of test functions, we approximate Problem (8) as follows: Find uNN ∈ VNN such that

ai
h(u
NN, φi) = Fi

h(φi) ∀i = 1, . . . , npatches . (12)

Then, in order to cast Problem (12) into an optimization problem, we define the residuals

rh,i(w) = Fi
h(φi)− ai

h(w, φi) , i = 1, . . . , npatches (13)

and the loss function

R2
h(w;P) = 1

npatches

npatches

∑
i=1

γir2
h,i(w) , (14)

where γi are suitable positive scaling coefficients. In this work, we use γi = area(Pi)
−1

to give the same importance to each patch. Note that this is equivalent to normalizing
the quadrature rules involved in (10) and (11); this way, each residual rh,i can be regarded
as a linear combination of the MF-VPINN value and derivatives independent of the size
of the support of the patch Pi. We also highlight that the loss function depends on the
choice ofM since all the used test functions are generated starting from the corresponding
mappings Mi ∈ M. We are now interested in a practical procedure to obtain a set P̃ such
that the approximate solution computed minimizing R2

h(·; P̃) is as accurate as possible
with P̃ being as small as possible.
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2.3. The a Posteriori Error Estimator

The goal of this section is to derive an error estimator associated with an arbitrary
patch Pi, with i ∈ {1, . . . , npatches}. To do so, we rely on the a posteriori error estimator
proposed in [46]. It has been proven to be efficient and reliable; therefore, such an estimator
allows us to know where the error is larger without knowing the exact solution of the PDE.
Let us consider the patch Pi, formed by the triangles Ti,1, . . . , Ti,NP̂

and a triangulation Ti
of Ω such that Ti,j ∈ Ti, for every j = 1, . . . , NP̂. We remark that the triangulation Ti does
not have to be explicitly generated; it is only used to properly define all the quantities
introduced in [46] required to derive the proposed error estimator.

Let Vi
h = span{ψi

j : 1 ≤ j ≤ dim
(
Vi

h
)
} be the space of piecewise linear functions

defined on Ti. Where {ψi
j : 1 ≤ j ≤ dim

(
Vi

h
)
} is a Lagrange basis of Vi

h. It is then possible

to define two constants ci
h and Ci

h, with 0 < ci
h < Ci

h, such that

ci
h|v|1,Ω ≤ ∥v∥2 ≤ Ci

h|v|1,Ω ∀v ∈ Vi
h , (15)

where v = ∑
dim(Vi

h)
j=1 vjψ

i
j is an arbitrary element of Vi

h associated with the expansion

coefficients v =
{

v1, . . . , vdim(Vi
h)

}
and ∥v∥2 =

(
∑

dim(Vi
h)

j=1 v2
i

)1/2
.

Then, given an integer k ≥ 0, for any element E ∈ Ti, we define the projection operator
ΠE,k : L2(E)→ Pk(E) such that∫

E
ΠE,kϕ =

∫
E

ϕ ∀ϕ ∈ L2(E) . (16)

We also denote by {(ξE
ℓ , ωE

ℓ ) : ℓ ∈ IE} a quadrature formula of order q on E and define
the quadrature-based discrete seminorm:

∥v∥0,E,ω =

(
∑
ℓ∈IE

v2(ξE
ℓ )ωE

ℓ

)1/2

. (17)

We require the weights and nodes of this quadrature rule to coincide with the ones
introduced in (9) when E is a triangle included in Pi (i.e., when E ∈ {Ti,1, . . . , Ti,NP̂

}). We
can now introduce all the terms involved in the a posteriori error estimator.

Let ηrhs,1(E) and ηrhs,2(E) be the quantities:

ηrhs,1(E) = hE∥ f −ΠE,q−1 f ∥0,E ,

ηrhs,2(E) = hE∥ f −ΠE,q−1 f ∥0,E,ω + ∥ f −ΠE,q f ∥0,E,ω .
(18)

They measure the oscillations of the forcing term with respect to its polynomial
projections in various norms. Similar oscillations are also measured for the diffusion,
convection and reaction terms by the terms ηcoef,i(E) for i = 1, . . . , 6:

ηcoef,1(E) = ∥µ∇uNN−ΠE,q(µ∇uNN)∥0,E ,

ηcoef,2(E) = hE∥β · ∇uNN−ΠE,q−1(β · ∇uNN)∥0,E ,

ηcoef,3(E) = hE∥σuNN−ΠE,q−1(σuNN)∥0,E ,

ηcoef,4(E) = ∥µ∇uNN−ΠE,q(µ∇uNN)∥0,E,ω ,

ηcoef,5(E) = hE∥β · ∇uNN−ΠE,q−1(β · ∇uNN)∥0,E,ω ,

+ ∥β · ∇uNN−ΠE,q(β · ∇uNN)∥0,E,ω

ηcoef,6(E) = hE∥σuNN−ΠE,q−1(σuNN)∥0,E,ω

+ ∥σuNN−ΠE,q(σuNN)∥0,E,ω ,

(19)
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where uNN is the output of the neural network after the enforcement of the Dirichlet
boundary conditions through the operator B and hE is the diameter of E. Then, let us define
the term ηres(E), which measures how well the equation is satisfied, as

ηres(E) = hE∥ bulkE(uNN) ∥0,E + h1/2
E ∑

e⊂∂E
∥ jumpe(u

NN) ∥0,e , (20)

where

bulkE(uNN) = ΠE,q−1 f +∇ ·ΠE,q(µ∇uNN)−ΠE,q−1(β · ∇uNN+ σuNN)

jumpe(u
NN) = ΠE1,q(µ∇uNN) · n−ΠE2,q(µ∇uNN) · n .

