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Abstract: Complex and nonlinear optimization challenges pose significant difficulties for traditional
optimizers, which often struggle to consistently locate the global optimum within intricate problem
spaces. To address these challenges, the development of hybrid methodologies is essential for solving
complex, real-world, and engineering design problems. This paper introduces FVIMDE, a novel
hybrid optimization algorithm that synergizes the Four Vector Intelligent Metaheuristic (FVIM) with
Differential Evolution (DE). The FVIMDE algorithm is rigorously tested and evaluated across two
well-known benchmark suites (i.e., CEC2017, CEC2022) and an additional set of 50 challenging
benchmark functions. Comprehensive statistical analyses, including mean, standard deviation,
and the Wilcoxon rank-sum test, are conducted to assess its performance. Moreover, FVIMDE is
benchmarked against state-of-the-art optimizers, revealing its superior adaptability and robustness.
The algorithm is also applied to solve five structural engineering challenges. The results highlight
FVIMDE’s ability to outperform existing techniques across a diverse range of optimization problems,
confirming its potential as a powerful tool for complex optimization tasks.

Keywords: metaheuristic; intelligent; optimization; engineering design

1. Introduction

Metaheuristic techniques represent a prominent area of study in the field of computa-
tional optimization, offering a variety of methods for solving complex and often intractable
problems across various domains [1]. These techniques, characterized by their ability to
escape local optima and explore the global search space, have gained substantial traction
due to their versatility and efficacy in tackling a wide array of optimization challenges [2].

The genesis of metaheuristic algorithms can be traced back to the 1960s and 1970s,
with the advent of strategies like Genetic Algorithms (GAs) [3] and Simulated Annealing
(SA) [4], which drew inspiration from biological evolution and thermodynamics, respec-
tively. However, the term “metaheuristic” was formally coined in the late 1980s and early
1990s and began to see widespread adoption in academic and research circles. This period
marked a paradigm shift in optimization techniques, moving from traditional, deterministic
methods to more stochastic and heuristic-based approaches [5].

At its core, a metaheuristic is a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimization algorithms.
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Metaheuristics do not guarantee an optimal solution [6]; instead, they seek to find a
sufficiently good solution within a reasonable time frame, making them particularly useful
for practical applications where time and resources are limited [7].

The landscape of metaheuristic techniques is diverse, encompassing a broad spec-
trum of algorithms inspired by natural phenomena, psychological processes, and even
human-made systems, including Evolutionary Algorithms (EAs) [8], Swarm Intelligence
(SI)-based [9] algorithms like Particle Swarm Optimization (PSO) [10] and Ant Colony Op-
timization (ACO) [11], and physics-based methods like the Gravitational Search Algorithm
(GSA) [12]. Each of these algorithms operates on the principle of iterative improvement,
where a set of candidate solutions undergoes various processes such as selection, crossover,
mutation (in the case of EAs), or movement and updating of positions (in swarm intelli-
gence algorithms) to converge towards an optimal or near-optimal solution [13].

The application of metaheuristic techniques spans numerous domains, ranging from
engineering design optimization to financial modeling [14], from logistics and supply
chain management to bioinformatics, and from machine learning to network design. Their
adaptability and robustness in handling multi-modal, non-linear, and high-dimensional
problems make them an indispensable tool in the arsenal of modern-day researchers and
practitioners [15,16]. However, there are several limitations and challenges associated
with metaheuristics, including the risk of premature convergence, the balance between
exploration and exploitation, and the need for parameter tuning [17]. Thus, the choice of a
suitable metaheuristic algorithm is decided based on the specific nature and requirements
of the problem at hand.

In the evolving landscape of metaheuristic algorithms, a notable gap exists in their abil-
ity to fully meet the intricate requirements of complex engineering optimization problems.
This gap analysis identifies these shortcomings and explores how the Hybrid FVIMDE
Algorithm aims to address them, enhancing the overall efficacy of optimization processes.

Further, the No-Free-Lunch (NFL) Theorem asserts that no single optimization al-
gorithm is universally superior across all problem types. Established by Wolpert and
Macready, it emphasizes that an algorithm’s effectiveness is highly problem-specific, chal-
lenging the notion of a one-size-fits-all solution in algorithm design. This theorem asserts
the importance of selecting the right algorithm based on the specific characteristics of the
problem at hand and has encouraged the development of more adaptive, hybrid algo-
rithms that combine the strengths of various approaches to address a broader range of
optimization challenges [18].

The proposed FVIMDE method is designed to bridge these gaps by combining the
strong exploration capabilities of FVIM with the focused exploitation proficiency of DE.
The main contributions of introducing the proposed methods are:

• The HybridFour Vector Intelligent Metaheuristic and Differential Evolution (FVIMDE)
algorithm is introduced, merging the advantages of both optimizers to enhance opti-
mization efficiency.

• The FVIMDE algorithm integrates FVIM’s four-vector strategy with DE’s mutation
and crossover strategies, utilizing the average mean of the four best solutions for
exploration and DE strategies for exploitation.

• The FVIMDE algorithm is implemented and evaluated using unimodal, multimodal,
hybrid, and composition benchmark functions from the 2022 and 2017 IEEE Congress
on Evolutionary Computation and challenging benchmark function that consists of
complex, hybrid, and composite functions.

• The FVIMDE algorithm is validated on complex real-world engineering design prob-
lems such as welded beam design, pressure vessel design, spring design, speed reducer
design, cantilever beam design, and three-bar truss design, showing superior perfor-
mance when compared to 12 well-known and state-of-the-art optimization algorithms,
such as GWO, WOA, MFO, and MVO.

The rest of this paper is organized as follows: Section 2 provides a detailed review
of the recent related work, and Section 3 focuses on the foundational concepts of the
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Four-Vector Intelligent Metaheuristic (FVIM) and Differential Evolution (DE), highlighting
their key characteristics and applications. In Section 4, we introduce the proposed Hybrid
FVIMDE Algorithm, detailing its conceptual framework and operational mechanics, and
discuss how it integrates the strengths of FVIM and DE. It also presents the mathematical
model of FVIMDE, including variable definitions, mutation and crossover processes, and
the FVIM position-update mechanism. In addition, it explores the strategic components
of exploration and exploitation within the hybrid algorithm, describing the balance be-
tween these elements to optimize performance. Section 5 delves into the experimental
analysis and results, presents evaluations using benchmark functions, and discusses the
algorithm performance relative to other optimization algorithms. Section 7 applies the
FVIMDE algorithm to real-world engineering design problems, discussing optimization
constraints and parameter settings. Finally, Section 9 concludes the paper by summarizing
the findings, reiterating the advantages of the hybrid algorithm, and suggesting future
research directions.

2. Related Work

Hybrid optimization algorithms have been increasingly adopted to tackle complex
engineering and industrial design challenges, leveraging the strengths of multiple meta-
heuristic approaches. Huang and Hu [19] and Tang et al. [20] developed hybrid algorithms
that combine existing techniques to improve performance in structural design and engi-
neering optimization, with each study demonstrating enhanced efficiency and effectiveness
over traditional methods.

Several researchers have focused on enhancing exploration and exploitation capa-
bilities within hybrid algorithms. Liu et al. [21] proposed hybrid methods that integrate
diverse strategies to prevent local optima entrapment and improve solution diversity. Their
algorithms have shown significant improvements in convergence speed and robustness
across various benchmark and engineering problems.

In the realm of uncertainty handling and specific applications, Cheng et al. [22] and Dhi-
man [23] presented hybrid approaches that cater to engineering structures and constrained
optimization scenarios, respectively. Their work highlights the need for algorithms capable
of addressing complex uncertainties and optimizing highly constrained environments.

Further contributions include Qin and Han’s [24] Hybrid Quantum Particle Swarm
Optimization and Chu et al.’s [25] Hybrid Parallel Willow Catkin Optimization Algorithm,
both of which incorporate unique strategies to improve global search capabilities and
convergence rates, particularly in multidimensional and real-world engineering problems.

Finally, addressing the balance between exploration and exploitation, which remains a
significant challenge in metaheuristic optimization, has been a central theme across these
studies [9]. The development of robust, adaptable algorithms capable of handling the
diversity of engineering design problems remains an ongoing pursuit, motivating the
proposal of the FVIMDE hybrid optimization algorithm.

A primary challenge in current metaheuristic algorithms is striking the right balance
between exploration and exploitation. Exploration involves diversifying the search across
the solution space, while exploitation focuses on intensifying the search in promising
regions. Many algorithms excel in exploration, but fall short in exploitation, or vice versa,
leading to either suboptimal solutions or inflated computation times. This imbalance is a
critical issue that needs to be addressed [26].

Another gap is in handling multimodal landscapes—common in engineering design
problems—which are characterized by numerous local optima. Existing algorithms often
struggle to distinguish between local and global optima, leading to premature convergence
on suboptimal solutions. This limitation can severely impede the effectiveness of the
optimization process [9].

In addition, the diversity of engineering design problems calls for algorithms that are
robust and adaptable to various problem structures without the need for extensive modifi-
cations. This flexibility is often lacking in existing algorithms, limiting their applicability
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across different types of engineering challenges [27], and this motivates us to develop the
hybrid FVIMDE optimization algorithm.

3. Technical Background
3.1. Overview of the Four Vector Intelligent Metaheuristic (FVIM)

The Four Vector Intelligent Metaheuristic (FVIM) [28] is an innovative optimization
algorithm designed to overcome the challenges associated with traditional swarm-based
algorithms, such as Particle Swarm Optimization (PSO). At its core, FVIM is structured
to strike a balance between exploration and exploitation within the search space, thereby
enhancing the probability of converging to a global optimum solution. This algorithm
builds upon a mathematical framework that integrates multiple agent behaviors and
dynamically adjusts their movements to avoid premature convergence, which is considered
a common issue in many optimization algorithms.

3.2. Algorithmic Overview

FVIM operates through a sequence of well-defined stages, beginning with an initial-
ization phase where key parameters are set, and agents are randomly positioned within the
solution space. This is followed by an iterative process where agents update their positions
based on a set of four mathematical models, each contributing to the overall search strategy.
The final stage of the algorithm focuses on identifying the optimal solution by comparing
the outcomes of these iterations against the predefined objective function.

3.3. Algorithm Flow

The FVIM algorithm can be summarized as follows:

1. Initialization Phase: Define and randomly initialize the key parameters and agent
positions. Set the upper and lower boundaries of the search space.

2. Iterations Phase: Update the agents’ positions using the four mathematical models,
iterating until the stopping conditions are met.

3. Finding Optimal Solution Phase: Identify the best solution by evaluating the fitness
of each agent’s position and comparing it to the objective function.

FVIM leverages four leading agents Alpha, Beta, Gamma, and Delta to guide the
search process. These four vectors are actual candidate solutions within the population,
and they are dynamically updated during each iteration of the FVIM phase. The four
vectors (Alpha, Beta, Gamma, and Delta) represent the four best candidate solutions within
the population at any given iteration. Specifically:

• Alpha: The best solution found so far.
• Beta: The second-best solution.
• Gamma: The third-best solution.
• Delta: The fourth-best solution.

These vectors are actual members of the population and are updated based on their
fitness values. Their role is to influence the position updates of all other particles in the
population, thereby guiding the search toward promising regions of the solution space.

3.4. Mathematical Foundation

FVIM [28] introduced an innovative exploration strategy into the optimization process
by the use of four vectors (Alpha, Beta, Gamma, and Delta), as shown in Equations (1)
and (2), with each vector representing a distinct subset of top-performing solutions within
the search space. This multi-vector structure allows FVIM to conduct a more effective
exploration compared to traditional single-point search methods [28].

Xn,i = Pn,i + (α × 2 × ξ1 − α)×
∣∣ξ2 × Pn,i − Pi

∣∣×{
1, if ξ3 < 0.5,
−1, otherwise

, for n ∈ {1, 2, 3, 4}. (1)
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Pi =
X1,i + X2,i + X3,i + X4,i

4
(2)

where, Xn,i represents the updated position for the nth best agent in the ith dimension. Pn,i
is the current position of the nth best agent in the ith dimension. Pi represents the current
average position of all agents in the ith dimension. α is a coefficient. ξ1, ξ2, and ξ3 represent
random numbers uniformly distributed in [0, 1].

The mechanism of these vectors is central to FVIM’s functionality. The search space
is navigated using the Alpha, Beta, Gamma, and Delta vectors, which are dynamically
updated according to their fitness values. Each vector is responsible for guiding a segment
of the population, promoting a diversified exploration approach. The Alpha vector takes
the lead in the search, followed in the hierarchy of Beta, Delta, and Gamma, with each
focusing on exploring different regions of the solution space. This hierarchical model
is instrumental in maintaining a strategic balance between discovering new areas and
capitalizing on known promising regions [28]. A key attribute of FVIM is its search strategy.
FVIM incorporates dynamic parameters that adjust the influence of each vector on the
search agents. This adaptability allows FVIM to navigate various regions of the solution
space effectively, be they sparsely or densely populated with potential solutions [28].

The balance between exploration and exploitation is another critical aspect of FVIM.
Exploration is facilitated through the stochastic nature of the vector updates, ensuring
FVIM avoids premature convergence to local optima. In contrast, exploitation is managed
by concentrating the search around the best solutions identified by the vectors. This equi-
librium between exploration and exploitation is essential in FVIM’s capability to uncover
high-quality solutions, enhancing the overall efficacy of the optimization process [28].

3.5. Overview of Differential Evolution (DE)

Differential Evolution (DE) [29] is known for its efficiency and effectiveness in the
exploitation phase of optimization tasks. Grounded in evolutionary principles, the typical
workflow of DE encompasses initializing a population of candidate solutions, performing
mutation and crossover on each individual to create a trial vector, evaluating the fitness
of these trial vectors, and applying a selection to establish the population for the next
generation. This process is repeated until a predefined stopping criterion is met [30]. In
addition, DE employs a straightforward yet potent set of operators (mutation, crossover,
and selection) to maneuver through the solution space and refine solutions toward the
global optimum. DE’s approach is centered on a population-based methodology. It operates
on a pool of candidate solutions, iteratively working through them to explore and exploit
the solution space. Each candidate, also referred to as an individual or a vector, represents
a possible solution to the optimization problem at hand. A critical aspect of DE is its
mutation strategy, which plays a pivotal role in introducing variability and novel traits into
the population [30].

The mutation strategy in differential evolution (DE) is encapsulated by an equation
that outlines the process of mutated vector generation for each population member. This
generation is accomplished by adding the weighted difference between two distinct, ran-
domly chosen population members, Xr2 and Xr3, to a third member, Xr1 [30]. The formula
illustrating this mutation strategy is presented in Equation (3):

Vi = Xr1 + F · (Xr2 − Xr3) (3)

where Vi represents the mutated vector, Xr1, Xr2, and Xr3 are the three distinct, ran-
domly selected vectors from the population, and F is a scaling factor that controls the
mutation extent.

Following mutation, DE employs a crossover operation to further diversify the popu-
lation. This operation integrates the mutated vector with an existing population member,
creating a trial vector. It operates by interchanging components between both vectors,
influenced by a crossover probability CR, to enhance the search of the solution space [30].
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The selection mechanism in DE hinges on the comparative fitness of the trial vector
and the original individual. The one exhibiting superior fitness is retained for the next
generation, fostering gradual enhancement in the overall quality of the population.

The Role of Crossover in the DE Phase

While the traditional role of the crossover operator in Differential Evolution (DE) is
to introduce diversity by mixing components from the mutant and target vectors, it is
important to address a subtle aspect of its function in our implementation. Specifically,
the crossover operator can sometimes reverse parts of the mutation operation, which
may give the impression that it is primarily a corrective mechanism rather than one that
enhances diversity.

Reversing Mutation:

In our approach, the crossover operation decides whether to retain components from
the target vector Pi(j) or incorporate components from the mutant vector Vi(j). Due to
this decision-making process, particularly when the crossover rate Cr is low, the crossover
may indeed undo some of the changes introduced by mutation. This occurs when more
components from Pi(j) are retained, effectively reversing parts of the mutation’s effects on
those components.

Introducing Diversity:

However, the crossover operation still plays a crucial role in maintaining diversity
within the population. By selectively incorporating components from the mutant vector
Vi(j), especially when Cr is high, the crossover ensures that new information is introduced
into the trial vector Ui. This mixing of components from both the mutant vector and the
target vector allows the trial vector to benefit from the exploratory nature of the mutation
while preserving some of the original solution’s structure. Therefore, even though crossover
may reverse some aspects of the mutation, it does not completely negate the contribution
of mutation, and diversity is maintained.

The balance between reversing mutation and introducing new diversity is controlled
by the crossover rate Cr. By adjusting this parameter, we can fine-tune the algorithm’s
exploration and exploitation capabilities, allowing the algorithm to effectively search the
solution space while avoiding premature convergence to suboptimal solutions.

While the crossover operator may occasionally reverse the effects of mutation, its
primary role remains the introduction of diversity into the population. The crossover
rate Cr serves as a key parameter to balance these effects, ensuring that the DE algorithm
maintains its effectiveness in exploring and exploiting the search space.

4. Proposed Hybrid FVIMDE Algorithm

In this section, we present the Hybrid Four Vector Intelligent Mechanism with Differen-
tial Evolution (FVIMDE) algorithm, a novel optimization technique designed to effectively
balance exploration and exploitation within the search space. The proposed algorithm
integrates the strengths of Differential Evolution (DE), known for its robust exploration
capabilities, with the Four Vector Intelligent Mechanism (FVIM), which excels at fine-tuning
solutions in promising regions of the search space.

The FVIMDE algorithm operates in two distinct phases. The first phase involves
the application of Differential Evolution to explore the global search space, identifying
potential areas where optimal or near-optimal solutions may reside. During this phase,
the population undergoes initialization, mutation, crossover, and selection processes to
iteratively improve the quality of solutions. The second phase transitions into the FVIM,
where the best solution obtained from the DE phase is refined through a strategic position
update mechanism involving the Alpha, Beta, Gamma, and Delta particles.

By combining these two powerful optimization techniques, the FVIMDE algorithm
leverages the global search capability of DE and the local search efficiency of FVIM, en-
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suring a comprehensive search process that effectively avoids premature convergence and
improves the likelihood of finding the global optimum. The following subsections provide
a detailed explanation of the steps involved in each phase of the proposed algorithm.

4.1. Mathematical Model of the Hybrid DE-FVIM Optimizer

The Hybrid DE-FVIM optimizer is a two-phase optimization algorithm that combines
Differential Evolution (DE) with the Four Vector Intelligent Mechanism (FVIM). The opti-
mizer iterates over a predefined number of iterations, Max_iter, which is divided into two
phases: the DE phase and the FVIM phase.

4.1.1. DE Phase

The DE phase is executed during the first half of the total iterations, i.e., Max_iter
2 .

4.1.2. Initialization

Initially, a population P of size N × D is generated randomly within the search space
bounds. The position of each individual i in the population is initialized, as shown in
Equation (4):

P(i, j) = lb(j) + rand(0, 1)× (ub(j)− lb(j)), i = 1, . . . , N, j = 1, . . . , D (4)

where N is the population size, D is the dimensionality of the problem, lb(j) and ub(j) are
the lower and upper bounds for dimension j, respectively.

4.1.3. Mutation and Crossover

For each individual i, a mutant vector Vi is generated using the DE/rand/1 strategy,
as shown in Equation (5):

Vi = Pr1 + F × (Pr2 − Pr3) (5)

where r1, r2, r3 are distinct indices randomly selected from the population, and F is the
scaling factor.

Following mutation, a trial vector Ui is generated through binomial crossover, as
defined in Equation (6). The crossover generates a trial vector by combining elements from
the mutant vector and the target vector. The goal of this operation is to introduce variability
in the population while preserving some of the characteristics of the current solution.

The crossover operator used is a binomial crossover, where each element of the trial
vector Ui is taken from either the mutant vector Vi or the target vector Pi, based on a
crossover probability Cr. The equation used to generate the trial vector is as follows:

Ui(j) =

{
Vi(j) if rand(0, 1) ≤ Cr or j = jrand

Pi(j) otherwise
(6)

where Cr is the crossover rate and jrand is a randomly chosen index to ensure that at least
one element is inherited from Vi.

In this equation, Ui(j) is the j-th component of the trial vector for individual i, Vi(j) is
the j-th component of the mutant vector for individual i, and Pi(j) is the j-th component of
the target vector for individual i. The crossover rate Cr determines the probability of taking
a component from the mutant vector, and jrand is a randomly chosen index that ensures at
least one element is inherited from the mutant vector. This prevents the trial vector from
being identical to the target vector.

The crossover process operates as follows.
For each dimension j of the solution vector, a random number is generated. If this

random number is less than or equal to the crossover rate Cr, or if the index j equals jrand,
the corresponding component from the mutant vector Vi(j) is copied into the trial vector
Ui(j). If neither condition is met, the component from the target vector Pi(j) is retained in
the trial vector.
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To ensure diversity in the population, the inclusion of jrand guarantees that at least
one component from the mutant vector is always included in the trial vector. This prevents
the trial vector from being a direct copy of the target vector, maintaining variability in
the population.

The crossover operation iterates over each individual in the population (using the loop
‘for i = 1:pop’) and each dimension of the solution vector (using the loop ‘for j = 1:dim’).
Inside the nested loop, a random index ‘jrand’ is selected once for each individual, ensuring
that at least one component from the mutant vector Vi is copied into the trial vector Ui.
For each dimension, a random number is generated. If this random number is less than or
equal to the crossover rate (set to 0.9 in the code), or if the current index j equals jrand, the
corresponding component from the mutant vector is copied into the trial vector. Otherwise,
the component from the target vector is retained.

4.1.4. Selection

The selection process decides whether the trial vector Ui replaces the target vector Pi.
This decision is made based on their fitness values, as described in Equation (7):

Pi =

{
Ui if f (Ui) < f (Pi)

Pi otherwise
(7)

where f (·) denotes the fitness function. The best individual in the population after the DE
phase is identified as Pbest.

4.2. FVIM Phase

The FVIM phase begins after the DE phase and utilizes the best solution from DE as
the initial position for the alpha particle. The FVIM phase continues for the remaining half
of the total iterations.

4.3. Population Size and Role of the Four Vectors

In the FVIM phase, the population size remains the same as in the DE phase and is
denoted as N.

Position Update

During the FVIM phase, the position of each particle is updated based on the positions
of the Alpha, Beta, Gamma, and Delta particles. The new position for each particle is
computed as the average of four intermediate positions, as given in Equation (8):

Xi,j =
X1

i,j + X2
i,j + X3

i,j + X4
i,j

4
(8)

where X1, X2, X3, X4 are position updates influenced by the Alpha, Beta, Gamma, and Delta
particles, respectively, as shown in Equation (9).

Each intermediate position Xk
i,j is calculated as follows:

Xk
i,j =

{
Pk,j + a × (2 × rand(0, 1)− 1)× |rand(0, 1)× Pk,j − Xi,j| if rand(0, 1) < 0.5
Pk,j − a × (2 × rand(0, 1)− 1)× |rand(0, 1)× Pk,j − Xi,j| otherwise

(9)

where k ∈ {Alpha, Beta, Gamma, Delta}, and a is a linearly decreasing coefficient calculated
as shown in Equation (10):

a = 2 − iteration × 2
Max_iter − DE_iter

(10)

where iteration is the current iteration number, and DE_iter = Max_iter
2 .
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4.4. Combined Optimization Process

The overall optimization process combines the DE phase and FVIM phase. The DE
phase aims to explore the search space and identify promising regions, while the FVIM
phase exploits these regions to refine the solution. The combination of these two phases
enhances the optimizer’s performance in terms of exploration and exploitation balance.

4.5. Hybrid FVIMDE Algorithm Stages

The Hybrid FVIMDE Algorithm as shown in Algorithm 1, consists of two main stages,
each designed to complement the other in optimizing complex functions by effectively bal-
ancing exploration and exploitation. The source code is available at https://www.mathwo
rks.com/matlabcentral/fileexchange/171204-hybrid-four-vector-intelligent-metaheuristi
c-with-de (accessed on 17 July 2024).

Algorithm 1 Hybrid FVIMDE Algorithm Pseudocode

1: Initialize population P of size N × D within the bounds [lb, ub] using Equation (4).
2: Evaluate the fitness of each individual in P.
3: Set DE_iter = Max_iter

2 (number of iterations for DE phase).
4: for each iteration l = 1 to DE_iter do
5: for each individual i = 1 to N do
6: Generate mutant vector Vi using Equation (5).
7: Generate trial vector Ui using crossover as shown in Equation (6).
8: Apply boundary handling to Ui.
9: Evaluate the fitness of Ui.

10: Perform selection between Pi and Ui using Equation (7).
11: end for
12: Update the best solution Pbest if a better solution is found.
13: end for
14: Initialize positions for FVIM with Pbest as the alpha particle’s position.
15: Set FVIM_iter = Max_iter − DE_iter (number of iterations for FVIM phase).
16: for each iteration itr = 1 to FVIM_iter do
17: Update the coefficient a using Equation (10).
18: for each individual i = 1 to N do
19: for each dimension j = 1 to D do
20: Calculate the position updates X1

i,j, X2
i,j, X3

i,j, X4
i,j using Equation (9).

21: Update the position Xi,j using Equation (8).
22: end for
23: Evaluate the fitness of Xi.
24: Update Alpha, Beta, Gamma, and Delta positions if necessary.
25: end for
26: Record the best solution Pbest.
27: end for
28: Return the best solution Pbest and its fitness value.

4.5.1. Stage 1: Differential Evolution (DE) Phase

The first stage of the algorithm is the Differential Evolution (DE) phase, which focuses
on exploring the global search space. This phase is executed over the first half of the
total iterations. The process begins with the initialization of a population of candidate
solutions within the defined search space bounds. Each individual in the population is
then evaluated based on the objective function. During each iteration of the DE phase,
new candidate solutions are generated using mutation and crossover operators. Mutation
involves creating a mutant vector by perturbing existing solutions, as described by the
DE/rand/1 strategy. The crossover operator then combines elements from the mutant
vector and the current solution to create a trial vector. This trial vector undergoes boundary
handling to ensure it remains within the permissible search space. The selection process
follows, where the trial vector replaces the current solution if it offers a better fitness

https://www.mathworks.com/matlabcentral/fileexchange/171204-hybrid-four-vector-intelligent-metaheuristic-with-de
https://www.mathworks.com/matlabcentral/fileexchange/171204-hybrid-four-vector-intelligent-metaheuristic-with-de
https://www.mathworks.com/matlabcentral/fileexchange/171204-hybrid-four-vector-intelligent-metaheuristic-with-de
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value. Throughout the DE phase, the algorithm continuously tracks the best solution found,
setting it up as the foundation for the next stage.

4.5.2. Stage 2: Four Vector Intelligent Mechanism (FVIM) Phase

The second stage is the Four Vector Intelligent Mechanism (FVIM) phase, which
is designed to exploit the most promising regions identified during the DE phase. The
best solution obtained from the DE phase is used as the initial position for the alpha
particle, a key element in the FVIM. The FVIM phase begins by reinitializing the population
with the alpha particle as a reference. Each iteration involves updating the positions of
the population based on the influence of four key particles: Alpha, Beta, Gamma, and
Delta. These particles represent different levels of solution quality, with alpha being the
best. The position updates are governed by a coefficient that decreases linearly over time,
encouraging convergence as the algorithm progresses. The updated positions are evaluated,
and the best positions are continuously refined. This phase focuses on intensively searching
around the best-known solutions, aiming to improve them further. The process concludes
when the maximum number of iterations is reached, and the algorithm returns the best
solution found during both stages.

4.6. Exploration and Exploitation Behavior

The effectiveness of the Hybrid FVIMDE Algorithm is largely attributed to its ability
to balance exploration and exploitation throughout the optimization process. These two
behaviors are critical for ensuring that the algorithm can thoroughly search the solution
space and converge to the global optimum.

4.6.1. Exploration Behavior

Exploration refers to the algorithm’s ability to investigate diverse regions of the search
space. This behavior is crucial for avoiding local optima and ensuring that the algorithm can
discover the most promising areas where the global optimum may reside. In the Hybrid
FVIMDE Algorithm, the exploration is predominantly handled during the Differential
Evolution (DE) phase.

During the DE phase, the population is subjected to operations such as mutation and
crossover, which introduce variability among candidate solutions. The mutation operation,
defined by Equation (5), generates mutant vectors by combining different individuals from
the population. This process creates new potential solutions that may lie far from the current
population’s centroid, effectively enabling the algorithm to explore distant and unexplored
regions of the search space. The crossover operation further contributes to exploration by
mixing components of the mutant vector and the target vector, thus maintaining diversity
within the population. As the DE phase progresses, the algorithm explores various areas of
the search space, laying the groundwork for subsequent exploitation.

4.6.2. Exploitation Behavior

Exploitation, on the other hand, refers to the algorithm’s ability to intensively search
within promising regions of the search space that have already been identified as poten-
tially containing optimal solutions. This behavior is essential for refining solutions and
converging toward the global optimum with high precision. In the Hybrid FVIMDE Algo-
rithm, exploitation is primarily managed during the Four Vector Intelligent Mechanism
(FVIM) phase.

The FVIM phase leverages the best solution found during the DE phase as a start-
ing point for further refinement. The position updates in this phase are guided by the
influence of the Alpha, Beta, Gamma, and Delta particles, with a particular emphasis on
the alpha particle, which represents the best solution. The balance between exploration
and exploitation is controlled by the alpha particle’s dominant role, ensuring that the
search remains focused on the most promising regions. Additionally, the process involves a
controlled reduction in the exploration range, governed by a linearly decreasing coefficient
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a, as described in Equation (10). As iterations progress, the influence of the alpha particle
becomes increasingly dominant, while the random perturbations decrease. This narrows
the search to a smaller region of the search space, focusing on refining the best solutions
identified so far.

4.6.3. Balancing Exploration and Exploitation

The Hybrid FVIMDE Algorithm is designed to strike an optimal balance between
exploration and exploitation. The DE phase illustrates that the algorithm does not get
trapped in local optima by maintaining population diversity and searching broadly across
the search space. In contrast, the FVIM phase capitalizes on the information gathered
during the DE phase to focus on refining the best solutions. By transitioning from global
exploration to local exploitation, the algorithm effectively navigates the trade-off between
exploring new areas and exploiting known good solutions, thereby enhancing its ability to
find the global optimum in complex optimization problems.

4.7. Computational Complexity

The computational complexity of the Hybrid FVIMDE Algorithm can be determined
by analyzing the operations performed in each phase of the algorithm. Let us break it down
step by step.

First, consider the initialization phase. The population P is initialized by generating
N × D random values. This step has a time complexity of O(N × D), as shown in Equa-
tion (11). Additionally, evaluating the fitness of each individual in the population requires
O(N) operations, as indicated in Equation (12).

O(N × D) (11)

O(N) (12)

Next, in the Differential Evolution (DE) phase, the algorithm runs for DE_iter =
Max_iter

2 iterations. During each iteration, mutation, crossover, and selection are performed
for each individual. Each of these operations is linear with respect to the dimensionality
D. Consequently, the complexity of these steps is O(N × D × DE_iter), as shown in
Equation (13). After generating the trial vector, the fitness of the new vector is evaluated,
leading to a complexity of O(N × DE_iter), as indicated in Equation (14).

O(N × D × DE_iter) (13)

O(N × DE_iter) (14)

In the FVIM phase, which runs for FVIM_iter = Max_iter − DE_iter iterations, the
position of each individual in every dimension is updated. This involves calculating
intermediate positions and updating the current position, requiring 4 × D operations per
individual. Thus, the complexity of position updates is O(N × D × FVIM_iter), as shown
in Equation (15). Additionally, after updating positions, the fitness of each individual is
evaluated, with a complexity of O(N × FVIM_iter), as indicated in Equation (16).

O(N × D × FVIM_iter) (15)

O(N × FVIM_iter) (16)

The computational complexity of FVIMDE Algorithm is the sum of the complexities
of the initialization, DE phase, and FVIM phase. This can be expressed as shown in
Equation (17).
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O(N × D) + O(N) + O(N × D × Max_iter
2

)

+ O(N × Max_iter
2

) + O(N × D × (Max_iter − Max_iter
2

))

+ O(N × (Max_iter − Max_iter
2

))

(17)

Simplifying this expression, we obtain the overall computational complexity of the
algorithm, as shown in Equation (18):

O(N × D × Max_iter) (18)

This complexity reflects the FVIMDE’s dependence on the population size N, the
dimensionality of the problem D, and the total number of iterations Max_iter.

5. Implementation and Comparison
5.1. IEEE CEC-2022 Benchmark Test Functions Description

The CEC2022 benchmark suite, as detailed in Table A1 [31], was used to evaluate our
evolutionary computation algorithms. The benchmarks include unimodal, multimodal,
hybrid, and composition functions, each selected to challenge different aspects of algorithm
performance. Unimodal functions test straightforward convergence, while multimodal
functions assess FVIMDE’s ability to navigate complex landscapes with multiple optima.
Hybrid and composition functions combine these challenges, simulating complex real-
world problems. All functions were tested within a uniform domain of [−100, 100] across
30 dimensions, ensuring consistency and comparability in our evaluations. An illustration
of sample objective space from CEC2022 benchmark functions (F1–F4) is shown in Figure 1.

Figure 1. Illustration of sample objective space from CEC2022 Benchmark Functions (F1–F4).
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5.2. IEEE CEC-2017 Benchmark Test Functions Description

The first benchmark function used is the CEC2017 competition benchmark func-
tion [32], which is a comprehensive suite of benchmark functions that serve to rigorously
evaluate the performance of evolutionary computation algorithms, as seen in Table A2 [32].
This suite is meticulously curated to present a variety of optimization landscapes, each
designed to assess different aspects of algorithmic behavior in seeking optimal solutions.
The suite begins with a series of unimodal benchmark functions. These functions are
crucial for testing the exploitation abilities of an algorithm due to their singular global
optima. Examples include the shifted and rotated Bent Cigar and Zakharov functions,
which challenge FVIMDE with narrow ridge solutions and a combination of quadratic
and quartic components, respectively. The shifted and rotated Rosenbrock’s function,
with its notorious narrow, parabolic-shaped valley, and the shifted and rotated Rastrigin’s
function, a unimodal adaptation of a typically multimodal function, are designed to test
precision in locating the global optimum. The suite also includes the shifted and rotated
expanded Scaffer’s F6 function, which presents a landscape characterized by sharp valleys
and ridges [33].

Following the unimodal functions are the simple multimodal functions. These func-
tions are embedded with numerous local optima, thus evaluating the exploration capabili-
ties of an algorithm and its effectiveness in distinguishing global optima from local ones.
The suite features the shifted and rotated Lunacek Bi_Rastrigin function, which combines
the Rastrigin function’s properties with a dual sphere structure, and the shifted and rotated
non-continuous Rastrigin’s function, which introduces complexity with its discontinuities.
Additionally, the shifted and rotated Levy function and the deceptive shifted and rotated
Schwefel function require robust strategies to navigate their complex landscapes [34].

The hybrid functions in the suite, such as the various iterations of Hybrid function
6, represent a synthesis of unimodal and multimodal characteristics, creating a diverse
and dynamic optimization environment. These functions test FVIMDE’s adaptability and
capacity to manage transitions between different function characteristics effectively. The
composition functions are the most intricate, constructed by integrating multiple basic
functions with varied weights and biases. These functions, ranging from Composition func-
tion 1 to 10, replicate the complex, multimodal landscapes akin to real-world optimization
scenarios. They require sophisticated exploration and exploitation strategies to navigate
the intricately woven global and local optima.

5.3. Description of the 50 Benchmarks

The first set (F1–F25) of 50 benchmark functions, as shown in Table A3, include various
functions, such as “Steptint”, “Step”, “Sphere”, “SumSquares”, “Quartic”, and “Beale”,
and primarily feature unimodal and separable characteristics. These functions typically
involve simple algebraic formulas, which make them useful for evaluating basic aspects of
optimization algorithms, such as convergence rate and precision. For example, the “Steptint”
and “Step” functions, with their use of the floor operation, challenge an algorithm’s ability
to handle discontinuities within a defined range. The “Sphere” and “SumSquares” functions
are quintessential for testing an algorithm’s performance in handling different scales of
variables due to their simple, sum-of-squares form. The inclusion of a random component
in the “Quartic” function adds a stochastic element to the evaluation, providing insights
into how algorithms cope with noise [35].

Furthermore, the second set (F26–F50) also includes benchmarks in Tables A4 and A5
and has complexity with functions like “Booth”, “Rastrigin”, “Schwefel”, and “Michalewicz”
models, which introduce multimodal characteristics and often non-separable dimensions.
These functions are designed to test more advanced capabilities of optimization algorithms,
such as escaping local minima and exploring multiple basins of attraction effectively. The
“Rastrigin” function, for instance, is notorious for its large number of local minima, making
it an excellent testbed for an algorithm’s global search capabilities. The “Michalewicz” func-
tion, varying with dimensions, specifically challenges an algorithm’s ability to solve prob-
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lems that become progressively difficult as dimensions increase. Functions like “Schwefel”
and “Six Hump Camel Back” further emphasize handling irregularities and asymmetries
in the search space [36].

5.4. Configuration of Experiment Parameters

The computational device used for the optimization evaluation in this study consists of
a high-performance server running Windows Server 2016 Standard. The server is equipped
with an Intel(R) Xeon(R) Silver 4314 CPU operating at 2.40 GHz, featuring 32 processing
cores, and 128 GB of installed RAM.

However, all compared algorithms have been implemented and run in the same
environment to provide a fair comparison (run = 30, FES = 1000, agents No. = 30).

The parameter configuration is critical for the consistent evaluation of optimization
algorithms using the benchmark functions. However, the CEC 2022 and CEC 2017 pa-
rameters utilized in these benchmarks provide a controlled environment to compare the
performance of various evolutionary algorithms. These parameters are summarized in
Tables 1 and 2.

Table 1. Instance parameter Settings.

Parameter Value

Dimensionality (D) 10
Search Range [−100, 100]D

Rotation Applied to all rotated functions
Shift Applied to all shifted functions

Table 2. Algorithm parameter.

Parameter Value

Population Size 30
Maximum Function Evaluations 1000

A population size of 30 and a dimensionality of 10 provide a balance between com-
putational feasibility and complexity. The maximum number of function evaluations is
defined as 1000, offering sufficient iterations for algorithms to demonstrate convergence
without excessive computational overhead. The search range of [−100, 100]D illustrates a
broad and consistent search space across all dimensions.

The functions often include both rotation and shifting to increase complexity, sim-
ulating more realistic optimization challenges. Noise is intentionally omitted to ensure
that results focus on algorithm robustness in navigating challenging landscapes, rather
than random perturbations. This uniform framework allows a fair comparison of dif-
ferent algorithms, highlighting their strengths and weaknesses across the wide range of
benchmark functions.