Note that jumpe(u
NN) measures the interelemental jumps of ΠE,q(µ∇uNN) across the

edge e with normal unit vector n shared by the elements E1 and E2.
Finally, we introduce the approximate elemental forms:

ai,E
h (w, v) = ∑

ℓ∈IE

[µ∇w · ∇v + β · ∇w v + σwv](ξE
ℓ )ωE

ℓ , (21)

Fi,E
h (v) = ∑

ℓ∈IE

[ f v](ξE
ℓ )ωE

ℓ , (22)

where ξE
ℓ and ωE

ℓ , ℓ ∈ IE, are the nodes and weights used in Equation (17). With such
forms, it is possible to define the residuals

rh,i,j(w) = ∑
E∈Ti

Fi,E
h (ψi

j)− ai,E
h (w, ψi

j) , j = 1, . . . , dim
(

Vi
h

)
and the quantity ηloss(E) as

ηloss(E) = Ch

√
∑

j∈IE
h

r2
h,i,j(u

NN) . (23)

Here, denoting the support of the function ψi
j ∈ Vi

h by supp ψi
j, the elemental index set

IE
h = {j ∈ Ih : E ⊂ supp ψi

j}

is the set containing the indices of the functions whose support contains E. It is then
possible to estimate the error between the unknown exact solution u and its MF-VPINN ap-
proximation uNN by means of the computable quantities in Equations (18)–(20) and (23) as

|u− uNN|1,E ≲

(
η2

res(E) + η2
loss(E) +

6

∑
i=1

η2
coef,i(E) +

2

∑
i=1

η2
rhs,i(E)

)1/2

. (24)

Once more, we refer to [46] for the proof of such a statement.
We recall that our goal is to obtain a computable error estimator associated with a

single patch Pi. When evaluated on an element E ∈ Pi, the quantity on the right-hand side of
Equation (24) implicitly depends on several elements in Vi

h that do not belong to Pi because
of the presence of η2

res(E) and η2
loss(E). Therefore, such an estimator is not computable

without generating the triangulation Ti and the corresponding space Vi
h. Instead, we look

for an error estimator that does not control the error on the entire patch but only in a
neighborhood Ni of its center cPi = Mi

(
cP̂
)
. This can be carried out by considering only

the terms whose computation involves geometric elements containing cPi and the only
function ψi

j that does not vanish on cPi . Note that such a function is the function φi defined
in (7). Therefore, the error estimator ηi that controls the error in Ni can be computed as
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ηi =

[
η2

res,i + C2
hr2

h,i(u
NN) +

NP̂

∑
j=1

(
6

∑
k=1

η2
coef,k(Ti,j) +

2

∑
k=1

η2
rhs,k(Ti,j)

)]1/2

, (25)

where ηres,i is defined as

ηres,i =
NP̂

∑
j=1

(
hTi,j∥ bulkTi,j(u

NN) ∥0,Ti,j + h1/2
Pi
∥ jumpei,j

(uNN) ∥0,ei,j

)
. (26)

In (26), we denote by hPi the diameter of the patch Pi and by ei,j, j = 1, . . . , NP̂ the
edges connecting its vertices with cPi .

Since ηi can be seen as an approximation of the right-hand side of (24), we use it as
an indicator of the error |u− uNN|1,Ni . It is important to remark that ηi can be computed
without generating Ti and Vi

h. In fact, its computation involves only the function φi, the
triangles partitioning Pi and the edges connecting its vertices with its center.

2.4. The Choice ofM and P
In this section, the procedure adopted to generate the set of test functions used to train

the MF-VPINN is described. We propose an iterative approach, in which the MF-VPINN is
initially trained with very few test functions, and then other test functions are added in the
regions of the domain in which the H1 norm of the error is larger. We anticipate that, as
shown in Section 3.3, generating test functions in regions where r2

h,i is large may not lead to
accurate solutions because r2

h,i is not proportional to the H1 error. Therefore, such a choice
may increase the density of test functions where they are not required while maintaining
only a few test functions in regions in which the error is large. Instead, we use the error
indicator ηi defined in (25).

Let us initially consider a cover P0 = {Pi}
npatches
i=1 of Ω comprising a few patches

(i.e., npatches is a small integer) and the corresponding set of mappingsM0 = {Mi}
npatches
i=1

and test functions {φi}
npatches
i=1 . These sets induce a loss function R2

h(w;P0) as defined in (14),
which is used to train an MF-VPINN. After this initial training, one computes η

γ
i = γiηi

for each patch Pi ∈ P0 and stores the result in the array η =
[
η

γ
1 , . . . , η

γ
npatches

]
. Note that

η
γ
i is a suitable rescaling of ηi to get rid of dependence from the size of Pi. Let us choose a

threshold 1 ≤ τ0 ≤ npatches, sort η in descending order obtaining ηsort =
[
η

γ
s1 , . . . , η

γ
snpatches

]
(where we denote by [s1, . . . , snpatches ] the index set corresponding to a suitable permutation

of [1, . . . , npatches]) and consider the vector η0 =
[
η

γ
s1 , . . . , η

γ
sτ0

]
. It is possible to note that

η0 contains only the τ0 worst values of the indicator; it thus allows us to understand
where the error is higher and where additional test functions are required to increase the
model accuracy.