6. Evaluated Algorithms

A diverse array of optimization algorithms have been chosen (See Table 3) to provide
a comprehensive comparison across various metaheuristic approaches. This selection is
motivated by the need to evaluate the effectiveness, versatility, and robustness of different
optimization techniques across a range of problem domains. The algorithms selected span
several decades of development, beginning with foundational methods like the Genetic
Algorithm (GA) introduced in the 1960s and the Simulated Annealing (SA) algorithm
from the early 1980s, both of which have become standard benchmarks in the field of
optimization. These classical algorithms have been widely studied and provide a solid
reference point for evaluating newer methods.

Our selection also includes some of the most influential and widely used swarm
intelligence algorithms such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer
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(GWO), and Whale Optimization Algorithm (WOA), which have demonstrated remarkable
performance in solving complex optimization problems. These algorithms have been
chosen not only for their proven efficacy but also for their varying strategies in exploring
and exploiting the search space, thereby providing insights into how different mechanisms
influence the optimization process.

In addition to these, we have included several recent and innovative algorithms such
as the Synergistic Swarm Optimization Algorithm (SSOA), Frilled Lizard Optimization
(FLO), Four Vector Optimizer (FVIM), and Chinese Pangolin Optimizer (CPO). These
algorithms represent the latest advancements in metaheuristic optimization, incorporating
novel mechanisms and hybrid strategies that potentially offer improved performance and
faster convergence rates. By including these cutting-edge techniques, we aim to assess
whether they can outperform or complement the established methods in terms of solution
quality, computational efficiency, and adaptability to different problem landscapes.

Furthermore, we have integrated a variety of nature-inspired algorithms like the
Success History Intelligent Optimizer (SHIO), Remora Optimization Algorithm (ROA),
and Sooty Tern Optimization Algorithm (STOA), each inspired by different biological and
ecological phenomena. These algorithms introduce unique heuristics and search patterns
that contribute to the diversity of approaches in our comparison. The Zebra Optimization
Algorithm (ZOA), Dingo Optimization Algorithm (DOA), and Aquila Optimizer (AO) add
further variety by bringing in concepts from animal behavior and ecological systems, which
are particularly interesting for their balance between exploration and exploitation.

By covering a wide range of algorithmic strategies, from evolutionary algorithms,
swarm intelligence, and hybrid methods to algorithms based on ecological and animal
behavior, we ensure that our comparative analysis is not only thorough but also reflective
of the current state-of-the-art in optimization research. This diverse selection allows us to
examine the performance of each algorithm under various scenarios, thereby identifying
the most suitable techniques for different types of optimization problems. Additionally, by
comparing these algorithms against both classical and contemporary benchmarks, we aim
to provide valuable insights into their relative strengths and weaknesses, contributing to
the ongoing development and refinement of optimization algorithms.

Table 3. Optimization Algorithms.

Acronym Algorithm Name Year

SSOA Synergistic Swarm Optimization Algorithm [37] 2024
FLO Frilled Lizard Optimization [38] 2024
CPO Chinese Pangolin Optimizer [39] 2024
FVIM Four Vector Optimizer [40] 2024
SHIO Success History Intelligent Optimizer [41] 2022
ZOA Zebra Optimization Algorithm [42] 2022
DOA Dingo Optimization Algorithm [43] 2021
ROA Remora Optimization Algorithm [44] 2021
AO Aquila Optimizer [45] 2021
CHIMP Chimp Optimization Algorithm [46] 2020
STOA Sooty Tern Optimization Algorithm [47] 2019
SOA Seagull Optimization Algorithm [48] 2019
SCSO Sand Cat Optimization Algorithm [49] 2023
MVO Multi-Verse Optimizer [50] 2016
WOA Whale Optimization Algorithm [51] 2016
SCA Sine Cosine Algorithm [52] 2016
MFO Moth-Flame Optimization Algorithm [53] 2015
GWO Grey Wolf Optimizer [54] 2014
PSO Particle Swarm Optimization [55] 1995
SA Simulated Annealing Algorithm [56] 1983
GA Genetic Algorithm [57] 1960
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6.1. Quantitative Evaluation

To robustly assess the performance of various optimization algorithms, we utilized
several statistical measures: mean, standard deviation, standard error of the mean (SEM),
and the Wilcoxon sum-rank test. The mean indicates the average performance over mul-
tiple trials, while the standard deviation measures variability, reflecting the algorithm’s
reliability. The rank is used to compare the relative performance of algorithms, with lower-
ranked algorithms showing superior performance. Specifically, the rank for an algorithm
is calculated based on the ordering of mean values across all compared algorithms, as
described by the following equation:

Rank(xi) = RANK(xi, {x1, x2, . . . , xn}, order)

where xi is the value to be ranked, {x1, x2, . . . , xn} is the set of values to rank against, and 1
indicates ascending order.

Additionally, the Wilcoxon sum-rank test was used to evaluate the statistical signifi-
cance of performance differences between two independent samples.

6.2. Results on Benchmark of IEEE Congress on Evolutionary Computation 2022 (CEC2022)

The FVIMDE algorithm showcases exceptional performance across the CEC2022
benchmark functions, as shown in Tables 4 and 5, significantly outperforming the compared
optimizers. For instance, in functions such as F1 and F2, FVIMDE achieves the lowest mean
values, highlighting its superior optimization ability. In F1, FVIMDE records a mean value
of 3.01E+02, which is notably lower than that of FVIM (4.64E+03), STOA (1.88E+03), and
other competitive algorithms like Chimp (2.42E+03) and CPO (1.58E+03). Similarly, in F2,
FVIMDE leads with a mean value of 4.06E+02, surpassing other algorithms such as FLO
(1.27E+03) and SOA(9.44E+02).

When compared to other optimizers, FVIMDE consistently outperforms both classical
algorithms like GA and SA, as well as modern metaheuristic optimizers like WOA and
PSO. For example, in F7, FVIMDE achieves a mean value of 2.02E+03, outperforming
SA (2.03E+03) and WOA (2.06E+03), which are commonly employed for solving complex
optimization problems. Additionally, in F6, FVIMDE delivers a mean value of 1.80E+03,
significantly lower than that of GA (1.53E+07) and SA (4.49E+03), further demonstrating
its capacity to provide more accurate and consistent results.

The robustness of FVIMDE is also evident in its lower standard deviations and stan-
dard errors across these functions, indicating not only its ability to find optimal solutions
but also to do so reliably and consistently. This is a critical advantage in practical applica-
tions where stability and predictability are as crucial as achieving the best solution.

As can be seen in Figures A1 and A2, the boxplot results of the FVIMDE algorithm
compared to other optimizers across various functions in the CEC2022 benchmarks demon-
strate that FVIMDE consistently exhibits lower error measures and less variability. In most
F1–F12 functions, FVIMDE consistently ranks among the algorithms with the smallest
error measures, indicating high accuracy and precision. In contrast, other optimizers, such
as FLO and SSOA, show significantly higher error measures and greater variability, as
evidenced by larger interquartile ranges and more frequent outliers. This suggests that
FVIMDE offers robust performance across different test functions, maintaining stability
where other algorithms struggle with either high error rates or inconsistency in their results.

As seen in Tables A6 and A7, the Wilcoxon rank-sum test results provide a com-
prehensive analysis of how FVIMDE compares with various other optimizers across the
CEC2022 benchmark functions (F1–F12). The test results are categorized as significant (S),
non-significant (N), or equal (E), indicating whether FVIMDE’s performance is significantly
different, not significantly different, or statistically equal to that of the other algorithms.

For most functions, FVIMDE demonstrates statistically significant superiority over
other algorithms, with the majority of the results marked as S (significant). For in-
stance, in functions like F1–F9, FVIMDE consistently achieves significant results against
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all competitors. This is evidenced by extremely low p-values, such as 3.02E-11, indi-
cating that the observed differences in performance are highly unlikely to be due to
chance. These consistent S results across multiple functions underscore FVIMDE’s strong
optimization capabilities.

However, there are a few instances where FVIMDE’s performance is either equal
or not significantly different from that of other algorithms. For example, in F4, while
FVIMDE outperforms most optimizers, its comparison with the AO algorithm results in a
non-significant (N) outcome, suggesting that both algorithms perform similarly for this
particular function. Similarly, in F10, although FVIMDE shows a strong performance,
the comparison with some optimizers results in a mix of S and N outcomes, reflecting
closer competition.

The few E (equal) results, such as in F4 and F12, when compared to specific algorithms,
indicate scenarios where FVIMDE and the competing algorithms perform almost identically.
These E results highlight that while FVIMDE is generally superior, there are certain cases
where it matches the performance of other algorithms rather than exceeding it.

Table 4. Comparison results over CEC2022 benchmarks (F1–F12), run = 30, FES = 1000, agents
No. = 30.

Function FVIMDE FVIM FLO STOA SOA SPBO AO SSOA Chimp CPO ROA

F1 Mean 3.01E+02 4.64E+03 8.72E+03 1.88E+03 2.80E+03 3.23E+04 1.59E+03 1.03E+04 2.42E+03 1.58E+03 8.32E+03
Std 1.29E+00 3.02E+03 1.32E+03 1.62E+03 2.91E+03 9.71E+03 1.13E+03 5.23E+03 9.72E+02 2.43E+03 1.50E+03
Rank 1 14 16 11 13 21 8 17 12 7 15

F2 Mean 4.06E+02 4.39E+02 1.27E+03 4.17E+02 4.80E+02 9.44E+02 4.08E+02 1.25E+03 5.22E+02 4.06E+02 5.14E+02
Std 2.62E+00 3.01E+01 5.53E+02 2.05E+01 1.31E+02 1.52E+02 1.03E+01 3.09E+02 7.96E+01 3.75E+00 2.85E+01
Rank 1 13 22 6 15 20 3 21 17 2 16

F3 Mean 6.00E+02 6.02E+02 6.49E+02 6.12E+02 6.09E+02 6.74E+02 6.13E+02 6.61E+02 6.23E+02 6.46E+02 6.38E+02
Std 6.22E-02 2.19E+00 1.43E+01 7.65E+00 5.26E+00 6.33E+00 6.03E+00 4.62E+00 5.26E+00 1.11E+01 1.36E+01
Rank 1 3 19 8 6 22 9 21 14 18 16

F4 Mean 8.14E+02 8.24E+02 8.43E+02 8.23E+02 8.25E+02 8.98E+02 8.26E+02 8.65E+02 8.29E+02 8.32E+02 8.41E+02
Std 1.04E+01 7.88E+00 1.84E+01 1.01E+01 2.68E+00 9.08E+00 6.74E+00 9.95E+00 7.99E+00 5.43E-01 1.15E+01
Rank 1 7 18 5 8 22 9 19 11 14 16

F5 Mean 9.00E+02 9.06E+02 1.33E+03 9.54E+02 9.94E+02 3.75E+03 9.57E+02 1.70E+03 1.20E+03 1.46E+03 1.27E+03
Std 1.16E-01 1.09E+01 1.77E+02 3.11E+01 9.31E+01 7.05E+02 4.23E+01 1.80E+02 1.37E+02 2.47E+02 1.82E+02
Rank 1 2 15 5 9 22 6 20 13 17 14

F6 Mean 1.80E+03 5.00E+03 5.44E+07 1.69E+04 2.01E+04 2.41E+08 7.33E+03 1.84E+08 1.21E+06 4.86E+03 5.36E+04
Std 1.58E+00 1.91E+03 3.34E+07 6.33E+03 9.40E+03 1.03E+08 2.21E+03 1.89E+08 1.48E+06 2.86E+03 6.98E+04
Rank 1 10 20 13 14 22 12 21 16 9 15

F7 Mean 2.02E+03 2.03E+03 2.09E+03 2.04E+03 2.03E+03 2.17E+03 2.03E+03 2.15E+03 2.06E+03 2.07E+03 2.07E+03
Std 5.42E+00 1.10E+01 3.07E+01 6.81E+00 8.54E+00 3.46E+01 6.24E+00 1.67E+01 8.08E+00 1.79E+01 1.24E+01
Rank 1 6 19 7 5 22 4 21 13 16 17

F8 Mean 2.21E+03 2.23E+03 2.26E+03 2.23E+03 2.23E+03 2.66E+03 2.23E+03 2.38E+03 2.28E+03 2.28E+03 2.23E+03
Std 5.50E+00 1.33E+00 3.81E+01 3.23E+00 2.50E+00 7.91E+02 1.14E+00 1.01E+02 6.54E+01 5.91E+01 2.85E+00
Rank 1 6 17 10 9 22 5 21 18 19 15

F9 Mean 2.53E+03 2.60E+03 2.76E+03 2.57E+03 2.56E+03 2.73E+03 2.57E+03 2.77E+03 2.58E+03 2.58E+03 2.67E+03
Std 5.30E-09 3.24E+01 1.20E+02 4.49E+01 4.00E+01 6.54E+01 3.06E+01 2.86E+01 2.16E+01 5.92E+01 3.15E+01
Rank 1 15 21 11 6 20 8 22 13 12 18

F10 Mean 2.51E+03 2.60E+03 2.81E+03 2.50E+03 2.50E+03 2.59E+03 2.55E+03 2.59E+03 2.70E+03 2.64E+03 2.57E+03
Std 2.92E+01 5.39E+01 1.44E+02 1.83E-01 6.36E-02 5.49E+01 6.11E+01 5.55E+01 4.38E+02 7.71E+01 8.45E+01
Rank 6 17 21 1 2 16 9 15 20 19 13

F11 Mean 2.60E+03 2.93E+03 3.69E+03 2.72E+03 2.78E+03 3.60E+03 2.66E+03 3.73E+03 3.29E+03 2.78E+03 2.87E+03
Std 1.67E-01 2.08E+02 4.85E+02 5.57E+01 1.43E+01 3.03E+02 7.94E+01 4.08E+02 7.33E+01 1.81E+02 8.20E+01
Rank 1 17 21 6 9 20 4 22 19 10 16

F12 Mean 2.86E+03 2.88E+03 3.05E+03 2.86E+03 2.86E+03 2.89E+03 2.87E+03 3.10E+03 2.87E+03 2.95E+03 2.95E+03
Std 1.59E+00 1.99E+01 6.06E+01 5.46E-01 3.50E-01 6.08E+00 5.10E+00 1.63E+02 1.36E-01 1.04E+02 3.46E+01
Rank 1 13 21 3 4 15 8 22 6 19 18
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Table 5. Continue comparison results over CEC2022 benchmarks (F1–F12), run = 30, FES = 1000,
agents No. = 30.

Function WOA PSO MFO SHIO ZOA MTDE SCA DOA SCSO GA SA

F1 Mean 1.39E+04 7.13E+02 1.79E+03 1.20E+03 4.84E+02 1.38E+04 1.72E+03 1.54E+03 5.11E+02 5.16E+04 1.07E+04
Std 7.02E+03 5.97E+02 2.08E+03 1.07E+03 3.34E+01 3.65E+03 3.92E+02 1.31E+03 1.95E+02 1.37E+04 2.34E+03
Rank 20 4 10 5 2 19 9 6 3 22 18

F2 Mean 4.20E+02 4.12E+02 4.26E+02 4.10E+02 4.36E+02 5.38E+02 4.62E+02 4.36E+02 4.36E+02 7.77E+02 4.20E+02
Std 3.00E+01 1.43E+01 3.31E+01 1.12E+01 2.67E+01 2.57E+01 1.44E+01 3.96E+01 3.89E+01 2.98E+02 5.01E+00
Rank 8 5 9 4 11 18 14 10 12 19 7

F3 Mean 6.39E+02 6.00E+02 6.03E+02 6.07E+02 6.13E+02 6.33E+02 6.16E+02 6.18E+02 6.14E+02 6.59E+02 6.11E+02
Std 9.65E+00 7.64E-02 5.46E+00 9.03E+00 5.24E+00 4.88E+00 1.69E+00 1.19E+01 9.72E+00 1.25E+01 3.00E+00
Rank 17 2 4 5 10 15 12 13 11 20 7

F4 Mean 8.29E+02 8.21E+02 8.28E+02 8.22E+02 8.23E+02 8.71E+02 8.36E+02 8.22E+02 8.31E+02 8.67E+02 8.42E+02
Std 1.61E+01 2.19E+00 4.62E+00 4.06E+00 4.84E+00 7.80E+00 6.10E+00 1.11E+01 8.66E+00 2.02E+01 8.79E+00
Rank 12 2 10 4 6 21 15 3 13 20 17

F5 Mean 1.79E+03 9.07E+02 9.35E+02 9.76E+02 1.01E+03 1.50E+03 9.69E+02 1.11E+03 1.06E+03 1.36E+03 1.47E+03
Std 6.44E+02 5.68E+00 4.03E+01 1.44E+02 6.07E+01 1.92E+02 1.65E+01 1.31E+02 2.09E+02 1.02E+02 1.24E+02
Rank 21 3 4 8 10 19 7 12 11 16 18

F6 Mean 3.19E+03 3.89E+03 5.21E+03 2.81E+03 3.06E+03 9.43E+06 1.58E+06 2.00E+03 4.14E+03 1.53E+07 4.49E+03
Std 1.43E+03 2.41E+03 2.92E+03 9.00E+02 1.35E+03 8.21E+06 1.87E+06 1.61E+02 1.74E+03 1.88E+07 2.15E+03
Rank 5 6 11 3 4 18 17 2 7 19 8

F7 Mean 2.06E+03 2.02E+03 2.04E+03 2.06E+03 2.04E+03 2.08E+03 2.05E+03 2.04E+03 2.06E+03 2.12E+03 2.03E+03
Std 1.63E+01 3.94E-01 3.42E+01 3.75E+01 2.03E+01 6.82E+00 9.86E+00 2.31E+01 1.63E+01 2.19E+01 2.24E+00
Rank 15 2 8 14 9 18 11 10 12 20 3

F8 Mean 2.23E+03 2.23E+03 2.23E+03 2.23E+03 2.22E+03 2.24E+03 2.23E+03 2.23E+03 2.22E+03 2.32E+03 2.23E+03
Std 5.45E+00 2.32E+00 4.13E+00 7.04E+00 1.86E+00 1.12E+01 3.54E+00 6.79E+00 3.55E+00 6.58E+01 2.79E+00
Rank 14 8 7 11 2 16 13 12 3 20 4

F9 Mean 2.54E+03 2.55E+03 2.53E+03 2.58E+03 2.62E+03 2.63E+03 2.56E+03 2.57E+03 2.57E+03 2.73E+03 2.53E+03
Std 1.86E+01 2.11E+01 1.41E+00 3.07E+01 4.78E+01 4.12E+01 9.42E+00 5.07E+01 5.24E+01 7.33E+01 1.87E+00
Rank 4 5 2 14 16 17 7 10 9 19 3

F10 Mean 2.53E+03 2.57E+03 2.50E+03 2.61E+03 2.55E+03 2.51E+03 2.50E+03 2.55E+03 2.58E+03 2.86E+03 2.50E+03
Std 6.65E+01 5.98E+01 1.64E+00 7.69E+01 6.89E+01 1.05E+01 2.88E-01 7.18E+01 6.81E+01 6.49E+02 2.44E-01
Rank 8 12 4 18 10 7 5 11 14 22 3

F11 Mean 2.87E+03 2.65E+03 2.66E+03 2.81E+03 2.71E+03 2.86E+03 2.78E+03 2.74E+03 2.84E+03 3.26E+03 2.78E+03
Std 2.08E+02 7.09E+01 8.71E+01 1.62E+02 9.68E+01 7.05E+01 6.92E+00 5.04E+01 2.06E+02 4.94E+02 7.56E+00
Rank 15 2 3 12 5 14 8 7 13 18 11

F12 Mean 2.88E+03 2.86E+03 2.86E+03 2.88E+03 2.92E+03 2.89E+03 2.87E+03 2.91E+03 2.87E+03 3.04E+03 2.87E+03
Std 2.66E+01 1.82E+00 1.08E+00 1.87E+01 2.10E+01 2.84E+00 1.68E+00 6.40E+01 5.77E+00 8.20E+01 7.08E-01
Rank 12 5 2 11 17 14 9 16 10 20 7

6.3. Results over 2017 IEEE Congress on Evolutionary Computation (CEC2017)

The FVIMDE algorithm continues to demonstrate its robustness and efficiency across
the CEC2017 benchmark functions, as shown in Tables 6 and 7, outperforming many other
algorithms in various instances. For example, in F1, FVIMDE achieves a mean value
of 3.21E+03, which is significantly better than those obtained by algorithms like FLO
(1.14E+10) and ROA (4.06E+09). This highlights FVIMDE’s ability to find more optimal
solutions where other optimizers struggle. Similarly, in F2, FVIMDE’s mean of 1.51E+03
outperforms FVIM (3.00E+07) and STOA (1.98E+07), showcasing its efficiency in dealing
with complex optimization landscapes.

In addition to these successes, FVIMDE outperforms several modern metaheuristic
optimizers. For instance, in F3, FVIMDE achieves a mean value of 3.01E+02, outclassing
MFO (1.60E+04) and SHIO (7.13E+03). Moreover, in F5, FVIMDE leads with a mean value
of 5.17E+02, demonstrating its superiority over FVIM (5.25E+02) and STOA (5.24E+02).
This trend of outperformance continues in F6, where FVIMDE ranks first with a mean value
of 6.00E+02, outperforming even well-regarded algorithms like PSO (6.15E+02) and SA
(6.12E+02).
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Table 6. Comparison results over CEC2017 benchmarks (F1–F30), run = 30, FES = 1000, agents
No. = 30.

Function FVIMDE FVIM FLO STOA SOA SPBO AO SSOA Chimp CPO ROA

F1 Mean 3.21E+03 5.68E+06 1.14E+10 1.99E+08 3.47E+08 8.71E+09 8.43E+05 1.17E+10 1.52E+09 2.21E+03 4.06E+09
Std 1.66E+03 1.03E+07 3.75E+09 2.05E+08 1.81E+08 3.09E+09 4.58E+05 2.56E+09 1.50E+09 2.21E+03 1.97E+09
SEM 6.78E+02 4.19E+06 1.53E+09 8.38E+07 7.41E+07 1.26E+09 1.87E+05 1.04E+09 6.14E+08 9.03E+02 8.03E+08
Rank 3 6 20 11 12 19 4 21 15 1 17

F2 Mean 1.51E+03 3.00E+07 4.12E+11 1.98E+07 2.08E+07 3.76E+10 6.11E+06 6.28E+12 6.65E+08 7.42E+03 9.54E+10
Std 3.21E+03 7.31E+07 5.31E+11 2.14E+07 2.28E+07 3.94E+10 8.48E+06 1.03E+13 1.03E+09 1.05E+04 1.26E+11
SEM 1.31E+03 2.98E+07 2.17E+11 8.75E+06 9.30E+06 1.61E+10 3.46E+06 4.22E+12 4.21E+08 4.29E+03 5.15E+10
Rank 2 11 19 8 10 17 6 20 16 3 18

F3 Mean 3.01E+02 5.93E+03 1.40E+04 2.79E+03 1.72E+03 4.09E+04 9.28E+02 1.49E+04 2.95E+03 3.56E+02 1.13E+04
Std 1.08E+00 5.23E+03 2.79E+03 1.47E+03 1.66E+03 7.70E+03 4.53E+02 3.14E+03 1.12E+03 6.92E+01 4.29E+03
SEM 4.40E-01 2.14E+03 1.14E+03 6.00E+02 6.78E+02 3.14E+03 1.85E+02 1.28E+03 4.58E+02 2.83E+01 1.75E+03
Rank 1 13 17 9 7 20 4 18 10 3 15

F4 Mean 4.01E+02 4.15E+02 1.24E+03 4.50E+02 4.72E+02 1.32E+03 4.19E+02 1.23E+03 5.81E+02 4.06E+02 7.31E+02
Std 4.07E-01 1.88E+01 2.73E+02 2.94E+01 4.62E+01 3.14E+02 2.20E+01 4.56E+02 1.42E+02 1.14E+00 1.40E+02
SEM 1.66E-01 7.66E+00 1.11E+02 1.20E+01 1.88E+01 1.28E+02 8.98E+00 1.86E+02 5.81E+01 4.66E-01 5.72E+01
Rank 1 4 20 11 13 21 6 19 16 3 17

F5 Mean 5.17E+02 5.25E+02 5.92E+02 5.24E+02 5.25E+02 6.09E+02 5.25E+02 6.05E+02 5.59E+02 5.71E+02 5.77E+02
Std 8.72E+00 5.05E+00 1.86E+01 4.43E+00 9.76E+00 1.04E+01 5.40E+00 1.67E+01 1.32E+01 1.89E+01 1.36E+01
SEM 3.56E+00 2.06E+00 7.59E+00 1.81E+00 3.98E+00 4.25E+00 2.20E+00 6.80E+00 5.38E+00 7.70E+00 5.57E+00
Rank 1 4 18 2 5 21 3 20 15 16 17

F6 Mean 6.00E+02 6.02E+02 6.55E+02 6.13E+02 6.14E+02 6.71E+02 6.15E+02 6.60E+02 6.24E+02 6.45E+02 6.44E+02
Std 2.45E-02 1.33E+00 1.08E+01 4.47E+00 6.79E+00 1.03E+01 5.18E+00 4.61E+00 6.74E+00 1.34E+01 1.30E+01
SEM 9.99E-03 5.45E-01 4.40E+00 1.82E+00 2.77E+00 4.22E+00 2.11E+00 1.88E+00 2.75E+00 5.47E+00 5.32E+00
Rank 1 2 18 6 7 20 8 19 13 17 16

F7 Mean 7.23E+02 7.34E+02 8.16E+02 7.60E+02 7.57E+02 1.17E+03 7.49E+02 8.23E+02 8.01E+02 7.89E+02 8.06E+02
Std 1.21E+01 1.44E+01 1.41E+01 7.93E+00 2.13E+01 4.57E+01 1.66E+01 1.97E+01 2.00E+01 3.72E+01 3.07E+01
SEM 4.95E+00 5.86E+00 5.75E+00 3.24E+00 8.71E+00 1.86E+01 6.79E+00 8.03E+00 8.17E+00 1.52E+01 1.25E+01
Rank 1 2 17 10 8 21 6 19 15 13 16

F8 Mean 8.13E+02 8.11E+02 8.66E+02 8.28E+02 8.27E+02 9.27E+02 8.25E+02 8.72E+02 8.39E+02 8.35E+02 8.49E+02
Std 6.82E+00 3.20E+00 1.31E+01 1.25E+01 1.01E+01 1.19E+01 9.62E-01 7.60E+00 9.41E+00 3.98E-01 9.34E+00
SEM 2.78E+00 1.31E+00 5.36E+00 5.09E+00 4.11E+00 4.87E+00 3.93E-01 3.10E+00 3.84E+00 1.63E-01 3.81E+00
Rank 2 1 18 8 6 21 5 19 14 11 17

F9 Mean 9.00E+02 9.64E+02 1.55E+03 9.98E+02 9.96E+02 4.17E+03 1.03E+03 1.87E+03 1.62E+03 1.83E+03 1.71E+03
Std 7.02E-02 1.01E+02 1.81E+02 8.59E+01 4.52E+01 5.29E+02 1.18E+02 3.84E+02 2.91E+02 2.13E+02 3.35E+02
SEM 2.87E-02 4.12E+01 7.37E+01 3.51E+01 1.85E+01 2.16E+02 4.82E+01 1.57E+02 1.19E+02 8.69E+01 1.37E+02
Rank 1 2 14 5 4 21 9 19 15 18 16

F10 Mean 1.45E+03 1.65E+03 2.79E+03 1.88E+03 2.05E+03 2.65E+03 1.97E+03 3.25E+03 2.94E+03 2.73E+03 2.40E+03
Std 6.81E+01 3.57E+02 1.40E+02 3.27E+02 2.66E+02 8.75E+01 2.48E+02 2.66E+02 9.78E+01 6.54E+02 4.72E+02
SEM 2.78E+01 1.46E+02 5.72E+01 1.33E+02 1.09E+02 3.57E+01 1.01E+02 1.09E+02 3.99E+01 2.67E+02 1.93E+02
Rank 1 3 18 6 10 15 8 21 19 17 13

F11 Mean 1.11E+03 1.90E+03 4.42E+03 1.26E+03 1.25E+03 4.21E+03 1.21E+03 6.78E+03 1.29E+03 1.24E+03 4.29E+03
Std 5.02E+00 1.84E+03 2.70E+03 8.33E+01 9.09E+01 8.75E+02 5.16E+01 3.89E+03 1.15E+02 9.75E+01 4.07E+03
SEM 2.05E+00 7.49E+02 1.10E+03 3.40E+01 3.71E+01 3.57E+02 2.10E+01 1.59E+03 4.70E+01 3.98E+01 1.66E+03
Rank 1 16 19 12 11 17 8 21 13 10 18

F12 Mean 1.65E+03 7.80E+05 5.00E+08 8.21E+05 1.99E+06 8.12E+08 3.07E+06 4.92E+08 6.80E+06 4.01E+06 3.72E+07
Std 1.97E+02 6.24E+05 3.76E+08 6.17E+05 3.24E+06 2.09E+08 2.63E+06 5.76E+08 3.19E+06 5.35E+06 3.35E+07
SEM 8.04E+01 2.55E+05 1.54E+08 2.52E+05 1.32E+06 8.55E+07 1.08E+06 2.35E+08 1.30E+06 2.18E+06 1.37E+07
Rank 1 6 20 7 9 21 10 19 13 11 17

F13 Mean 1.32E+03 1.32E+04 1.22E+07 1.78E+04 2.14E+04 2.39E+08 8.04E+03 1.40E+07 2.90E+04 1.37E+04 7.98E+04
Std 3.42E+00 8.11E+03 1.86E+07 1.08E+04 1.38E+04 8.00E+07 5.65E+03 2.25E+07 2.30E+04 9.01E+03 7.65E+04
SEM 1.40E+00 3.31E+03 7.58E+06 4.41E+03 5.62E+03 3.27E+07 2.31E+03 9.19E+06 9.38E+03 3.68E+03 3.12E+04
Rank 1 6 18 11 13 21 4 19 15 8 17

F14 Mean 1.42E+03 4.16E+03 5.74E+03 3.02E+03 2.38E+03 1.28E+06 2.39E+03 2.62E+04 5.80E+03 5.81E+03 2.17E+03
Std 1.10E+01 2.09E+03 7.75E+03 2.19E+03 1.62E+03 1.81E+06 7.05E+02 5.02E+04 2.46E+02 3.06E+03 1.12E+03
SEM 4.48E+00 8.53E+02 3.16E+03 8.92E+02 6.61E+02 7.40E+05 2.88E+02 2.05E+04 1.00E+02 1.25E+03 4.56E+02
Rank 1 13 16 12 8 20 9 19 17 18 7

F15 Mean 1.50E+03 6.31E+03 1.21E+04 4.45E+03 4.65E+03 5.82E+06 4.42E+03 2.12E+04 1.14E+04 4.23E+04 7.99E+03
Std 2.49E+00 2.74E+03 3.86E+03 1.70E+03 4.71E+03 1.15E+07 2.41E+03 3.90E+03 8.64E+03 4.37E+04 4.42E+03
SEM 1.02E+00 1.12E+03 1.58E+03 6.95E+02 1.92E+03 4.71E+06 9.83E+02 1.59E+03 3.53E+03 1.78E+04 1.80E+03
Rank 1 12 16 9 10 21 8 18 15 19 13
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The consistent performance of FVIMDE across these benchmarks, including more
challenging ones like F10 and F11, further cements its position as a top contender in the
field of optimization. In F10, FVIMDE achieves the best mean value of 1.45E+03, surpassing
FVIM (1.65E+03) and even sophisticated algorithms like MTDE (1.01E+04). Similarly, in
F11, FVIMDE records a mean value of 1.11E+03, significantly outperforming GA (6.05E+03)
and other algorithms like DOA (1.61E+03).

Table 7. Comparison results over CEC2017 benchmarks (F1–F30), run = 30, FES = 1000, agents
No. = 30.

Function WOA PSO MFO SHIO ZOA MTDE SCA DOA SCSO GA SA

F1 Mean 3.74E+06 2.54E+03 2.34E+07 7.84E+07 5.27E+08 1.80E+11 7.23E+08 2.31E+09 1.52E+07 4.94E+09 4.98E+07
Std 1.89E+06 2.41E+03 3.62E+07 1.91E+08 7.65E+08 8.91E+09 2.26E+08 2.23E+09 2.17E+07 2.93E+09 2.29E+07
Rank 5 2 8 10 13 22 14 16 7 18 9

F2 Mean 3.58E+06 2.00E+02 5.17E+07 3.39E+08 2.03E+07 3.47E+54 5.25E+07 6.87E+07 1.32E+07 9.90E+15 6.74E+05
Std 8.62E+06 5.22E-05 1.23E+08 7.89E+08 2.20E+07 3.77E+54 4.37E+07 1.63E+08 2.05E+07 2.42E+16 4.18E+05
Rank 5 1 12 15 9 22 13 14 7 21 4

F3 Mean 4.50E+03 3.01E+02 1.60E+04 7.13E+03 1.53E+03 1.68E+14 2.59E+03 3.92E+03 1.59E+03 4.88E+04 1.30E+04
Std 5.00E+03 3.60E-14 9.91E+03 5.37E+03 1.72E+03 7.39E+13 1.11E+03 1.99E+03 1.62E+03 2.16E+04 1.59E+03
Rank 12 2 19 14 5 22 8 11 6 21 16

F4 Mean 4.72E+02 4.02E+02 4.24E+02 4.39E+02 4.22E+02 3.18E+04 4.67E+02 5.15E+02 4.44E+02 1.01E+03 4.16E+02
Std 8.45E+01 1.19E+00 3.76E+01 3.74E+01 2.83E+01 4.23E+03 4.51E+01 7.56E+01 4.83E+01 2.18E+02 5.51E+00
Rank 14 2 8 9 7 22 12 15 10 18 5

F5 Mean 5.56E+02 5.42E+02 5.29E+02 5.32E+02 5.43E+02 1.26E+03 5.53E+02 5.54E+02 5.32E+02 6.01E+02 5.26E+02
Std 2.11E+01 1.71E+01 7.81E+00 9.25E+00 2.58E+01 2.70E+01 8.07E+00 1.87E+01 1.45E+01 2.55E+01 7.20E+00
Rank 14 10 7 8 11 22 12 13 9 19 6

F6 Mean 6.38E+02 6.15E+02 6.03E+02 6.05E+02 6.19E+02 7.24E+02 6.16E+02 6.28E+02 6.20E+02 6.73E+02 6.12E+02
Std 1.27E+01 1.17E+01 3.05E+00 6.75E+00 8.09E+00 5.06E+00 2.27E+00 1.33E+01 9.41E+00 1.13E+01 2.33E+00
Rank 15 9 3 4 11 22 10 14 12 21 5

F7 Mean 8.17E+02 7.36E+02 7.42E+02 7.49E+02 7.53E+02 3.65E+03 7.74E+02 8.00E+02 7.73E+02 8.97E+02 7.57E+02
Std 3.74E+01 7.14E+00 1.34E+01 1.64E+01 1.51E+01 2.34E+02 5.34E+00 5.89E+01 3.11E+01 8.85E+01 1.39E+01
Rank 18 3 4 5 7 22 12 14 11 20 9

F8 Mean 8.39E+02 8.23E+02 8.36E+02 8.28E+02 8.15E+02 1.46E+03 8.46E+02 8.43E+02 8.29E+02 8.77E+02 8.31E+02
Std 1.88E+01 4.67E+00 1.59E+01 1.50E+01 7.91E+00 3.96E+01 8.15E+00 1.08E+01 6.67E+00 1.16E+01 6.38E+00
Rank 13 4 12 7 3 22 16 15 9 20 10

F9 Mean 1.73E+03 9.78E+02 1.01E+03 1.15E+03 1.09E+03 3.33E+04 1.02E+03 1.39E+03 1.00E+03 2.61E+03 1.19E+03
Std 7.62E+02 1.49E+02 1.79E+02 2.25E+02 1.03E+02 4.14E+03 3.14E+01 3.41E+02 1.33E+02 7.79E+02 1.47E+02
Rank 17 3 7 11 10 22 8 13 6 20 12

F10 Mean 2.23E+03 1.75E+03 1.91E+03 2.04E+03 1.75E+03 1.01E+04 2.43E+03 2.66E+03 2.17E+03 2.95E+03 1.62E+03
Std 2.51E+02 2.71E+02 1.53E+02 3.02E+02 2.07E+02 2.51E+02 2.15E+02 5.74E+02 2.02E+02 2.35E+02 1.71E+02
Rank 12 4 7 9 5 22 14 16 11 20 2

F11 Mean 1.30E+03 1.13E+03 1.14E+03 1.17E+03 1.14E+03 1.88E+09 1.22E+03 1.61E+03 1.15E+03 6.05E+03 1.17E+03
Std 7.05E+01 1.23E+01 3.55E+01 3.71E+01 2.07E+01 1.01E+09 3.19E+01 6.64E+02 2.55E+01 5.31E+03 2.96E+01
Rank 14 2 4 6 3 22 9 15 5 20 7

F12 Mean 9.96E+06 1.75E+04 9.01E+06 6.50E+05 9.18E+05 2.57E+10 1.40E+07 4.50E+06 6.14E+05 1.87E+08 5.50E+05
Std 8.01E+06 1.62E+04 8.91E+06 1.07E+06 6.61E+05 2.91E+09 7.47E+06 7.20E+06 5.93E+05 1.79E+08 2.93E+05
Rank 15 2 14 5 8 22 16 12 4 18 3

F13 Mean 1.33E+04 1.17E+04 1.44E+04 2.01E+04 1.45E+04 1.22E+10 4.40E+04 2.41E+03 2.27E+04 3.52E+07 2.05E+03
Std 8.83E+03 8.31E+03 1.44E+04 2.19E+04 5.70E+03 1.94E+09 3.52E+04 4.64E+02 1.71E+04 3.61E+07 4.11E+02
Rank 7 5 9 12 10 22 16 3 14 20 2

F14 Mean 1.73E+03 1.93E+03 2.72E+03 4.65E+03 5.45E+03 4.41E+08 1.65E+03 1.46E+03 2.83E+03 1.52E+06 1.56E+03
Std 1.72E+02 7.68E+02 7.72E+02 1.56E+03 2.61E+03 1.51E+08 1.09E+02 1.84E+01 1.97E+03 1.56E+06 7.43E+01
Rank 5 6 10 14 15 22 4 2 11 21 3

F15 Mean 8.49E+03 2.18E+03 1.47E+04 2.76E+03 5.48E+03 7.53E+09 2.59E+03 2.00E+03 3.92E+03 1.35E+06 1.66E+03
Std 5.74E+03 6.07E+02 1.24E+04 1.32E+03 2.23E+03 1.81E+09 1.06E+03 5.86E+02 1.10E+03 3.06E+06 5.46E+01
Rank 14 4 17 6 11 22 5 3 7 20 2

The performance of FVIMDE in comparison to other optimization algorithms on the
CEC2017 benchmark functions, as detailed in Tables 8 and 9, shows its significant capability
to outperform many of its peers across various functions. For instance, in F16, FVIMDE
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achieves the lowest mean value of 1.61E+03, outperforming well-established algorithms
like PSO (1.84E+03) and SHIO (1.91E+03). Similarly, in F17, FVIMDE ranks first with a
mean of 1.73E+03, surpassing STOA (1.76E+03) and SOA (1.85E+03).