It is then possible to move forward with the second iteration of the iterative training.
For each patch Pi such that η

γ
i ∈ η0, we generate knew new patches Pk

i , k = 1, . . . , knew with
centers inside Pi and areas such that area(Pi) < ∪knew

k=1 area(Pk
i ) < c · area(Pi), where c > 1

is a tunable parameter. In the numerical experiments, we use c = 1.25. There exist different
strategies to choose the number, the dimension, and the position of the centers of the new
patches. Such strategies are described in Section 3 with particular attention to the effects of
these choices on the MF-VPINN accuracy.

Let us denote by P1 the set P1 = P0 ∪ {Pk
s1
}knew

k=1 ∪ · · · ∪ {P
k
sτ0
}knew

k=1 and by M1 the

corresponding set of mappings. Then, it is possible to define the loss function R2
h(w;P1),

continue the training of the previously trained MF-VPINN, compute the error indicator
η

γ
i for each patch Pi ∈ P1, and obtain the vector η1 used to decide where to insert the new

patches to generate P2. In general, iterating this procedure, it is possible to compute a set
of patches Pm and of mappingsMm from the previously obtained sets Pm−1 andMm−1.
Technical optimization details are discussed in Section 3.1.
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3. Numerical Results

In this section, we provide several numerical results to show the performance of the
training strategy described in Section 2.4. In Section 3.1, we describe the structure of the
MF-VPINN implementation and highlight some details that have to be taken into account
in order to increase the efficiency of the training phase. Different strategies to choose the
position of the new patches are discussed in Section 3.2. The importance of the use of the
error indicator is remarked in Section 3.3 with additional numerical examples. An example
on a more complex domain is shown in Section 3.4 to discuss some ideas to adapt the
proposed strategies in more complex domains.

3.1. Implementation Details

The computer code used to perform the experiment is implemented in Python using
the Python package Tensorflow [4] to generate the neural network architecture and train the
MF-VPINN. Using the notation introduced in Section 2.1, the used neural network consists
of L = 5 layers with Nℓ = 50 neurons in each hidden layer (i.e., for ℓ = 1, . . . , L− 1); the
activation function is the hyperbolic tangent in each hidden layer. For the first iteration
of the iterative training, the neural network weights in the ℓ-th layer are initialized with
a glorot normal distribution, i.e., a truncated normal distribution with mean 0 and stan-
dard deviation equal to

√
2/(Nℓ−1 + Nℓ). Then, for the subsequent iterations, their are

initialized with the weights obtained at the end of the previous one.
During the first iteration of the training (during the minimization of R2

h(·;P0)), the
optimization is carried out by exploiting the ADAM optimizer [51] with an exponentially
decaying learning rate from 10−2 to 10−4 and with the second-order L-BFGS optimizer [52].
Then, from the second training iteration, we only use the L-BFGS optimizer. We remark
that L-BFGS allows a very fast convergence but only if the initial starting point is close
enough to the problem’s solution. Therefore, in the first training iteration, we use ADAM to
obtain a first approximation of the solution that is then improved via L-BFGS. Then, since
the m-th training iteration starts from the solution computed during the (m− 1)-th one,
we assume that the starting point is close enough to the solution of the new optimization
problem (associated with a difference loss function with more patches) and we only use
L-BFGS to increase the training efficiency.

During the m-th iteration of the training, the training set consists of all the quadrature
nodes ξi

ℓ, for any ℓ ∈ I P̂ and for any patch Pi ∈ Pm as defined in (9). The order of the
chosen quadrature rule is q = 3 inside each triangle. The Dirichlet boundary conditions are
imposed by means of the operator B defined in (6). In this operator, for our first numerical
test, the function ϕ is a polynomial bubble vanishing on Γ and g is the output of a neural
network trained to interpolate the boundary data. For the numerical test in Section 3.4,
instead, ϕ is computed as in [50] and g = 0. To decrease the training time, the functions ϕ,
∇ϕ, g and ∇g are evaluated only once at the beginning of the m-th training iteration and
they are then combined to evaluate BuNN and its gradient (where uNN is the output of the
last layer of the neural network). The derivatives of uNN and g are computed via automatic
differentiation [53] due to the complexity of their analytical expressions.

The output of the model is the value of the function BuNN and its gradient evaluated
at the input points. Such values are then suitably combined using sparse and dense tensors
to compute the quantity R2

h(BuNN;Pm). The sparse tensors contain the evaluation of φi and
∇φi at each input point, whereas the dense ones store the quadrature weights, the vector
γ = {γi}

npatches
i=1 and the evaluation of µ, β, σ and f at the input points. We highlight

that all these tensors have to be computed once at the beginning of the m-th training it-
eration (updating the ones of the (m− 1)-th iteration) to significantly decrease the training
computational cost.

As discussed in Section 2.1, we assume that all the patches and test functions can be
generated from a reference patch P̂. For each patch Pi ∈ Pm, one has to generate all the
data structures required to assemble the loss function and the error indicator ηi. To do so, it
is possible to explicitly construct all the tensors required to assemble the term âh(w, φ̂) and
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all the terms involved in the computation of the reference error indicator η̂ only once, at
the beginning of the first iteration of the training. Then, all these tensors can be suitably
rescaled to obtain the ones corresponding to the patches and test functions involved in the
loss function and error indicators computations.

To stabilize the MF-VPINN, we introduce the L2 regularization term

Lreg(uNN ) = λreg∥uNN ∥2
2,

where uNN is the set of weights of the neural network introduced in Section 2.1. In our
numerical experiments, we use λreg = 10−5. During the m-th iteration of the training, such
a quantity is added to R2

h(BuNN ;Pm) to obtain the training loss function

Lm(uNN ) = R2
h(BuNN ;Pm) + Lreg(wNN ), (27)

which has to be minimized accurately enough. Indeed, if Lm is minimized poorly, the
new patches Pm+1\Pm may be added in regions where they are not necessary because
the accuracy of BuNN may still improve during the training and may not be inserted in
areas where they are required. Note that, in order to compute the numerical solution, the
MF-VPINN has to be trained multiple times with a different set of patches Pm to minimize
the losses {Lm}. Since such an iterative training may be expensive, we propose an early
stopping strategy [54] based on the discussed error indicator to reduce its computational
cost. In its basic version, early stopping consists of evaluating a chosen metric on a valida-
tion set in order to know when the neural network accuracy on data that are not present in
the training set start worsening. Interrupting the training there prevents overfitting and
improves generalization. In our context, instead, we can directly track the behavior of the
MF-VPINN H1 error on each patch through the corresponding error indicator to under-
stand when it stops decreasing. Therefore, given the set of patches Pm, the chosen metric is
the linear combination ESm = ∑

dim(Pm)
i=1 η

γ
i . Numerical results showing the performance of

this strategy are presented in Sections 3.2 and 3.4.

3.2. Adaptive Training Strategies

Let us consider the Poisson problem:{
−∆u = f in Ω ,

u = g on Γ ,
(28)

defined on the unit square Ω = (0, 1)2. The forcing term f and the boundary condition g
are chosen such that the exact solution is, in polar coordinates,

u(r, θ) = r
2
3 sin

(
2
3

(
θ +

π

2

))
. (29)

We use this function, represented in Figure 2, because the solution u is such that
u ∈ H5/3−ε(Ω) but u ∈ C∞(Ω\N0), where we denote by N0 a neighborhood of the origin.
Therefore, we know that an efficient distribution of patches has to be characterized by a
high density only near the origin.

Below, we propose, in order of complexity, three alternatives to construct the new
patches after having marked the ones with the higher error indicator. The first strategy is
the most simple and intuitive, and the new patches are randomly generated with centers
inside the marked patches, whereas the second strategy and third one place the new centers
on a small local cartesian grid to ensure a more regular distribution. The difference between
the second and the third strategies is that the marked patches are removed to increase
the efficiency and we add a constraint to the marking procedure to ensure more regular
distributions of the new patches.
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Figure 2. Graphical representation of the solution u in (29).

Strategy #1: Random patch centers with uniform distribution

To solve Problem (28), as a first strategy, we consider the reference patch P̂ = (0, 1)2

and generate a sequence of sets of patches. During the first training iteration, we use
P0 = {P̂} since this is already a cover of Ω. During the second iteration, we enrich the set
of patches as P1 = P0 ∪ {P1, P2, P3, P4} where P1, P2, P3 and P4 are squared patches with
edge hi = 0.6, i = 1, . . . , 4 and centers

cP1 = (0.3, 0.3), cP2 = (0.7, 0.3),

cP3 = (0.3, 0.7), cP4 = (0.7, 0.7).

This allows us to start from a homogeneous distribution of patches before utilizing
the error indicator to choose the location of the new patches. Then, to decide how many
patches have to be added to Pm−1 to generate Pm, we choose τ̃m such that

τ̃m = dim

({
τ̃ ∈ {1, . . . , dim(Pm−1} :

∑τ̃
i=1 η

γ
si

∑
dim(Pm−1)
i=1 η

γ
i

< 0.75

})
+ 1 (30)

and fix
τm = min(⌈0.3 · dim(Pm−1)⌉, τ̃m). (31)

Note that (30) allows us to consider the smallest set of patches such that the cor-
responding error indicators contribute at least 75% of the global error indicator ESm−1,
whereas (31) is considered to limit the maximum number of patches that can be added for
efficiency reasons.

Then, to generate the generic set of patches Pm, we fix a multiplication factor CM to
decide how many new patches have to be inserted inside each patch Pi such that η

γ
i ∈ ηm−1.

Inside each chosen patch Pi, CM centers c̃Pk
i

= (x̃k
i , ỹk

i ), k = 1, . . . , CM, are randomly
generated with a uniform distribution and the new patches’ edges’ lengths are chosen as
hk

i = λ Aratio√
CM

hi. Here, λ is a random real value from the uniform distribution U
([

9
10 , 10

9

])
,

and the scaling coefficient Aratio√
CM

is chosen such that the sum of the areas of the new patches
is Aratio times the area of the original patch Pi. In the numerical experiments, we use
Aratio = 1.25. This way, it is possible to allow the new patches to overlap and keep the area
of the region Pi\

(
∪CM

k=1Pk
i

)
reasonably small.
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We remark that, with this strategy, it may happen that some patches are outside Ω. In
order to avoid this risk, we move the centers c̃Pk

i
to obtain the actual patches centers cPk

i
as follows:

cPk
i
= (xk

i , yk
i )←

(
max

{
min

{
x̃k

i , 1−
hk

i
2

}
,

hk
i

2

}
, max

{
min

{
ỹk

i , 1−
hk

i
2

}
,

hk
i

2

})
. (32)

We remark that, when the patch Pi is very close to a vertex of the domain, it is possible
that multiple original centers c̃Pk

i
are such that the distance of both x̃k

i and ỹk
i from the x

and y coordinates of the domain vertex is smaller than hk
i /2. In this case, it is important to

consider the random coefficient λ in the definition of hk
i to avoid updating all these centers

with the same point; otherwise, multiple new patches would coincide (because they would
share the same center and size).