Table 8. Comparison results over CEC2017 benchmarks (F1–F30), run = 30, FES = 1000, agents
No. = 30.

Function FVIMDE FVIM FLO STOA SOA SPBO AO SSOA Chimp CPO ROA

F16 Mean 1.61E+03 1.92E+03 2.31E+03 1.75E+03 1.74E+03 2.48E+03 1.80E+03 2.30E+03 2.04E+03 2.08E+03 1.99E+03
Std 1.04E+01 1.48E+02 1.46E+02 9.03E+01 1.20E+02 2.87E+02 1.21E+02 1.76E+02 8.58E+01 1.34E+02 1.44E+02
Rank 1 13 20 4 3 21 8 19 16 17 15

F17 Mean 1.73E+03 1.79E+03 1.86E+03 1.76E+03 1.85E+03 2.17E+03 1.77E+03 1.92E+03 1.81E+03 1.87E+03 1.81E+03
Std 7.52E+00 4.65E+01 2.74E+01 1.27E+01 5.95E+01 2.08E+02 1.75E+01 7.46E+01 8.82E+00 1.13E+02 2.12E+01
Rank 1 11 17 4 16 21 5 19 13 18 14

F18 Mean 1.81E+03 1.58E+04 1.10E+08 4.05E+04 4.31E+04 1.61E+08 1.69E+04 1.85E+08 6.36E+04 1.48E+04 7.97E+04
Std 4.24E+00 1.15E+04 2.14E+08 9.32E+03 2.12E+04 1.46E+08 9.84E+03 1.59E+08 7.18E+04 1.30E+04 6.48E+04
Rank 1 7 19 13 14 20 8 21 15 6 16

F19 Mean 1.90E+03 8.26E+03 1.27E+05 6.71E+03 1.69E+04 1.32E+07 4.67E+03 1.08E+06 2.29E+04 1.18E+04 2.44E+04
Std 3.50E-01 5.99E+03 2.59E+05 6.91E+03 9.99E+03 1.46E+07 3.05E+03 3.44E+05 7.25E+03 1.17E+04 1.37E+04
Rank 1 11 18 7 13 21 5 20 14 12 15

F20 Mean 2.00E+03 2.16E+03 2.22E+03 2.12E+03 2.16E+03 2.45E+03 2.12E+03 2.37E+03 2.23E+03 2.33E+03 2.26E+03
Std 7.60E+00 5.72E+01 6.79E+01 5.95E+01 5.91E+01 8.41E+01 6.16E+01 4.37E+01 8.20E+01 1.58E+02 3.66E+01
Rank 1 9 15 6 10 21 5 20 16 19 17

F21 Mean 2.31E+03 2.30E+03 2.37E+03 2.20E+03 2.20E+03 2.39E+03 2.27E+03 2.41E+03 2.31E+03 2.35E+03 2.35E+03
Std 9.17E+00 4.97E+01 7.58E+01 1.15E+00 1.77E+00 4.05E+01 5.99E+01 8.25E+00 6.40E+01 2.10E+01 5.70E+01
Rank 9 8 18 1 2 20 4 21 10 17 16

F22 Mean 2.29E+03 2.35E+03 3.09E+03 3.20E+03 3.44E+03 3.39E+03 2.30E+03 2.95E+03 3.65E+03 2.31E+03 2.67E+03
Std 4.33E+01 3.51E+01 6.29E+02 7.02E+02 5.87E+02 3.37E+02 2.83E+01 2.70E+02 6.59E+02 4.05E+00 2.40E+02
Rank 1 11 17 18 20 19 3 15 21 5 14

F23 Mean 2.62E+03 2.65E+03 2.74E+03 2.63E+03 2.63E+03 2.69E+03 2.64E+03 2.81E+03 2.65E+03 2.68E+03 2.66E+03
Std 1.01E+01 2.19E+01 2.55E+01 5.39E+00 8.14E+00 6.08E+00 1.33E+01 5.56E+01 6.83E+00 2.97E+01 1.90E+01
Rank 1 8 19 2 4 17 6 21 11 15 12

F24 Mean 2.75E+03 2.75E+03 2.93E+03 2.76E+03 2.75E+03 2.83E+03 2.77E+03 2.97E+03 2.81E+03 2.84E+03 2.78E+03
Std 1.42E+01 1.10E+01 7.89E+01 1.11E+01 6.88E+00 1.44E+01 6.72E+00 5.61E+01 1.69E+01 4.81E+01 6.88E+01
Rank 5 4 19 7 6 17 10 21 16 18 12

F25 Mean 2.91E+03 2.94E+03 3.51E+03 2.94E+03 2.94E+03 3.46E+03 2.93E+03 3.30E+03 3.00E+03 2.94E+03 3.16E+03
Std 1.86E+01 2.83E+01 2.02E+02 1.34E+01 2.33E+01 1.15E+02 2.30E+01 9.80E+01 3.23E+01 4.59E+01 2.24E+02
Rank 1 7 21 5 10 20 4 18 15 8 17

F26 Mean 2.90E+03 2.95E+03 4.00E+03 3.32E+03 3.32E+03 4.61E+03 2.97E+03 4.48E+03 4.06E+03 4.16E+03 3.56E+03
Std 3.41E-02 1.11E+02 5.12E+02 5.66E+02 5.04E+02 1.59E+02 1.44E+02 1.24E+02 1.37E+02 3.89E+02 1.40E+02
Rank 1 2 16 11 10 21 4 20 17 18 15

F27 Mean 3.09E+03 3.13E+03 3.32E+03 3.09E+03 3.09E+03 3.13E+03 3.10E+03 3.41E+03 3.10E+03 3.17E+03 3.18E+03
Std 3.26E-01 3.72E+01 7.69E+01 2.42E+00 2.10E+00 7.82E+00 5.91E+00 9.12E+01 6.44E+00 6.56E+01 3.79E+01
Rank 1 13 20 2 3 11 7 21 6 17 18

F28 Mean 3.20E+03 3.46E+03 3.87E+03 3.41E+03 3.27E+03 3.49E+03 3.38E+03 3.88E+03 3.25E+03 3.37E+03 3.58E+03
Std 9.78E+00 1.65E+02 2.31E+01 5.06E+00 1.11E+02 8.06E+01 8.02E+01 1.09E+02 7.86E+00 2.89E+02 2.87E+02
Rank 2 15 20 12 5 16 10 21 4 9 17

F29 Mean 3.15E+03 3.20E+03 3.51E+03 3.18E+03 3.25E+03 3.52E+03 3.22E+03 3.69E+03 3.33E+03 3.34E+03 3.42E+03
Std 1.48E+01 4.82E+01 1.44E+02 4.97E+01 7.55E+01 9.64E+01 3.17E+01 1.66E+02 5.13E+01 1.20E+02 9.42E+01
Rank 1 4 18 2 10 19 6 21 14 15 17

F30 Mean 5.95E+03 1.22E+06 2.28E+07 7.28E+04 2.19E+05 6.59E+06 3.26E+05 5.17E+07 3.91E+06 3.17E+06 8.04E+06
Std 5.45E+03 1.62E+06 1.03E+07 3.16E+04 2.78E+05 2.37E+06 2.98E+05 1.90E+07 2.73E+06 3.36E+06 1.08E+07
Rank 1 13 19 3 5 17 6 21 16 15 18

Moreover, in more complex functions like F18 and F19, FVIMDE maintains its com-
petitive edge. For F18, FVIMDE records the best performance with a mean of 1.81E+03,
significantly outperforming FLO (1.10E+08) and ROA (7.97E+04). Similarly, in F19, FVIMDE
outperforms several algorithms, including FVIM (8.26E+03) and SPBO (1.32E+07), with a
mean value of 1.90E+03.

Furthermore, in F20, FVIMDE once again ranks first with a mean of 2.00E+03, out-
performing sophisticated algorithms like MTDE (2.45E+03) and DOA (2.37E+03). This
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trend continues in F21, where FVIMDE performs commendably with a mean of 2.31E+03,
demonstrating superior results compared to other algorithms such as CPO (2.35E+03) and
ROA (2.35E+03).

Table 9. Comparison results over CEC2017 benchmarks (F1–F30), run = 30, FES = 1000, agents
No. = 30.

Function WOA PSO MFO SHIO ZOA MTDE SCA DOA SCSO GA SA

F16 Mean 1.98E+03 1.84E+03 1.79E+03 1.91E+03 1.85E+03 5.79E+04 1.79E+03 1.90E+03 1.78E+03 2.21E+03 1.73E+03
Std 1.48E+02 1.26E+02 1.72E+02 1.61E+02 4.96E+01 3.46E+03 9.71E+01 1.77E+02 9.63E+01 1.84E+02 4.38E+01
Rank 14 9 7 12 10 22 6 11 5 18 2

F17 Mean 1.78E+03 1.78E+03 1.80E+03 1.82E+03 1.76E+03 6.00E+05 1.78E+03 1.78E+03 1.78E+03 1.99E+03 1.74E+03
Std 1.67E+01 4.36E+01 4.31E+01 8.21E+01 1.49E+01 1.67E+05 1.90E+01 2.61E+01 1.95E+01 2.25E+02 7.53E+00
Rank 10 6 12 15 3 22 8 9 7 20 2

F18 Mean 1.91E+04 1.07E+04 3.25E+04 1.89E+04 1.34E+04 6.84E+08 2.90E+05 1.39E+04 2.80E+04 7.33E+06 4.75E+03
Std 1.28E+04 7.28E+03 8.12E+03 1.50E+04 7.40E+03 3.04E+08 3.16E+05 2.10E+04 1.24E+04 1.04E+07 1.60E+03
Rank 10 3 12 9 4 22 17 5 11 18 2

F19 Mean 3.35E+04 6.95E+03 3.68E+03 6.51E+03 3.96E+04 5.63E+09 3.15E+03 7.76E+03 8.20E+03 9.56E+05 2.03E+03
Std 3.95E+04 3.75E+03 2.17E+03 6.84E+03 8.07E+04 1.37E+09 1.45E+03 1.21E+04 6.84E+03 1.07E+06 8.48E+01
Rank 16 8 4 6 17 22 3 9 10 19 2

F20 Mean 2.17E+03 2.13E+03 2.11E+03 2.21E+03 2.08E+03 3.49E+03 2.14E+03 2.19E+03 2.17E+03 2.29E+03 2.04E+03
Std 9.51E+01 9.79E+01 5.82E+01 8.46E+01 3.65E+01 1.25E+02 3.79E+01 7.79E+01 3.22E+01 1.13E+02 7.15E+00
Rank 11 7 4 14 3 22 8 13 12 18 2

F21 Mean 2.31E+03 2.32E+03 2.33E+03 2.29E+03 2.31E+03 2.94E+03 2.28E+03 2.34E+03 2.27E+03 2.38E+03 2.25E+03
Std 7.17E+01 5.92E+01 1.33E+01 6.62E+01 5.23E+01 2.94E+01 6.84E+01 7.78E+00 6.83E+01 5.51E+01 4.83E+01
Rank 12 13 14 7 11 22 6 15 5 19 3

F22 Mean 2.30E+03 2.29E+03 2.31E+03 2.33E+03 2.34E+03 1.17E+04 2.39E+03 2.48E+03 2.31E+03 3.01E+03 2.31E+03
Std 3.71E+01 3.07E+01 1.87E+01 4.26E+01 2.09E+01 2.19E+02 3.92E+01 1.56E+02 1.06E+01 5.18E+02 1.64E+01
Rank 4 2 7 9 10 22 12 13 8 16 6

F23 Mean 2.66E+03 2.73E+03 2.63E+03 2.64E+03 2.68E+03 5.04E+03 2.66E+03 2.65E+03 2.65E+03 2.80E+03 2.63E+03
Std 2.88E+01 6.59E+01 1.04E+01 1.33E+01 1.05E+01 1.08E+02 1.03E+01 1.87E+01 1.78E+01 2.99E+01 7.11E+00
Rank 14 18 5 7 16 22 13 10 9 20 3

F24 Mean 2.67E+03 2.76E+03 2.76E+03 2.72E+03 2.79E+03 5.62E+03 2.79E+03 2.80E+03 2.78E+03 2.94E+03 2.59E+03
Std 1.24E+02 1.30E+02 4.75E+00 8.67E+01 2.20E+01 8.25E+01 3.80E+00 1.25E+02 1.15E+01 7.81E+01 3.43E+01
Rank 2 9 8 3 13 22 14 15 11 20 1

F25 Mean 2.95E+03 2.93E+03 2.94E+03 2.96E+03 2.98E+03 1.12E+04 2.97E+03 3.06E+03 2.93E+03 3.35E+03 2.94E+03
Std 4.91E+01 2.31E+01 2.79E+01 2.81E+01 1.03E+02 1.10E+03 9.04E+00 9.58E+01 2.06E+01 2.58E+02 1.29E+01
Rank 11 2 9 12 14 22 13 16 3 19 6

F26 Mean 3.40E+03 3.05E+03 2.96E+03 3.30E+03 3.47E+03 2.72E+04 3.08E+03 3.47E+03 3.16E+03 4.47E+03 3.06E+03
Std 4.10E+02 2.41E+02 9.66E+01 4.86E+02 3.40E+02 1.09E+03 3.83E+01 3.27E+02 2.19E+02 3.92E+02 9.13E+01
Rank 12 5 3 9 13 22 7 14 8 19 6

F27 Mean 3.14E+03 3.15E+03 3.09E+03 3.13E+03 3.16E+03 5.56E+03 3.10E+03 3.12E+03 3.10E+03 3.29E+03 3.10E+03
Std 3.71E+01 5.12E+01 2.85E+00 3.49E+01 3.61E+01 9.16E+01 2.53E+00 8.10E+00 1.06E+01 7.97E+01 3.74E+00
Rank 14 15 4 12 16 22 8 10 9 19 5

F28 Mean 3.41E+03 3.18E+03 3.39E+03 3.41E+03 3.37E+03 1.20E+04 3.37E+03 3.58E+03 3.35E+03 3.86E+03 3.24E+03
Std 1.32E+02 5.02E+01 4.29E+01 3.51E+01 1.25E+02 9.36E+02 1.52E+02 2.79E+02 1.93E+02 2.23E+02 3.75E+01
Rank 13 1 11 14 8 22 7 18 6 19 3

F29 Mean 3.37E+03 3.21E+03 3.28E+03 3.23E+03 3.23E+03 4.17E+05 3.24E+03 3.25E+03 3.30E+03 3.53E+03 3.19E+03
Std 5.43E+01 3.38E+01 6.76E+01 6.73E+01 6.01E+01 2.26E+05 4.28E+01 8.30E+01 4.50E+01 1.76E+02 4.56E+01
Rank 16 5 12 7 8 22 9 11 13 20 3

F30 Mean 1.76E+06 1.37E+04 7.14E+05 7.74E+05 7.48E+05 9.88E+09 1.21E+06 8.17E+05 7.46E+05 3.01E+07 1.15E+05
Std 2.18E+06 5.82E+03 6.87E+05 1.12E+06 1.07E+06 5.52E+08 9.02E+05 1.20E+06 1.25E+06 1.90E+07 1.15E+05
Rank 14 2 7 10 9 22 12 11 8 20 4

The Wilcoxon rank-sum test results for the CEC2017 benchmark functions (F1–F30)
provide an in-depth analysis of how FVIMDE compares with various other optimization
algorithms, as seen in Tables A8 and A9. These results are presented in terms of signifi-
cance (S), non-significance (N), or equality (E), indicating whether FVIMDE’s performance
is significantly different, not significantly different, or statistically equal to that of the
competing algorithms.
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Across the majority of the benchmark functions, FVIMDE shows a statistically signifi-
cant performance advantage over other algorithms, with almost all comparisons marked as
S. Specifically, in functions like F2, F4, F6, F9, and F12, FVIMDE consistently outperforms
the other algorithms, achieving significant results with extremely low p-values, such as
3.02E-11. This consistency across multiple functions highlights FVIMDE’s robustness and
efficacy as an optimization algorithm.

There are a few cases where the comparisons yield equal (E) results, indicating that
FVIMDE’s performance is statistically on par with other algorithms. For example, in F1,
FVIMDE shows a non-significant result (N) when compared to CPO and an equal result (E)
when compared to the MFO and GA algorithms. These results suggest that while FVIMDE
generally excels, it performs similarly to these specific algorithms for certain functions.

The boxplot results for the FVIMDE algorithm in comparison with other optimizers
across the CEC2017 benchmarks (F1–F12) (see Figures A3 and A4) reveal a consistent
trend of superior performance. FVIMDE exhibits minimal error measures and significantly
lower variance in comparison to other algorithms. For example, in functions like F1, F2,
and F7, FVIMDE’s error measures are close to zero, indicating its effectiveness in opti-
mization. Other algorithms, such as MTDE and SPBO, show much higher error measures
with substantial variability, particularly evident in F7 and F9, where the error measures
reach extreme values. Moreover, in functions like F10 and F12, FVIMDE outperforms
by maintaining a lower error distribution compared to the others, which display higher
medians and larger interquartile ranges. This highlights FVIMDE’s robustness and stability
across a diverse set of optimization problems, positioning it as a highly reliable choice for
optimization tasks, particularly when precision and consistency are paramount.

The boxplot results for FVIMDE across the CEC2017 benchmarks (F13–F24), as shown
in Figures A5 and A6, further reinforce its consistent and superior performance. In all
functions, FVIMDE demonstrates minimal error measures, often near zero, and exhibits
low variance. This stability and precision are contrasted with other algorithms such as
MTDE, which frequently show larger error measures and greater variability. For instance,
in functions like F13, F15, F19, and F22, MTDE presents significantly higher errors and
broader interquartile ranges, indicating less reliable performance. In functions like F14
and F16, FVIMDE maintains its robustness, with other algorithms like SPBO and AO
showing comparatively higher error measures. Additionally, the presence of outliers in
many other algorithms highlights the inconsistency of their performance across these
benchmark functions.

The boxplot results for FVIMDE across the CEC2017 benchmarks (F25–F30), as shown
in Figure A7, continue to highlight its exceptional performance relative to other algorithms.
FVIMDE consistently displays minimal error measures and low variability, which is evident
in the boxplots across all functions. For example, in functions F25, F26, and F28, FVIMDE’s
error measures are notably lower than those of other algorithms, such as MTDE and
ZOA, which exhibit significantly larger error ranges and higher interquartile ranges. In
particular, the wide dispersion of error measures in MTDE across these functions suggests
that FVIMDE offers a more stable and reliable performance. Similarly, in F29 and F30,
FVIMDE maintains minimal errors, contrasting with the high variability and outliers
observed in other algorithms.

6.4. FVIMDE Results on 50 Benchmark Functions

The comparison of FVIMDE against other optimizers across 50 benchmark functions
(F1–F18), as seen in Tables 10 and 11, reveals that FVIMDE consistently performs well
across various metrics. In many functions, FVIMDE achieved a mean value of zero or
close to zero, demonstrating its robustness and efficiency, particularly in functions like
F1, F2, and F6, where it either outperformed or matched the performance of most other
optimizers. For instance, in functions like F5, F9, and F16, FVIMDE secured top rankings,
indicating its competitive edge in both accuracy and stability. When compared with
FVIM, FVIMDE generally maintained a lower standard deviation and standard error of
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the mean, which highlights its improved consistency. In comparison with traditional and
emerging algorithms, such as PSO, GA, and WOA, FVIMDE frequently ranked higher,
further solidifying its superiority.