For the numerical test, we consider CM = 4 and CM = 9. Using significantly more
accurate quadrature rules, we compare the approximate solution with the exact one defined
in (29) and compute the relative H1 error ∥u− uNN∥1/∥u∥1 at the end of each training
iteration. The obtained errors are shown as blue circles (CM = 4) and red triangles (CM = 9)
in Figure 3. It can be noted that, with both values of CM, when more patches are used,
the error is smaller, even though the convergence rate is limited by the low regularity of
the solution. It is also interesting to observe the positions and sizes of the used patches;
such information is summarized in Figures 4 and 5. In such figures, each dot is in the
center of a patch Pi, and its size and color represent the size h2

i and the scaled indicator η
γ
i

associated with Pi. It can be noted that, even if the new centers are chosen randomly in the
few selected patches, the final distribution is the expected one. In fact, most of the patches
cluster around the origin, whereas the rest of the domain is covered by fewer patches.
Nevertheless, we highlight that, when CM = 9, there are more small and medium patches
far from the origin, yielding a more uniform covering of the areas far from the singular
point and a slightly better accuracy.

Strategy #2: Fixed patch centers

From the results discussed in Strategy #1, it can be observed that choosing the position
of the new centers randomly may lead to non-uniform patch distribution in regions far
from the singular point. In order to obtain better distributions, let us fix a priori the position
of the new centers. Let us consider the reference patch P̂ = (0, 1)2 and the points

ĉ1 = (0.25, 0.25), ĉ2 = (0.75, 0.25),

ĉ3 = (0.25, 0.75), ĉ4 = (0.75, 0.75),
(33)

when CM = 4 and

ĉ1 = (0.2, 0.2), ĉ2 = (0.2, 0.5), ĉ3 = (0.2, 0.8),

ĉ4 = (0.5, 0.2), ĉ5 = (0.5, 0.5), ĉ6 = (0.5, 0.8),

ĉ7 = (0.8, 0.2), ĉ8 = (0.8, 0.5), ĉ9 = (0.8, 0.8),

(34)

when CM = 9. At the end of the (m− 1)-th training iteration, if η
γ
i ∈ ηm−1, the CM centers

inside Pi are chosen as cPk
i

= Mi(ĉk), k = 1, . . . , CM. Once more, to avoid patches partially
outside Ω, we update such centers as in (32). We highlight that defining the new centers as
in (33) and in (34) and the length hk

i of the edges of the new patches as in Strategy #1, then
the new patches with centers inside Pi form a cover of Pi, i.e., Pi ⊊ ∪CM

k=1Pk
i . Such a property

does not hold if the new centers are randomly chosen.
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Figure 3. Strategy #1: Relative H1 errors obtained at the end of each training iteration for CM = 4
(blue circles) and CM = 9 (red triangles).
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Figure 4. Strategy #1: Patches used to train the MF-VPINN with CM = 4. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P2; (b) Representation of P3; (c) Representation

of P4; (d) Representation of P6; (e) Representation of P8; (f) Representation of P9.
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Figure 5. Cont.
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Figure 5. Strategy #1: Patches used to train the MF-VPINN with CM = 9. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P1; (b) Representation of P2; (c) Representation

of P3; (d) Representation of P4; (e) Representation of P5; (f) Representation of P6.

Training an MF-VPINN with such a strategy leads to more accurate results. The error
decays are shown in Figure 6, whereas a comparison with the previous one will be presented
in Section 3.3. The patch distributions, for CM = 4 and CM = 9, are shown in Figures 7 and 8,
respectively. Analyzing such distributions, it can be noted that the patches still accumulate
near the origin as expected. However, it is possible to observe that there are regions that are
only covered by the largest patches. This phenomenon is more evident when CM = 4. To
avoid such a phenomenon, we aim at inserting more patches far from the origin in order to
train the MF-VPINN in the entire domain with a more balanced set of patches.

Figure 6. Strategy #2: Relative H1 errors obtained at the end of each training iteration for CM = 4
(blue circles) and CM = 9 (red triangles).
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Figure 7. Strategy #2: Patches used to train the MF-VPINN with CM = 4. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P3; (b) Representation of P4; (c) Representation

of P5; (d) Representation of P6; (e) Representation of P7; (f) Representation of P8.
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Figure 8. Strategy #2: Patches used to train the MF-VPINN with CM = 9. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P2; (b) Representation of P3; (c) Representation

of P4; (d) Representation of P5; (e) Representation of P6; (f) Representation of P7.

Strategy #3: Fixed patch centers and small level gap strategy

In order to ensure better patch distributions, let us consider a new criterion to choose
the position and the size of the new patches. We name this strategy the small-level gap
strategy because it penalizes patch distributions with large differences between the levels of
the smallest patches and the ones of the largest patches.

We denote by k-th level patch any patch Pi such that Pi ∈ Pk and Pi /∈ Pk′ for any k′ < k.
With this notation, it is possible to group all the patches according to their level. To do so,
we denote by Lℓ the set of k-th level patches with k ≤ ℓ. Let us consider the m-th training
iteration. We define ηℓsort as the array containing the elements η

γ
i of ηsort (maintaining the

same ordering) such that Pi ∈ Lℓ. We also denote by ηm,ℓ the array containing the first
τℓ

m = min{τm, dim(Lℓ)} elements of ηℓsort. Note that ηm,ℓ is the equivalent of ηm for patches
in Lℓ.