Table 10. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. FVIMDE FVIM FLO STOA SOA MVO AO SSOA Chimp CPO ROA

F1 Mean 0.00E+00 1.60E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.04E+01 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 2.19E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.14E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 19 1 1 1 1 1 22 1 1 1

F2 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.60E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.67E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 1 1 1 1 19 1 1 1 1 1

F3 Mean 3.42E-44 7.07E-21 0.00E+00 5.94E-18 1.23E-27 2.99E-01 5.25E-202 0.00E+00 1.13E-13 1.69E-179 7.30E-22
Std 2.35E-44 6.53E-21 0.00E+00 7.95E-18 2.00E-27 4.34E-02 0.00E+00 0.00E+00 2.35E-13 0.00E+00 1.63E-21
Rank 11 14 1 15 12 20 6 1 16 7 13

F4 Mean 9.57E-45 1.83E-21 0.00E+00 2.11E-19 4.72E-29 4.40E-01 1.62E-216 0.00E+00 5.11E-16 3.41E-193 5.16E-34
Std 1.62E-44 1.47E-21 0.00E+00 2.78E-19 6.41E-29 3.82E-01 0.00E+00 0.00E+00 1.01E-15 0.00E+00 1.15E-33
Rank 11 14 1 15 13 18 5 1 16 6 12

F5 Mean 1.51E-03 3.85E-03 2.05E-05 1.48E-03 1.56E-03 1.45E-02 3.55E-05 4.69E-05 5.57E-04 5.69E-05 7.24E-05
Std 6.49E-04 1.09E-03 1.62E-05 4.92E-04 1.21E-03 4.44E-03 3.08E-05 2.32E-05 4.18E-04 6.43E-05 4.58E-05
Rank 13 15 1 12 14 17 2 5 9 6 7

F6 Mean 0.00E+00 2.86E-01 8.09E-02 4.82E-06 4.57E-06 3.05E-01 1.01E-04 3.15E-01 1.52E-01 1.75E-08 2.43E-07
Std 0.00E+00 3.15E-01 1.63E-01 7.50E-06 4.63E-06 4.17E-01 6.49E-05 4.49E-01 3.41E-01 2.40E-08 2.00E-07
Rank 1 19 16 12 11 20 13 21 18 8 10

F7 Mean −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −8.00E-01 −1.00E+00 −8.14E-01 −1.00E+00 −1.00E+00 −7.98E-01
Std 0.00E+00 2.07E-07 7.33E-06 9.74E-06 2.99E-05 4.47E-01 2.08E-06 2.05E-01 1.45E-04 4.36E-09 4.46E-01
Rank 1 10 13 14 15 20 11 19 16 7 21

F8 Mean 6.11E-151 3.97E-149 0.00E+00 1.47E-96 3.16E-155 5.89E-09 5.87E-210 0.00E+00 3.07E-131 2.96E-166 3.39E-27
Std 9.16E-151 8.87E-149 0.00E+00 3.18E-96 7.07E-155 5.36E-09 0.00E+00 0.00E+00 6.85E-131 0.00E+00 4.47E-27
Rank 12 13 1 16 11 20 8 1 14 10 19

F9 Mean 1.82E-18 2.57E+00 0.00E+00 1.29E+00 8.14E-01 1.36E-02 8.13E-05 2.11E+01 4.94E+00 3.14E-06 1.42E-03
Std 3.40E-18 2.68E+00 0.00E+00 8.60E-01 7.35E-01 9.93E-03 6.61E-05 5.65E+00 3.04E+00 4.98E-06 2.33E-03
Rank 2 18 1 13 11 7 4 21 20 3 5

F10 Mean −5.00E+01 −4.58E+01 −3.85E+01 −5.00E+01 −5.00E+01 −5.00E+01 −5.00E+01 −1.26E+01 1.81E+00 −5.00E+01 −3.67E+01
Std 1.07E-11 9.40E+00 5.83E+00 8.39E-03 2.93E-03 4.05E-05 4.57E-03 1.53E+01 1.64E+00 9.99E-07 6.73E+00
Rank 3 15 18 12 10 9 11 20 21 4 19

F11 Mean −2.10E+02 −7.14E+01 −1.21E+02 −1.61E+02 −1.14E+02 −2.10E+02 −2.10E+02 4.95E+00 7.14E+00 −2.10E+02 −1.25E+02
Std 2.29E-03 4.81E+01 3.17E+01 2.65E+01 6.38E+01 2.92E-02 2.24E-02 1.00E+00 1.84E+00 3.04E-04 3.23E+01
Rank 3 17 13 8 14 4 6 20 21 1 12

F12 Mean 2.97E-26 1.62E-21 0.00E+00 6.08E-24 4.63E-23 2.33E-04 1.07E-192 0.00E+00 3.09E-21 1.14E-182 2.75E-25
Std 3.83E-26 2.43E-21 0.00E+00 1.36E-24 1.03E-22 1.56E-04 0.00E+00 0.00E+00 6.80E-21 0.00E+00 6.15E-25
Rank 10 14 1 12 13 17 6 1 15 7 11

F13 Mean 7.98E-05 6.69E-06 0.00E+00 3.98E-09 7.11E-09 2.98E-01 3.02E-200 0.00E+00 8.81E-08 2.08E-147 6.91E-18
Std 3.83E-05 4.93E-06 0.00E+00 6.31E-09 1.59E-08 1.36E-01 0.00E+00 0.00E+00 1.96E-07 4.65E-147 1.54E-17
Rank 16 13 1 9 10 18 4 1 11 6 8

F14 Mean 1.36E-12 1.20E-25 0.00E+00 5.98E-12 1.41E-17 3.33E-01 1.23E-102 0.00E+00 1.04E-10 7.29E-88 7.33E-14
Std 5.30E-13 7.45E-26 0.00E+00 7.88E-12 1.48E-17 3.85E-02 2.75E-102 0.00E+00 1.73E-10 1.63E-87 1.39E-13
Rank 14 11 1 15 12 18 6 1 16 8 13

F15 Mean 3.21E-02 1.90E-09 0.00E+00 5.98E-08 7.03E-14 2.97E+01 7.58E-202 0.00E+00 3.44E-01 1.24E-167 6.28E-21
Std 6.28E-02 4.10E-09 0.00E+00 5.65E-08 1.31E-13 7.36E+00 0.00E+00 0.00E+00 4.79E-01 0.00E+00 1.40E-20
Rank 14 12 1 13 10 17 4 1 15 6 8

F16 Mean 2.58E+01 2.77E+01 0.00E+00 2.81E+01 2.81E+01 1.15E+02 9.43E-04 2.89E+01 2.87E+01 2.74E+01 5.70E-02
Std 7.20E-01 6.19E-01 0.00E+00 2.53E-01 6.82E-01 8.61E+01 1.14E-03 8.41E-02 4.89E-01 4.60E-01 8.47E-02
Rank 4 9 1 11 10 18 2 16 14 7 3

F17 Mean 6.66E-01 6.67E-01 2.49E-01 6.67E-01 6.67E-01 1.75E+00 2.50E-01 6.67E-01 7.33E-01 6.67E-01 2.51E-01
Std 5.42E-03 6.44E-07 4.14E-04 4.07E-06 3.44E-06 1.94E+00 5.78E-04 6.44E-08 1.49E-01 2.18E-04 3.41E-03
Rank 4 9 1 11 10 17 2 6 15 13 3

F18 Mean 1.39E+00 8.80E+00 9.98E-01 1.39E+00 9.98E-01 9.98E-01 1.39E+00 9.58E+00 9.98E-01 1.23E+01 9.98E-01
Std 8.87E-01 5.31E+00 2.22E-16 8.87E-01 5.95E-09 1.19E-11 8.87E-01 4.19E+00 3.10E-06 8.53E-01 3.44E-10
Rank 9 20 1 11 6 3 10 21 7 22 4
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Table 11. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. WOA PSO MFO SHIO ZOA GWO SCA DOA SCSO GA SA

F1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.40E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.88E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.36E+00 0.00E+00
Rank 1 1 1 1 21 1 1 1 1 20 1

F2 Mean 0.00E+00 0.00E+00 2.00E+03 0.00E+00 0.00E+00 0.00E+00 6.00E-01 0.00E+00 0.00E+00 4.59E+04 5.84E+03
Std 0.00E+00 0.00E+00 4.47E+03 0.00E+00 0.00E+00 0.00E+00 1.34E+00 0.00E+00 0.00E+00 8.46E+03 6.45E+02
Rank 1 1 20 1 1 1 18 1 1 22 21

F3 Mean 8.59E-153 1.57E-09 1.86E-03 5.29E-65 0.00E+00 1.03E-58 7.34E-04 1.89E-206 3.79E-236 3.89E+04 5.35E+03
Std 1.78E-152 2.00E-09 3.98E-03 3.95E-65 0.00E+00 1.88E-58 9.49E-04 0.00E+00 0.00E+00 5.99E+03 8.01E+02
Rank 8 17 19 9 1 10 18 5 4 22 21

F4 Mean 2.27E-155 8.00E+01 5.80E+02 1.96E-64 0.00E+00 1.36E-59 2.03E-03 1.37E-154 2.22E-235 6.06E+03 6.37E+02
Std 4.96E-155 1.10E+02 7.09E+02 4.35E-64 0.00E+00 2.20E-59 2.99E-03 3.05E-154 0.00E+00 1.52E+03 1.25E+02
Rank 7 19 20 9 1 10 17 8 4 22 21

F5 Mean 8.63E-04 1.65E+00 1.73E+00 4.31E-03 4.22E-05 8.22E-04 5.03E-02 1.68E-04 4.14E-05 2.48E+01 1.11E+00
Std 7.43E-04 2.20E+00 3.66E+00 9.76E-04 2.99E-05 2.27E-04 4.44E-02 2.02E-04 3.47E-05 1.32E+01 3.54E-01
Rank 11 20 21 16 4 10 18 8 3 22 19

F6 Mean 1.01E-11 0.00E+00 1.69E-30 2.61E-08 1.66E-10 1.52E-01 2.24E-04 0.00E+00 2.00E-10 4.92E-01 2.22E-04
Std 1.92E-11 0.00E+00 2.32E-30 2.03E-08 3.66E-10 3.41E-01 2.30E-04 0.00E+00 2.32E-10 6.68E-01 3.50E-04
Rank 5 1 4 9 6 17 15 1 7 22 14

F7 Mean −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00 −9.99E-01 −1.00E+00 −1.00E+00 −2.08E-01 −9.30E-01
Std 3.83E-06 0.00E+00 0.00E+00 6.45E-08 8.93E-11 4.25E-08 1.06E-03 0.00E+00 4.19E-09 3.96E-01 1.50E-01
Rank 12 1 1 9 5 8 17 1 6 22 18

F8 Mean 0.00E+00 3.99E-88 3.33E-56 1.13E-259 0.00E+00 2.71E-202 1.12E-116 0.00E+00 0.00E+00 9.09E-03 7.24E-05
Std 0.00E+00 8.70E-88 7.45E-56 0.00E+00 0.00E+00 0.00E+00 2.46E-116 0.00E+00 0.00E+00 7.34E-03 6.10E-05
Rank 1 17 18 7 1 9 15 1 1 22 21

F9 Mean 5.00E-01 1.12E-02 2.25E+00 6.44E-01 1.51E+00 4.99E-01 1.40E+00 1.96E+00 9.41E-01 3.49E+02 2.90E+00
Std 5.47E-01 9.88E-03 1.93E+00 8.04E-01 1.48E+00 7.10E-01 3.74E-01 3.32E+00 8.46E-01 6.85E+02 4.24E+00
Rank 9 6 17 10 15 8 14 16 12 22 19

F10 Mean −5.00E+01 −5.00E+01 −5.00E+01 −4.58E+01 −5.00E+01 −5.00E+01 −4.13E+01 −4.94E+01 −5.00E+01 1.56E+01 −4.86E+01
Std 3.92E-05 4.02E-14 4.77E-14 9.42E+00 4.17E-05 4.59E-05 8.31E+00 1.39E+00 1.59E-05 4.82E+01 7.98E-01
Rank 7 1 2 16 8 6 17 13 5 22 14

F11 Mean −2.10E+02 −2.10E+02 −2.10E+02 −5.51E+01 −1.30E+02 −1.31E+02 −3.02E+01 −8.81E+01 −1.60E+02 2.63E+03 −8.86E+01
Std 4.31E-02 6.13E-04 3.89E-01 6.02E+01 5.12E+01 7.61E+01 2.89E+01 6.35E+01 5.62E+01 1.99E+03 4.87E+01
Rank 5 2 7 18 11 10 19 16 9 22 15

F12 Mean 8.28E-03 1.13E+01 1.19E+01 7.71E-78 0.00E+00 1.73E-71 1.88E-15 0.00E+00 5.23E-243 1.56E+02 3.16E+01
Std 1.12E-02 1.57E+01 2.66E+01 1.70E-77 0.00E+00 3.62E-71 3.10E-15 0.00E+00 0.00E+00 2.76E+01 7.25E+00
Rank 18 19 20 8 1 9 16 1 5 22 21

F13 Mean 2.30E-06 3.43E+02 6.76E+01 7.15E-05 3.00E-85 3.41E-05 2.35E-03 4.40E-181 2.78E-205 5.54E+03 2.11E+02
Std 3.07E-06 1.01E+02 4.33E+01 1.49E-05 6.70E-85 3.66E-05 3.67E-03 0.00E+00 0.00E+00 3.11E+03 4.80E+01
Rank 12 21 19 15 7 14 17 5 3 22 20

F14 Mean 7.57E-103 6.00E+00 3.00E+01 5.44E-38 3.14E-268 7.81E-35 1.01E-05 1.24E-90 1.46E-123 3.15E+08 2.69E+01
Std 1.69E-102 8.94E+00 2.55E+01 5.93E-38 0.00E+00 5.60E-35 1.90E-05 2.77E-90 2.96E-123 6.98E+08 2.43E+00
Rank 5 19 21 9 3 10 17 7 4 22 20

F15 Mean 2.88E+04 1.51E+01 1.28E+04 1.78E-10 0.00E+00 7.27E-15 3.49E+03 1.01E-164 2.84E-200 5.74E+04 3.41E+04
Std 1.86E+04 8.95E+00 1.82E+04 2.05E-10 0.00E+00 1.17E-14 2.95E+03 0.00E+00 0.00E+00 1.32E+04 3.23E+03
Rank 20 16 19 11 1 9 18 7 5 22 21

F16 Mean 2.72E+01 3.52E+01 3.61E+04 2.75E+01 2.82E+01 2.66E+01 3.28E+02 2.89E+01 2.85E+01 1.30E+08 2.13E+06
Std 4.14E-01 3.06E+01 4.93E+04 1.20E+00 6.64E-01 1.40E+00 4.47E+02 2.62E-02 7.05E-01 4.61E+07 8.37E+05
Rank 6 17 20 8 12 5 19 15 13 22 21

F17 Mean 6.67E-01 9.78E+01 6.25E+04 7.33E-01 6.67E-01 6.67E-01 5.08E+00 9.66E-01 6.67E-01 8.35E+05 1.42E+04
Std 3.38E-05 1.31E+02 1.40E+05 1.48E-01 1.06E-09 6.02E-07 5.82E+00 1.38E-02 4.21E-08 2.51E+05 5.95E+03
Rank 12 19 21 14 5 8 18 16 7 22 20

F18 Mean 3.35E+00 1.59E+00 3.55E+00 6.86E+00 2.58E+00 3.73E+00 1.79E+00 1.20E+00 9.98E-01 8.47E+00 9.98E-01
Std 4.23E+00 8.88E-01 4.24E+00 5.31E+00 2.04E+00 5.07E+00 1.09E+00 4.45E-01 5.06E-13 1.76E+00 5.24E-10
Rank 15 12 16 18 14 17 13 8 2 19 5

The performance of FVIMDE across the 50 benchmark functions, as shown in Tables 12
and 13, underscores its good performance over several other well-established optimization
algorithms. FVIMDE consistently achieved top rankings in many functions, showcasing
its robustness and versatility across a diverse set of optimization problems. For instance,
in functions like F19, F20, and F27, FVIMDE outperformed all other optimizers, securing
the first rank with a mean value of either 0 or a minimal value, which indicates its high
precision in reaching the global optimum.

In comparison to other optimizers, FVIMDE demonstrated superior performance
against algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
and Whale Optimization Algorithm (WOA), especially in functions F21, F22, and F25. For
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example, in F21, FVIMDE not only outperformed traditional optimizers like PSO and GA
but also outclassed more recent and advanced methods like the Sine Cosine Algorithm
(SCA) and the Grey Wolf Optimizer (GWO). This highlights FVIMDE’s ability to navigate
complex search spaces more effectively, avoiding local minima where other algorithms
might struggle.