In order to generate the new patches in Pm+1\Pm, let us add CM new patches in any
patch Pi such that η

γ
i ∈ ηm ∪ ηm,ℓ. The centers and sizes of the new patches are chosen as

in Strategy #2. This allows us to exploit the fact that Pi ⊊ ∪CM
k=1Pk

i to remove the patches Pi
such that η

γ
i ∈ ηm ∪ ηm,ℓ from the new set of patches Pm+1. We remark that such patches
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cannot be removed when the centers are randomly chosen as in Strategy #1 because, in that
case, Pm+1 would not be a cover of Ω anymore.

We also highlight that, removing the patches Pi such that η
γ
i ∈ ηm ∪ ηm,ℓ and choosing

Aratio = 1, it is possible to satisfy the inequality

∑
Pi∈Pm+1

|Pi| ≤ C|Ω|,

for any m ∈ N and with C > 0 independent of m. Such a bound on the sum of the area of
the patches is useful to ensure that there exists a number Npatch_per_point such that any point
inside Ω belongs to at most Npatch_per_point patches. This property is useful to derive global
error indicators. We choose to maintain Aratio = 1.25 to compare the numerical results with
the ones obtained using the previous strategies and to consider overlapping patches.

We train an MF-VPINN with CM = 4 and CM = 9 as in the previous tests. The
corresponding error decays are shown in Figure 9. It can be observed that the error
decreases in a smoother way and that, as in the previous tests, choosing CM = 4 or CM = 9
does not lead to significant differences in the error behavior. The patches used during the
training are represented in Figures 10 and 11. We highlight that, when compared with the
patch distributions in Strategy #2, there exist much more patches far from the origin, and,
most importantly, the closer the center of a patch to the origin, the smaller its size. Even
though the error decays with CM = 4 and CM = 9 are qualitatively similar, it should be
noted that the patch distribution with CM = 9 is more skewed. In fact. its patches can be
clustered into two subgroups: the first one containing larger patches and covering most of
the domain the second one containing only small patches with centers very close to the
origin. A similar distribution is obtained with CM = 4, even though it is characterized by a
smoother transition between large and small patches.

Figure 9. Strategy #3: Relative H1 errors obtained at the end of each training iteration for CM = 4
(blue circles) and CM = 9 (red triangles).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)
Figure 10. Cont.



Algorithms 2024, 17, 415 17 of 26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(e)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(f)

Figure 10. Strategy #3: Patches used to train the MF-VPINN with CM = 4. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P3; (b) Representation of P5; (c) Representation

of P6; (d) Representation of P7; (e) Representation of P8; (f) Representation of P9.
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Figure 11. Strategy #3: Patches used to train the MF-VPINN with CM = 9. Each dot represents a patch
Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its color is
associated with the quantity η

γ
i . (a) Representation of P2; (b) Representation of P3; (c) Representation

of P4; (d) Representation of P5; (e) Representation of P6; (f) Representation of P7.

In both cases, it can be observed that there are no large patches very close to small ones.
This is in contrast with the distributions obtained in Strategy #2 and leads to more stable
solvers. Indeed, even though the test functions are not related to a global triangulation on
the entire domain Ω, the current loss function is very similar to the one used in a standard
VPINN with a good-quality mesh, i.e., a mesh in which neighboring elements are similar in
size and shape. On the other hand, in Strategy #2, there exist large patches that are very
close to small ones; this is equivalent to training a VPINN on a very poor-quality mesh.
Such meshes, in the context of FEM, are strictly related to convergence and accuracy issues.

3.3. The Importance of the Error Indicator

As discussed in the previous sections, we use the error indicator described in Section 2.3
to interrupt the training and to decide where the new patches have to be inserted to maximize
the accuracy. In this section, the advantages of such a choice are described.

Since each set Pm is a cover of Ω, the quantity ESm = ∑
dim(Pm)
i=1 ηi is an indicator of the

global H1 error ∥u− uNN∥1 on the entire domain Ω. Therefore, tracking its behavior during
the training is equivalent to tracking that of the unknown H1 error. Such information
is used to implement an early stopping strategy to reduce the computational cost of the
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iterative training. At the beginning of the m-th training iteration, all the vectors and sparse
matrices required to compute ESm are computed in a preprocessing phase. When such
data structures are available, the error indicator can be assembled suitably combining basic
algebraic operations.

We assemble ESm every Ncheck epochs and store the best value obtained during the
training, together with the corresponding neural network trainable parameters. Then, if no
improvements are obtained in p · Ncheck epochs, the training is interrupted and the neural
network parameters associated with the best value of ESm are restored. Here, p is a tunable
parameter named patience. The first Nm

negl epochs are neglected because they are often
characterized by strong oscillations due to the optimizer initialization and the different loss
functions. In the numerical experiment, we use Ncheck = 10, p = 10, Nm

negl = 100(m + 1).
Two typical scenarios are shown in Figure 12. In the top row, the behaviors of ESm and

of c∥u− uNN∥1 are shown. Here, c is a scaling parameter used for visualization purposes,
chosen such that ESm and c∥u− uNN∥1 coincide at the beginning of the training. Indeed,
∥u− uNN∥1 is about two orders of magnitude smaller than ESm. Nevertheless, it can be
noted that these two quantities display very similar behaviors during the training. In the
bottom row, instead, we represent the corresponding loss function decay. The left column
is associated with the training performed using the patches in P6 shown in Figure 5f and
the right column with the one performed using the patches in P2 in Figure 11a. We remark
that the loss function, ESm and c∥u− uNN∥ are evaluated in the same epochs and that, in
real applications, it is not possible to explicitly compute c∥u− uNN∥ since u is not known.
Moreover, since we use the L-BFGS optimizer, the neural network is evaluated multiple
times on the entire training set in each epoch. Therefore, on the x-axis of Figure 12 we show
the number of neural network evaluations instead of the number of epochs.