Table 12. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. FVIMDE FVIM FLO STOA SOA MVO AO SSOA Chimp CPO ROA

F19 Mean 3.98E-01 3.98E-01 4.22E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 8.11E-01 3.98E-01 3.98E-01 3.98E-01
Std 0.00E+00 1.51E-06 5.24E-02 3.79E-05 1.05E-04 1.72E-07 1.52E-04 5.04E-01 6.40E-04 4.52E-08 3.27E-05
Rank 1 13 20 15 16 10 17 21 18 7 14

F20 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.37E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.33E-16
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.92E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.98E-16
Rank 1 1 1 1 1 21 1 1 1 1 19

F21 Mean 0.00E+00 9.11E-08 1.40E-01 9.70E-06 1.52E-05 2.22E-07 1.53E-04 1.16E-01 1.63E-04 4.76E-08 2.70E-04
Std 0.00E+00 8.77E-08 1.93E-01 6.93E-06 6.80E-06 7.65E-08 1.87E-04 1.05E-01 1.59E-04 4.98E-08 4.24E-04
Rank 1 10 21 12 13 11 15 20 16 7 18

F22 Mean 1.40E+01 1.02E+01 0.00E+00 4.50E+00 1.14E-14 9.79E+01 0.00E+00 0.00E+00 1.10E+00 0.00E+00 0.00E+00
Std 6.21E+00 8.64E+00 0.00E+00 2.63E+00 2.54E-14 1.40E+01 0.00E+00 0.00E+00 1.75E+00 0.00E+00 0.00E+00
Rank 16 15 1 14 11 19 1 1 12 1 1

F23 Mean −7.58E+03 −5.35E+03 −9.02E+03 −5.41E+03 −5.32E+03 −8.31E+03 −8.17E+03 −2.46E+03 −5.76E+03 −4.80E+03 −1.26E+04
Std 1.09E+03 6.61E+02 8.01E-04 1.95E+02 6.45E+02 9.73E+02 4.06E+03 6.51E+02 6.41E+01 2.37E+03 9.22E-04
Rank 8 16 2 15 17 6 7 21 13 18 1

F24 Mean −1.80E+00 −1.80E+00 −1.66E+00 −1.64E+00 −1.80E+00 −1.80E+00 −1.80E+00 −1.14E+00 −1.48E+00 −1.80E+00 −1.80E+00
Std 0.00E+00 6.89E-07 1.93E-01 3.58E-01 3.22E-05 1.41E-07 4.15E-04 2.47E-01 4.38E-01 8.15E-08 4.28E-04
Rank 1 12 17 19 13 10 15 21 20 8 14

F25 Mean −4.67E+00 −4.50E+00 −3.03E+00 −3.07E+00 −3.96E+00 −4.32E+00 −3.99E+00 −2.12E+00 −2.78E+00 −3.88E+00 −3.29E+00
Std 2.29E-02 2.41E-02 3.39E-01 9.48E-01 5.60E-01 3.93E-01 3.66E-01 4.84E-01 6.79E-01 4.91E-01 6.74E-01
Rank 2 5 18 17 13 8 12 21 20 14 16

F26 Mean −8.10E+00 −8.10E+00 −5.72E+00 −5.20E+00 −5.33E+00 −6.64E+00 −6.06E+00 −2.87E+00 −4.06E+00 −7.75E+00 −5.81E+00
Std 1.47E+00 6.98E-01 5.38E-01 7.17E-01 1.11E+00 7.80E-01 1.25E+00 3.90E-01 5.45E-01 1.73E+00 6.61E-01
Rank 2 3 16 18 17 10 12 21 20 5 14

F27 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.46E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.26E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 1 1 1 1 19 1 1 1 1 1

F28 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.01E+00 −1.03E+00 −1.03E+00 −1.03E+00
Std 0.00E+00 3.88E-09 2.66E-03 4.14E-07 2.72E-07 5.25E-08 2.84E-04 1.26E-02 6.31E-06 1.34E-03 1.03E-05
Rank 1 10 20 14 13 12 18 21 15 19 17

F29 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.63E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.52E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 1 1 1 1 20 1 1 1 1 1

F30 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.68E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.58E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 1 1 1 1 20 1 1 1 1 1

F31 Mean −1.87E+02 −1.87E+02 −1.84E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.40E+02 −1.86E+02 −1.86E+02 −1.87E+02
Std 2.46E-14 1.27E-04 4.90E+00 9.11E-02 1.01E-01 1.06E-04 8.99E-02 3.14E+01 9.22E-01 7.62E-01 9.22E-02
Rank 1 9 20 14 16 8 15 21 19 18 13

F32 Mean 3.00E+00 3.00E+00 6.22E+00 3.00E+00 3.00E+00 3.00E+00 3.02E+00 8.42E+00 3.00E+00 3.00E+00 3.00E+00
Std 1.26E-15 8.90E-06 5.05E+00 1.27E-05 4.13E-06 1.05E-06 3.83E-02 1.21E+01 4.22E-05 2.04E-04 3.50E-04
Rank 1 10 19 11 9 5 18 20 15 17 16

F33 Mean 1.01E-03 8.36E-03 8.33E-04 1.05E-03 1.24E-03 9.32E-04 4.94E-04 1.53E-03 1.27E-03 3.21E-04 8.14E-04
Std 8.76E-03 1.10E-02 6.06E-04 3.95E-04 3.07E-05 2.75E-04 9.42E-05 1.52E-03 2.63E-05 1.34E-05 5.42E-04
Rank 10 19 7 11 14 8 4 16 15 3 6

F34 Mean −1.02E+01 −7.65E+00 −9.92E+00 −4.34E+00 −7.18E+00 −9.14E+00 −1.01E+01 −1.12E+00 −2.43E+00 −1.02E+01 −1.02E+01
Std 1.26E-15 3.53E+00 4.12E-01 5.26E+00 4.33E+00 2.26E+00 7.71E-03 8.34E-01 2.30E+00 5.58E-06 2.81E-03
Rank 2 13 8 18 14 9 6 21 20 3 5

F35 Mean −1.04E+01 −9.35E+00 −8.42E+00 −5.53E+00 −3.57E+00 −8.87E+00 −1.04E+01 −9.44E-01 −3.37E+00 −1.04E+01 −1.04E+01
Std 0.00E+00 2.36E+00 2.73E+00 4.74E+00 4.25E+00 3.42E+00 1.24E-02 3.18E-01 2.25E+00 4.93E-06 2.78E-04
Rank 1 7 13 17 18 11 6 21 19 2 4

F36 Mean −1.05E+01 −1.05E+01 −1.05E+01 −7.52E+00 −8.51E+00 −7.29E+00 −1.05E+01 −1.64E+00 −3.43E+00 −1.05E+01 −1.05E+01
Std 1.26E-15 1.19E-04 1.29E-03 4.35E+00 4.45E+00 4.44E+00 4.65E-03 3.58E-01 2.27E+00 3.36E-06 1.06E-04
Rank 2 7 8 15 13 16 9 21 20 3 6

Moreover, FVIMDE’s ability to maintain a low standard deviation across multiple runs,
as seen in functions like F19 and F31, demonstrates its consistency and reliability, which are
critical attributes for optimization in uncertain or dynamic environments. In contrast, other
algorithms like Moth-Flame Optimization (MFO) and Simulated Annealing (SA) exhibited
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higher variability in their results, suggesting that they might be more sensitive to initial
conditions or specific problem landscapes.

Table 13. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. WOA PSO MFO SHIO ZOA GWO SCA DOA SCSO GA SA

F19 Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 6.83E+01 3.98E-01
Std 2.21E-07 0.00E+00 0.00E+00 2.69E-07 3.86E-10 1.26E-06 5.25E-04 0.00E+00 6.17E-09 8.79E+00 1.50E-07
Rank 8 1 1 11 5 12 19 1 6 22 9

F20 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.29E+01 6.92E-05
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.54E+01 1.45E-04
Rank 1 1 1 1 1 1 1 1 1 22 20

F21 Mean 2.05E-04 0.00E+00 0.00E+00 8.26E-08 2.18E-13 6.65E-08 4.83E-04 0.00E+00 8.78E-10 3.42E-01 5.69E-05
Std 5.55E-05 0.00E+00 0.00E+00 2.47E-08 4.88E-13 5.88E-08 2.62E-04 0.00E+00 1.36E-09 5.49E-01 6.64E-05
Rank 17 1 1 9 5 8 19 1 6 22 14

F22 Mean 0.00E+00 8.89E+01 1.54E+02 4.12E+01 0.00E+00 0.00E+00 3.26E+00 0.00E+00 0.00E+00 3.23E+02 1.45E+02
Std 0.00E+00 1.90E+01 6.20E+01 1.60E+01 0.00E+00 0.00E+00 5.98E+00 0.00E+00 0.00E+00 3.82E+01 8.18E+00
Rank 1 18 21 17 1 1 13 1 1 22 20

F23 Mean −8.78E+03 −6.58E+03 −8.66E+03 −5.72E+03 −6.99E+03 −6.38E+03 −3.97E+03 −4.57E+03 −6.88E+03 −2.21E+03 −8.64E+03
Std 1.33E+03 5.45E+02 1.33E+03 4.34E+02 5.66E+02 5.77E+02 1.14E+02 1.98E+02 6.33E+02 6.28E+02 3.03E+02
Rank 3 11 4 14 9 12 20 19 10 22 5

F24 Mean −1.80E+00 −1.80E+00 −1.80E+00 −1.64E+00 −1.80E+00 −1.80E+00 −1.80E+00 −1.80E+00 −1.80E+00 −1.04E+00 −1.80E+00
Std 1.62E-07 0.00E+00 0.00E+00 3.58E-01 2.79E-08 2.98E-07 1.90E-03 0.00E+00 4.82E-09 2.24E-01 2.74E-09
Rank 9 1 1 18 7 11 16 1 5 22 6

F25 Mean −4.32E+00 −4.11E+00 −4.38E+00 −4.51E+00 −4.64E+00 −4.35E+00 −2.98E+00 −4.05E+00 −3.76E+00 −1.51E+00 −4.67E+00
Std 2.83E-01 8.04E-01 1.54E-01 1.68E-01 8.31E-02 4.77E-01 7.17E-01 6.51E-01 6.44E-01 2.99E-01 1.77E-02
Rank 9 10 6 4 3 7 19 11 15 22 1

F26 Mean −5.98E+00 −7.48E+00 −7.83E+00 −7.50E+00 −7.57E+00 −6.90E+00 −4.07E+00 −5.78E+00 −6.49E+00 −2.74E+00 −8.60E+00
Std 4.85E-01 1.15E+00 7.97E-01 1.22E+00 4.68E-01 4.54E-01 5.77E-01 7.18E-01 3.23E-01 4.34E-01 9.26E-02
Rank 13 8 4 7 6 9 19 15 11 22 1

F27 Mean 0.00E+00 0.00E+00 8.14E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.47E-02 1.47E-05
Std 0.00E+00 0.00E+00 1.82E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.72E-02 2.79E-05
Rank 1 1 21 1 1 1 1 1 1 22 20

F28 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −8.69E-01 −1.03E+00
Std 4.19E-12 0.00E+00 0.00E+00 1.86E-09 3.87E-11 1.17E-09 2.46E-05 1.92E-16 7.10E-11 1.73E-01 6.90E-08
Rank 5 1 1 9 6 8 16 4 7 22 11

F29 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.46E+00 1.93E-04
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.61E+00 2.60E-04
Rank 1 1 1 1 1 1 1 1 1 22 21

F30 Mean 2.44E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.16E-01 1.92E-04
Std 2.62E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.87E+00 1.80E-04
Rank 19 1 1 1 1 1 1 1 1 22 21

F31 Mean −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −1.87E+02 −5.74E+01 −1.87E+02
Std 8.11E-04 2.46E-14 1.42E-14 3.58E-02 8.29E-07 7.96E-02 4.10E-02 2.46E-14 6.57E-07 4.76E+01 1.87E-05
Rank 10 3 1 11 5 12 17 3 6 22 7

F32 Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.92E+01 3.00E+00 3.00E+00 3.00E+00 2.25E+01 3.00E+00
Std 6.77E-06 1.26E-15 1.31E-15 1.18E-05 1.99E-06 3.62E+01 3.87E-05 8.02E-15 2.02E-06 1.32E+01 1.72E-05
Rank 8 1 1 12 6 21 14 4 7 22 13

F33 Mean 6.60E-04 4.69E-03 9.54E-04 8.59E-03 3.07E-04 8.36E-03 1.08E-03 8.52E-03 3.08E-04 2.29E-02 1.11E-03
Std 3.35E-04 8.77E-03 3.92E-04 1.08E-02 5.63E-09 1.10E-02 4.31E-04 1.12E-02 3.13E-08 2.08E-02 2.89E-04
Rank 5 17 9 21 1 18 12 20 2 22 13

F34 Mean −7.09E+00 −8.12E+00 −1.02E+01 −7.65E+00 −1.02E+01 −9.13E+00 −5.02E+00 −6.08E+00 −4.22E+00 −7.45E-01 −1.01E+01
Std 2.79E+00 2.78E+00 0.00E+00 3.53E+00 4.54E-05 2.28E+00 3.10E+00 2.27E+00 1.87E+00 4.94E-01 8.02E-03
Rank 15 11 1 12 4 10 17 16 19 22 7

F35 Mean −8.87E+00 −8.69E+00 −7.82E+00 −8.88E+00 −9.34E+00 −1.04E+01 −1.72E+00 −6.56E+00 −7.22E+00 −7.77E-01 −1.04E+01
Std 3.41E+00 3.83E+00 3.64E+00 3.42E+00 2.38E+00 7.75E-05 1.82E+00 3.75E+00 2.90E+00 1.97E-01 1.28E-02
Rank 10 12 14 9 8 3 20 16 15 22 5

F36 Mean −5.20E+00 −1.05E+01 −5.94E+00 −8.91E+00 −1.05E+01 −1.05E+01 −4.03E+00 −9.08E+00 −8.37E+00 −9.00E-01 −1.05E+01
Std 3.24E+00 8.88E-16 4.20E+00 3.63E+00 2.38E-05 8.65E-05 3.14E+00 2.33E+00 2.96E+00 8.38E-02 4.18E-02
Rank 18 1 17 12 4 5 19 11 14 22 10

As we can see in Tables 14 and 15, the results over the 50 benchmark functions
(F37–F50) highlight the strengths and occasional weaknesses of FVIMDE relative to these
other approaches, showcasing where it excels and where it may need further refinement.
For instance, in function F37, FVIMDE achieves a competitive mean value, ranking fourth
among the 13 algorithms in the first table. This performance is noteworthy as it surpasses
several well-known algorithms such as the Sine Cosine Algorithm (SCA), Ant Lion Op-
timizer (ALO), and the Chimp Optimizer. The result indicates FVIMDE’s robustness in
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dealing with this specific optimization problem, though it is slightly outperformed by PSO,
MFO, and a few others.

Table 14. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. FVIMDE FVIM FLO STOA SOA MVO AO SSOA Chimp CPO ROA

F37 Mean 9.59E-02 1.46E+00 8.17E+00 1.30E+00 3.48E-01 1.18E-01 8.74E-01 1.36E+02 6.82E+00 2.15E+00 3.52E+00
Std 2.10E-01 9.87E-01 6.22E+00 8.28E-01 3.02E-01 2.02E-01 5.92E-01 8.52E+01 4.63E+00 2.35E+00 2.00E+00
Rank 4 13 19 12 7 6 9 21 18 15 16

F38 Mean 7.34E-04 2.21E-02 7.76E-01 8.64E+00 4.30E+01 6.89E-04 8.54E-02 5.48E+01 7.95E+00 2.70E-01 1.73E-01
Std 1.48E-03 2.47E-02 1.10E+00 1.06E+01 6.22E+01 2.71E-04 5.26E-02 8.92E+01 9.78E+00 4.87E-01 2.49E-01
Rank 2 8 15 19 21 1 10 22 18 14 12

F39 Mean −3.86E+00 −3.86E+00 −3.72E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.29E+00 −3.85E+00 −3.86E+00 −3.84E+00
Std 0.00E+00 3.30E-03 1.66E-01 3.50E-03 6.46E-04 1.59E-06 1.85E-03 4.57E-01 1.13E-03 7.69E-05 5.15E-02
Rank 1 10 20 15 17 5 13 21 18 6 19

F40 Mean −3.32E+00 −3.23E+00 −2.63E+00 −3.04E+00 −3.04E+00 −3.30E+00 −3.17E+00 −1.69E+00 −2.80E+00 −3.25E+00 −2.80E+00
Std 1.46E-06 5.32E-02 8.85E-02 5.22E-02 5.23E-02 5.36E-02 7.57E-02 5.77E-01 5.38E-01 6.60E-02 5.89E-01
Rank 1 12 20 17 16 5 13 21 19 10 18

F41 Mean 3.19E-03 4.34E-03 0.00E+00 7.96E-03 0.00E+00 5.71E-01 0.00E+00 0.00E+00 2.42E-02 0.00E+00 0.00E+00
Std 5.28E-03 5.99E-03 0.00E+00 1.25E-02 0.00E+00 4.50E-02 0.00E+00 0.00E+00 3.74E-02 0.00E+00 0.00E+00
Rank 12 14 1 15 1 19 1 1 17 1 1

F42 Mean 1.20E+01 4.59E-14 4.44E-16 2.00E+01 2.00E+01 1.59E+00 4.44E-16 4.44E-16 2.00E+01 4.44E-16 4.57E-13
Std 1.09E+01 3.89E-15 0.00E+00 1.23E-03 3.28E-03 1.10E+00 0.00E+00 0.00E+00 8.03E-04 0.00E+00 9.98E-13
Rank 16 11 1 20 19 14 1 1 21 1 12

F43 Mean 1.25E-01 1.32E-01 1.57E-32 1.66E-01 2.80E-01 2.79E+00 2.84E-07 9.12E-01 4.07E-01 1.40E-03 2.13E-06
Std 8.35E-02 5.83E-02 0.00E+00 7.03E-02 9.86E-02 2.14E+00 3.37E-07 6.05E-02 2.30E-01 3.10E-03 2.64E-06
Rank 10 11 1 12 13 19 3 18 15 5 4

F44 Mean 1.05E+00 1.13E+00 1.35E-32 1.98E+00 2.03E+00 6.51E-02 7.55E-06 2.92E+00 2.88E+00 1.55E-03 8.39E-05
Std 1.82E-01 3.46E-01 0.00E+00 1.11E-01 2.28E-01 2.30E-02 7.16E-06 4.38E-02 1.25E-01 3.46E-03 1.29E-04
Rank 9 10 1 13 14 6 2 17 16 4 3

F45 Mean −1.08E+00 −1.08E+00 −5.06E-01 −9.31E-01 −9.31E-01 −1.08E+00 −1.08E+00 −1.82E-01 −7.80E-01 −9.86E-01 −1.08E+00
Std 0.00E+00 7.33E-08 3.08E-01 3.36E-01 3.36E-01 7.82E-08 1.44E-04 7.30E-02 4.12E-01 6.09E-02 6.36E-06
Rank 1 9 20 18 17 8 12 22 19 16 10

F46 Mean −1.38E+00 −1.39E+00 −5.14E-01 −1.85E-01 −9.49E-01 −9.32E-01 −1.11E+00 −2.04E-01 −5.66E-01 −5.60E-01 −3.83E-01
Std 2.65E-01 2.39E-01 2.68E-01 1.86E-01 5.11E-01 2.43E-02 3.59E-01 2.65E-01 9.52E-02 1.33E-01 3.01E-01
Rank 3 2 17 21 11 12 5 20 15 16 19

F47 Mean −5.76E-01 −5.18E-01 −1.32E-03 −4.73E-02 −3.77E-02 −4.23E-01 −4.59E-01 −5.91E-05 −7.45E-02 −2.22E-01 −1.47E-02
Std 2.08E-01 1.85E-01 2.64E-03 4.93E-02 3.37E-02 8.49E-02 2.13E-01 1.02E-04 4.48E-02 1.43E-01 2.71E-02
Rank 2 3 20 15 17 10 7 21 14 13 19

F48 Mean 0.00E+00 2.14E-04 3.99E+01 4.50E-02 5.87E-02 1.75E-05 7.93E-02 3.80E+01 1.41E+02 1.41E+00 3.72E-02
Std 0.00E+00 1.16E-04 5.50E+01 3.45E-02 6.13E-02 1.04E-05 6.18E-02 1.02E+01 3.15E+02 3.16E+00 2.49E-02
Rank 1 11 21 14 15 9 16 20 22 18 12

F49 Mean 9.66E+01 4.14E+01 1.84E+04 1.63E+03 9.51E+02 7.49E+02 7.01E+02 3.79E+04 1.51E+02 4.04E+02 8.02E+03
Std 8.59E+01 8.20E+01 5.69E+03 1.49E+03 9.67E+02 9.36E+02 9.92E+02 2.71E+04 9.68E+01 6.29E+02 1.26E+04
Rank 3 2 21 16 15 14 13 22 5 11 20

F50 Mean 1.79E+03 2.50E+04 1.63E+05 9.75E+03 6.96E+03 4.77E+02 4.93E+03 2.26E+05 3.47E+04 2.89E+04 1.01E+05
Std 2.59E+03 1.58E+04 8.57E+04 7.48E+03 5.59E+03 8.69E+02 3.72E+03 3.44E+04 2.07E+04 2.46E+04 3.61E+04
Rank 2 15 21 10 8 1 7 22 17 16 20

In function F38, FVIMDE ranks second, closely trailing behind the leading optimizer,
which is a remarkable achievement given the challenging nature of this function. This
shows that FVIMDE is particularly effective at finding near-optimal solutions quickly,
outperforming many other methods, including STOA, ZOA, and DOA, which rank signifi-
cantly lower in comparison. Function F39 further highlights FVIMDE’s effectiveness, where
it secures the top rank with a mean of −3.86, which matches the best-performing algo-
rithms in this category. This outcome underscores FVIMDE’s consistency and reliability in
maintaining optimal or near-optimal performance across different trials. It also highlights
its superiority over algorithms like MVO and AO, which rank lower in this function.