It can be noted that the behavior of the quantities shown in the left column is qualita-
tively different from the ones in the right column. In fact, when the MF-VPINN is trained
with P6 of Figure 5f, the error, the error indicator, and the loss function decrease in similar
ways. Therefore, there is no need to interrupt the training early since the accuracy is im-
proving, minimizing the loss function. On the other hand, when the MF-VPINN is trained
with the P2 of Figure 11a, the loss decreases even when the error and the error indicator
increase or remain constant. In this case, it is convenient to interrupt the training, since
minimizing the loss function further would lead to more severe overfitting phenomena
and a loss in accuracy and efficiency. At the end of the training, the neural network’s
trainable parameters corresponding to the best value of ES2 are restored. We highlight
that such a phenomenon, observed in [46] too, highlights the fact that the minimization
of the loss function generates spurious oscillations that cannot be controlled and ruin the
model accuracy. The issue can be partially alleviated with the adopted regularization or
completely removed using inf-sup stable models as in [47].

(a) (b)

Figure 12. Cont.
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(c)
(d)

Figure 12. Top row: error indicator ESm and rescaled H1 error c∥u− uNN∥. Bottom row: loss function.
Left column: curves for the training with patches in P6 shown in Figure 5f. Right column: curves
for the training with patches in P2 in Figure 11a. (a) ES6 and c∥u− uNN∥ for patches in Figure 5f;
(b) ES2 and c∥u− uNN∥ for patches in Figure 11a; (c) Loss function for patches in Figure 5f; (d) Loss
function for patches in Figure 11a.

Strategy #4: Adaptive strategy without the error indicator

Let us now analyze the consequences of choosing the position of the new patches without
using the error indicator. To do so, we consider Strategy #1 but, instead of considering the new
centers inside the patches Pi with the highest values of η

γ
i , we add them inside the patches

with the highest values of r2
h,i(u

NN). Using the equation residuals is a common choice in PINN
adaptivity because the residuals describe how accurately the neural network satisfies the PDE
at that point. The obtained error decay is shown in Figure 13. It can be seen that the accuracy
is worse than the ones obtained with the other strategies and that the convergence rate with
respect to the number of patches is lower. In such a figure, we also compare the MF-VPINN
with a standard VPINN trained with test functions defined on Delaunay meshes. Note that,
when Strategy #2 or Strategy #3 is adopted, the MF-VPINN is more accurate than a simple
VPINN, even though its main advantage resides in being a meshfree method.

(a) (b)
Figure 13. Comparison between the relative H1 errors obtained at the end of each training iteration
with different strategies to choose the position of the new patches. (a) CM = 4; (b) CM = 9.

We highlight that, due to the low regularity of the solution, the expected convergence
rate with respect to the number of test functions of an FEM solution computed on uniform
refinements is−1/3. Note that the convergence rate of the proposed MF-VPINN method is still
close to −1/3, even though it is a meshfree method (see Table 1). For completeness, we also
remark that, if an adaptive FEM is used, the rate of convergence depends on the FEM order.

Table 1. Rates of convergence with respect to the number of test functions.

CM Strategy #1 Strategy #2 Strategy #3 Strategy #4 Reference VPINN

4 −0.213 −0.295 −0.283 −0.105 −0.232
9 −0.294 −0.376 −0.287 −0.182 −0.232
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Coherently with Figure 13, the best strategies are Strategy #2 and Strategy #3, whereas
the worst one is Strategy #4, which does not exploit the error indicator. The poor perfor-
mance of Strategy #4 can also be explained by analyzing the corresponding patch distribu-
tion. Such distribution is shown in Figure 14 for CM = 4 and in Figure 15 for CM = 9. These
plots highlight that the patches do not accumulate near the origin because the residuals
of the patches closer to it are not significantly higher than the other ones. For example,
note the different colors in Figures 4 and 14, since in both cases, we randomly choose the
position of CM = 4 centers inside the selected patches. Such a property is explained by the
fact that, in order to minimize the loss function, the optimizer does not focus on specific
regions of the domain. Therefore, the orders of magnitude of all the residuals with similar
sizes are very close to each other regardless of the position of the corresponding patches.
As discussed regarding Figure 12, we can conclude that the value of the residuals is not a
good indicator of the actual error.
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Figure 14. Strategy #4: Patches used to train the MF-VPINN with CM = 4. Each dot represents a
patch Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its
color is associated with the quantity r2

h,i(u
NN). (a) Representation of P1; (b) Representation of P2;

(c) Representation of P3; (d) Representation of P4; (e) Representation of P5; (f) Representation of P6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

Figure 15. Cont.
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Figure 15. Strategy #4: Patches used to train the MF-VPINN with CM = 9. Each dot represents a
patch Pi, its position is the center cPi of the patch, its size is proportional to the patch size h2

i , and its
color is associated with the quantity r2

h,i(u
NN). (a) Representation of P1; (b) Representation of P2;

(c) Representation of P3; (d) Representation of P4; (e) Representation of P5; (f) Representation of P6.

3.4. Extension to More a Complex Domain

In this section, we present some ideas that can be used to apply the method to more
complex domains.

Let us consider a domain Ω2 with some internal holes and boundary ∂Ω2 = Γ2. In
particular, Ω2 = (0, 1)2\

(
∪4

i=1Hi
)
, where Hi, i = 1, 2, 3, 4 are rectangular holes with centers

cHi defined as

cH1 =

(
9

26
,

9
34

)
, cH2 =

(
17
26

,
9
34

)
,

cH3 =

(
9

26
,

25
34

)
, cH4 =

(
17
26

,
25
34

)
,

and basis and height equal 1
26 and 1

34 , respectively.
In this domain, we consider the Poisson problem:{

−∆u = f in Ω2 ,
u = g on Γ2 ,

(35)

with f and g such that the exact solution is

u(x, y) =
1

Cu

[
x(x− 1)

(
x− 4

13

)(
x− 5

13

)(
x− 8

13

)(
x− 9

13

)
·

y(y− 1)
(

y− 4
17

)(
y− 5

17

)(
y− 12

17

)(
y− 13

17

)]
,

(36)

normalized through the constant 1
Cu

to assume value 1 in
( 2

13 , 2
17
)
. This function is repre-

sented in Figure 16.
We extend the approaches proposed in Section 3.2 by adding a cutting procedure

after the generation of the new patches. Note that, in particular, all the patches are already
completely inside the square [0, 1]2 when we apply the cutting procedure, and we can
thus focus only on the holes. When a patch intersects more than one hole, we recursively
remove it from Pm, we subdivide the corresponding region in 4 overlapping patches, and
we add them to Pm until all the generated patches intersect at most one hole. Moreover, we
observe that the region Pi\Hj inside the patch Pi ∈ Pm and outside the hole Hj, j = 1, 2, 3, 4,
can always be covered by the union of at most four rectangles. When a generated patch
intersects a hole, we thus remove the patch and generate the minimum number of patches
(at most four) that are as large possible and whose union is the region Pi\Hj.

To avoid numerical instabilities, when this cutting procedure generates a patch with
an aspect ratio larger than 100 or with an area more than 100 times smaller than the original
uncutted patch, the new patches are removed from Pm. This implies that it is not possible
to remove the patches associated with the highest error indicators as in Strategy #3 because
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otherwise, the union of all the patches would not cover the entire domain. We thus present
numerical results only for Strategy #1 and Strategy #2.

0.00 0.25 0.50 0.75 1.000.00

0.25

0.50

0.75

1.00

0.00
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0.42
0.63
0.84
1.05
1.26
1.47
1.68
1.89

Figure 16. Graphical representation of the solution u in (36).

The obtained error decays are shown in Figure 17 for Strategy #1 and Strategy #2 with
CM = 4 and CM = 9. The first and second errors are computed with the patches generated
by cutting the patches in P0 and P1, respectively, whereas the third and fourth errors are
obtained by refining the previous patches with the error indicator as previously described.
Note that the first and second errors are very close for all the curves since the strategy and
the value of CM does not influence the training and that both strategies converge better
with CM = 4. The final patch distributions are displayed in Figure 18. Here, we can see that
the inner part of the domain is covered by a few large patches, whereas the distribution is
denser closer to the external boundary of Ω2, where the solution is more oscillating.

10
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Figure 17. Relative H1 errors obtained by solving problem (35).
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Figure 18. Problem (35): Representation of the last set of patches obtained with the different strategies.
Each dot represents a patch Pi, its position is the center cPi of the patch, its size is proportional to the
patch size h2

i , and its color is associated with the quantity r2
h,i(u

NN). The black rectangles represent
the holes Hi, i = 1, 2, 3, 4. (a) Strategy #1, CM = 4; (b) Strategy #2, CM = 4; (c) Strategy #1, CM = 9;
(d) Strategy #2, CM = 9.

4. Conclusions and Discussion

In this work, we presented a Meshfree Variational-Physics-Informed Neural Network
(MF-VPINN). It is a PINN trained using the PDE variational formulation that does not
require the generation of a global triangulation of the entire domain. In order to generate
the test functions involved in the loss computation, we use an a posteriori error estimator
based on the one discussed in [46]. Using such an error estimator, it is possible to add
test functions only in regions in which the error is higher, thus increasing the efficiency of
the method.

We highlight that the main advantages of the method are that it is meshfree, as it re-
quires only a covering of the domain with patches that can be of different shapes and that it
automatically improves the solution with the application of local patches without requiring
a global mesh manipulation. It can be therefore used in domains where it is expensive
or impossible to generate a mesh. On the other hand, if a mesh suitable to describe the
solution can be generated, a standard VPINN is preferable since the implementation is
simpler and the convergence rate with respect to the number of test functions is higher.

We discuss several strategies to generate the set of test functions. We observe that
adding a few test functions inside the patches associated with higher errors while ensuring
a smooth transition between regions with large patches and regions with small patches
is the best way to obtain accurate solutions. We also show that, if the a posteriori error
indicator is not used, the model’s accuracy decreases and the training is slower.

In this paper, we only focus on second-order elliptic problem even though VPINNs
can be used to solve more complex problems. In a forthcoming paper, we will adapt
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the a posteriori error estimator and analyze the MF-VPINN performance on other PDEs.
Moreover, we are interested in the analysis of the approach in more complex domains (in
which the patches have to be suitably deformed) and in high-dimensional problems, where
using a standard VPINN is not practical.
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