In function F40, FVIMDE also achieves the top rank with the best mean value, in-
dicating its strength in solving optimization problems with complex landscapes. This
performance is particularly impressive when compared to traditional algorithms like PSO,
which ranked 14th, and GA, which ranked 22nd. FVIMDE’s top ranking in this function
suggests its superior ability to explore and exploit the search space effectively. On the
other hand, there are functions where FVIMDE does not perform as strongly. For instance,
in function F41, FVIMDE ranks 12th, which is relatively low compared to its usual per-
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formance. This suggests that while FVIMDE is highly effective across many functions,
there are still scenarios where other algorithms, such as PSO and GA, outperform it. This
indicates potential areas for improvement or modifications to the algorithm to enhance its
performance in such cases.

Functions F42 and F43 present mixed results for FVIMDE. In F42, FVIMDE achieves a
mid-tier ranking, coming in at 16th. While it does not top the chart, it remains competitive,
especially when considering that it outperforms several other advanced algorithms like
STOA and Chimp Optimizer. In F43, however, FVIMDE ranks 10th, which indicates a
solid performance but again shows room for improvement when compared to the top-
performing algorithms in this function. Notably, in functions F44 and F45, FVIMDE ranks
ninth and first, respectively. In the case of functions F46 to F50, FVIMDE continues to show
competitive performance, particularly in F46 where it ranks third, and F50 where it ranks
second. These results underscore FVIMDE’s robustness and versatility across a wide range
of optimization challenges. However, in functions like F47 and F49, FVIMDE’s performance
is somewhat less competitive, with rankings of 12th and 3rd, respectively, suggesting that
while FVIMDE is generally strong, it may occasionally struggle with specific types of
problems or landscapes.

Table 15. Comparison results over 50 benchmarks (F1–F18), run = 30, FES = 1000, agents No. = 30.

Function Stat. WOA PSO MFO SHIO ZOA GWO SCA DOA SCSO GA SA

F37 Mean 9.49E+00 4.16E-03 1.07E-01 5.65E+00 4.76E-02 5.63E-01 8.80E-01 1.53E+00 1.19E+00 1.86E+02 5.64E-02
Std 6.97E+00 2.57E-03 2.15E-01 5.64E+00 6.53E-02 6.47E-01 4.80E-01 3.37E+00 8.37E-01 3.86E+02 5.81E-02
Rank 20 1 5 17 2 8 10 14 11 22 3

F38 Mean 9.97E-01 7.47E-04 1.07E-02 4.74E-02 1.33E-03 4.65E-03 4.68E+00 1.13E-01 1.93E-01 1.43E+01 1.40E-02
Std 1.13E+00 1.30E-03 1.15E-02 7.66E-02 1.08E-03 2.35E-03 8.74E+00 2.52E-01 3.86E-01 1.31E+01 1.29E-02
Rank 16 3 6 9 4 5 17 11 13 20 7

F39 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.12E+00 −3.86E+00
Std 3.02E-03 3.52E-03 0.00E+00 1.16E-03 2.19E-04 2.28E-03 2.44E-03 3.85E-16 4.31E-03 5.32E-01 4.30E-07
Rank 12 11 1 8 7 9 16 1 14 22 4

F40 Mean −3.27E+00 −3.12E+00 −3.23E+00 −3.32E+00 −3.32E+00 −3.25E+00 −3.07E+00 −3.29E+00 −3.26E+00 −1.46E+00 −3.32E+00
Std 1.07E-01 1.73E-01 5.32E-02 3.79E-06 5.87E-05 1.06E-01 7.40E-02 2.19E-02 8.64E-02 3.89E-01 6.43E-04
Rank 7 14 11 2 3 9 15 6 8 22 4

F41 Mean 0.00E+00 1.87E-02 1.82E+01 3.72E-03 0.00E+00 0.00E+00 2.82E-01 0.00E+00 0.00E+00 4.19E+02 5.02E+01
Std 0.00E+00 7.09E-03 4.06E+01 8.33E-03 0.00E+00 0.00E+00 1.34E-01 0.00E+00 0.00E+00 7.39E+01 6.94E+00
Rank 1 16 20 13 1 1 18 1 1 22 21

F42 Mean 1.87E-15 3.42E-05 1.97E+01 7.55E-15 4.44E-16 1.61E-14 9.51E+00 4.44E-16 4.44E-16 2.01E+01 1.41E+01
Std 1.95E-15 3.49E-05 3.37E-01 0.00E+00 0.00E+00 3.18E-15 9.31E+00 0.00E+00 0.00E+00 4.90E-01 1.26E+00
Rank 8 13 18 9 1 10 15 1 1 22 17

F43 Mean 9.26E-03 6.00E-11 5.12E+07 2.96E-01 1.12E-01 4.72E-02 7.96E-01 7.05E-01 6.73E-02 1.56E+08 2.45E+05
Std 9.51E-03 1.29E-10 1.14E+08 1.75E-01 3.24E-02 4.37E-02 3.52E-01 2.20E-01 3.75E-02 1.37E+08 2.79E+05
Rank 6 2 21 14 9 7 17 16 8 22 20

F44 Mean 2.33E-01 2.20E-03 5.12E+07 1.62E+00 2.06E+00 5.21E-01 5.69E+00 2.93E+00 1.94E+00 2.12E+08 1.49E+05
Std 8.93E-02 4.91E-03 1.14E+08 4.42E-01 3.38E-01 2.58E-01 4.74E+00 1.44E-01 5.06E-01 1.31E+08 1.81E+05
Rank 7 5 21 11 15 8 19 18 12 22 20

F45 Mean −1.08E+00 −1.08E+00 −1.08E+00 −1.08E+00 −1.01E+00 −1.08E+00 −1.08E+00 −1.07E+00 −1.08E+00 −4.06E-01 −1.08E+00
Std 5.60E-13 0.00E+00 0.00E+00 8.05E-08 1.69E-01 2.63E-08 1.74E-04 3.38E-02 8.96E-10 3.49E-01 6.11E-06
Rank 4 1 1 7 15 6 13 14 5 21 11

F46 Mean −7.45E-01 −9.86E-01 −1.02E+00 −1.50E+00 −1.08E+00 −1.08E+00 −4.73E-01 −7.50E-01 −1.01E+00 −6.34E-03 −1.24E+00
Std 2.24E-01 2.91E-01 4.60E-01 8.02E-06 3.85E-01 4.23E-01 1.36E-01 4.98E-01 2.87E-01 1.05E-02 3.39E-01
Rank 14 10 8 1 6 7 18 13 9 22 4

F47 Mean −2.35E-01 −4.86E-01 −3.46E-01 −4.56E-01 −4.25E-01 −5.06E-01 −4.11E-02 −1.70E-02 −5.02E-01 −4.65E-06 −6.01E-01
Std 1.22E-01 2.82E-01 1.19E-01 2.16E-01 2.38E-01 1.88E-01 2.86E-02 1.29E-02 2.72E-01 6.34E-06 1.64E-01
Rank 12 6 11 8 9 4 16 18 5 22 1

F48 Mean 2.12E-08 0.00E+00 0.00E+00 3.78E-02 3.36E-06 1.23E-04 5.45E-01 0.00E+00 2.77E-06 1.46E+00 6.06E-06
Std 3.59E-08 0.00E+00 0.00E+00 7.75E-02 5.88E-06 8.29E-05 6.33E-01 0.00E+00 2.64E-06 1.70E+00 8.25E-06
Rank 5 1 1 13 7 10 17 1 6 19 8

F49 Mean 5.79E+02 2.04E+02 1.03E+02 2.15E+02 1.88E+03 2.15E+02 2.10E+02 2.95E+03 2.02E+02 5.36E+03 2.95E+01
Std 1.01E+03 1.09E+02 1.36E+02 2.33E+02 1.56E+03 2.30E+02 1.05E+02 3.49E+03 2.31E+02 7.59E+03 2.01E+01
Rank 12 7 4 9 17 10 8 18 6 19 1

F50 Mean 1.24E+04 1.63E+04 3.00E+03 1.48E+04 1.57E+04 2.84E+03 8.25E+03 4.21E+04 4.55E+03 7.55E+04 2.38E+03
Std 1.72E+04 1.73E+04 2.42E+03 2.38E+04 1.38E+04 2.78E+03 3.20E+03 2.56E+04 4.90E+03 2.90E+04 9.10E+02
Rank 11 14 5 12 13 4 9 18 6 19 3
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6.5. Experiments of Hybrid FVIM with DE Components

In this section, we present a series of experiments designed to evaluate the impact of
different components of the Differential Evolution (DE) algorithm when combined with
the hybrid FVIM (Four-Variable Inertia Method).

The DE algorithm is composed of three main operators: mutation, crossover, and
selection, each contributing uniquely to the exploration and exploitation capabilities of the
algorithm. By selectively removing or retaining these components in the hybrid approach,
we aim to investigate their effects on optimization performance. These experiments provide
valuable insights into how each DE component influences the solution quality in the hybrid
FVIM framework.

Table 16 shows the results of the experiments comparing different DE components
such as mutation only (FVIMMU), crossover only (FVIMCR), selection only (FVIMSE),
and a combination of mutation and crossover (FVIMMUCR) across multiple benchmark
functions (F1 to F12).

The results reveal that the full hybrid FVIMDE consistently outperforms the other con-
figurations, securing the best rank across most functions. Configurations that exclude one
or more DE components generally exhibit poorer performance, with FVIMMUCR (mutation
and crossover) often ranking among the lowest, especially in more complex functions.

The results highlight the importance of integrating all DE components (mutation,
crossover, and selection) to achieve better optimization outcomes, as evidenced by FVIMDE’s
superior results in terms of mean performance and ranking across the majority of the bench-
mark functions.

The experimental results demonstrate that including each DE component in isolation
(mutation, crossover, or selection) generally led to worse optimization performance com-
pared to the full integration of all components in the hybrid FVIMDE. This outcome can be
attributed to the individual weaknesses of each component when applied alone.

Mutation only (FVIMMU): Mutation introduces diversity by perturbing existing solu-
tions, which helps explore the search space. However, without crossover, mutation alone
lacks the ability to effectively combine good traits from different solutions. This limitation
can lead to slower convergence and an inability to escape local optima, as the algorithm
relies solely on random variations rather than guided search.

Crossover only (FVIMCR): Crossover is designed to recombine existing solutions to
explore new areas of the search space. However, when used in isolation, it tends to exploit
the current population without introducing new diversity. Without mutation, crossover
alone may quickly converge to suboptimal solutions, as it lacks the ability to explore beyond
the recombined solutions’ neighborhood.

Selection only (FVIMSE): Selection ensures that only the best solutions survive to
the next generation, promoting convergence. However, without mutation or crossover,
the algorithm has no mechanism to generate new solutions or explore the search space.
Selection alone essentially preserves the best solutions from the initial population without
improving them, leading to stagnation and poor optimization results.

Mutation and Crossover (FVIMMUCR): While combining mutation and crossover
provides both exploration and recombination, the absence of selection weakens this con-
figuration. Without selection, the algorithm lacks the necessary pressure to favor better
solutions, leading to the retention of poor candidates and reducing the overall effectiveness
of the search process.

The crossover plays a role in balancing between exploration, utilizing the diversity
introduced by mutation, and exploitation; in addition, crossover does not directly introduce
diversity but rather controls the level of diversity generated through mutation, striking a
balance between exploration and intensification.

The results emphasize that each DE component plays a crucial role in balancing
exploration and exploitation. The absence of any component limits the algorithm’s ability
to effectively optimize the search space, leading to worse performance. The full hybrid
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FVIMDE, which integrates mutation, crossover, and selection, leverages the strengths of
each component, resulting in better convergence and solution quality.

Table 16. Results of hybrid FVIM with DE components, FES = 1000, agents = 30.

Function Statistics FVIMDE FVIMMU FVIMCR FVIMSE FVIMMUCR

F1 Mean 3.01E+02 1.14E+04 9.12E+02 1.10E+03 1.39E+03
Std 5.66E-01 5.46E+04 8.24E+02 1.15E+03 1.49E+03
SEM 1.03E-01 9.98E+03 1.50E+02 2.09E+02 2.72E+02
Rank 1 6 3 4 5

F2 Mean 4.06E+02 4.75E+02 4.18E+02 4.31E+02 6.98E+02
Std 2.49E+00 3.10E+02 2.10E+01 2.86E+01 1.06E+03
SEM 4.55E-01 5.67E+01 3.84E+00 5.23E+00 1.94E+02
Rank 2 5 3 4 6

F3 Mean 6.00E+02 6.08E+02 6.06E+02 6.06E+02 6.10E+02
Std 8.20E-02 6.66E+00 5.11E+00 3.95E+00 1.92E+01
SEM 1.50E-02 1.22E+00 9.33E-01 7.22E-01 3.51E+00
Rank 1 5 4 3 6

F4 Mean 8.11E+02 8.46E+02 8.25E+02 8.24E+02 8.26E+02
Std 4.92E+00 4.02E+01 9.11E+00 8.66E+00 1.08E+01
SEM 8.98E-01 7.34E+00 1.66E+00 1.58E+00 1.97E+00
Rank 1 6 4 3 5

F5 Mean 9.00E+02 1.27E+03 9.62E+02 9.58E+02 9.51E+02
Std 4.83E-02 8.89E+02 6.45E+01 5.38E+01 4.55E+01
SEM 8.81E-03 1.62E+02 1.18E+01 9.83E+00 8.31E+00
Rank 1 6 5 4 3

F6 Mean 1.80E+03 1.06E+07 6.32E+03 6.58E+03 1.23E+08
Std 1.86E+00 4.26E+07 2.27E+03 2.07E+03 4.17E+08
SEM 3.40E-01 7.78E+06 4.15E+02 3.79E+02 7.61E+07
Rank 2 5 3 4 6

F7 Mean 2.02E+03 2.05E+03 2.04E+03 2.04E+03 2.04E+03
Std 8.07E+00 5.92E+01 1.70E+01 1.09E+01 2.70E+01
SEM 1.47E+00 1.08E+01 3.11E+00 1.98E+00 4.94E+00
Rank 1 6 5 3 4

F8 Mean 2.21E+03 2.25E+03 2.23E+03 2.22E+03 2.23E+03
Std 6.07E+00 8.62E+01 3.72E+00 3.96E+00 1.72E+01
SEM 1.11E+00 1.57E+01 6.79E-01 7.23E-01 3.13E+00
Rank 1 6 4 3 5

F9 Mean 2.53E+03 2.57E+03 2.55E+03 2.55E+03 2.55E+03
Std 5.83E-09 1.19E+02 3.33E+01 1.98E+01 2.40E+01
SEM 1.06E-09 2.18E+01 6.09E+00 3.61E+00 4.37E+00
Rank 1 6 4 3 5

F10 Mean 2.51E+03 2.56E+03 2.56E+03 2.55E+03 2.60E+03
Std 3.36E+01 1.06E+02 6.30E+01 6.43E+01 1.99E+02
SEM 6.13E+00 1.94E+01 1.15E+01 1.17E+01 3.63E+01
Rank 1 4 5 3 6

F11 Mean 2.60E+03 2.97E+03 2.84E+03 2.86E+03 2.84E+03
Std 1.22E-01 4.92E+02 1.98E+02 2.08E+02 2.83E+02
SEM 2.23E-02 8.98E+01 3.61E+01 3.79E+01 5.17E+01
Rank 1 6 4 5 3

F12 Mean 2.86E+03 2.89E+03 2.86E+03 2.86E+03 2.90E+03
Std 1.43E+00 6.91E+01 2.08E+00 1.74E+00 8.50E+01
SEM 2.60E-01 1.26E+01 3.81E-01 3.18E-01 1.55E+01
Rank 1 5 3 4 6

6.6. FVIMDE Convergence Diagram

The convergence curves for the CEC2022 benchmark Functions F1 through F6, as
shown in Figure 2, illustrate how the FVIMDE optimizer performs across different types of
optimization challenges. The curve for Function F1, a unimodal shifted and fully rotated
Zakharov function, demonstrates a rapid initial decrease in the best value obtained. This
behavior is typical for unimodal functions, where a direct approach can quickly lead to
the global minimum. Function F2, a multimodal shifted and fully rotated Rosenbrock
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function, shows a steep initial drop followed by a slower, more gradual descent. Moreover,
Function F3, the shifted and fully rotated expanded Schaffer F6 Function, displays a more
consistent and gradual descent, reflecting its multimodal landscape filled with numerous
local optima that challenge FVIMDE’s differentiation between local and global minima.
Similarly, Function F4, the shifted and fully rotated non-continuous Rastrigin function,
shows rapid early improvements that slows as the search continues, which is character-
istic of a function landscape dotted with many local optima and the added complexity
of non-continuity.

Figure 2. Convergence diagram over CEC2022 benchmark functions (F1–F6).
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Function F5, the shifted and fully rotated Levy function, presents a very sharp initial
improvement that plateaus—a pattern resulting from the function’s long, narrow valleys,
which require precise movements to reach the global minimum. Moreover, Function F6’s
curve, representing a hybrid function, shows several plateaus indicative of the diverse function
landscape it comprises, testing both the exploitation and exploration capabilities of FVIMDE.

The convergence curves for Functions F7 to F12, as shown in Figure 3, illustrate how
FVIMDE performs across hybrid and composition functions. The curve for Function F7, a
hybrid function, showcases a sharp initial descent and subsequent gradual improvements,
suggesting that FVIMDE quickly locates a promising region but then switches to a more
cautious approach to refine its search towards the global optimum. This indicates a balanced
capability in exploring new areas and exploiting known good solutions.

Figure 3. Convergence diagram over CEC2022 benchmark functions (F7–F12).
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Similarly, Function F8’s convergence curve also begins with a steep drop but features
fewer pronounced steps, which might point to a smoother landscape or more effective nav-
igation strategies employed by FVIMDE. The relative flatness after the initial improvement
might reflect fewer local optima or a more unified region drawing the optimizer toward
the global optimum.

For Function F9, a composition function, the curve displays a rapid initial decline
followed by a prolonged, slow convergence, reflecting FVIMDE’s ability to quickly iden-
tify viable paths to the optimum. However, the complexity of the composition, likely
involving multiple overlapping functions, necessitates meticulous adjustments to fine-tune
the solution.

Function F10’s curve, similar to F9, shows a steep initial descent that transitions into a
steady, albeit slower, progression towards the minimum. This pattern underlines FVIMDE’s
proficiency in managing simultaneous optimization challenges presented by composition
functions, effectively handling the layered landscapes.

The convergence behavior for Function F11 mirrors that of Function F10 with a sharp
initial drop. However, the extended plateau in the later stages of the iterations suggests
a demanding optimization landscape where further improvements become increasingly
difficult as FVIMDE approaches the vicinity of the global optimum.

Moreover, the curve for Function F12 depicts a gradual but consistent decline through-
out the iterations, suggesting continuous, incremental improvements. This indicates either
a complex but navigable landscape or that FVIMDE consistently makes small gains that
cumulatively bring it closer to the optimum without major disruptions.

7. Solving Engineering Design Optimization Problems Using FVIMDE

In the realm of structural engineering, the design optimization issues are typically
categorized as Constrained Optimization Problems (COPs), which exhibit a high degree
of nonlinearity and involve numerous design variables under complex constraints. This
nonlinearity often leads to a multimodal response landscape. To address this, metaheuristic
global optimization algorithms are often employed to find optimal solutions.

Constrained Optimization

A COP generally involves an objective function in conjunction with various equality
and inequality constraints. It also often includes specified lower and upper bounds for the
design variables. For a situation involving n design variables, the COP can be expressed in
the following manner:

The objective function f (X) is the target for minimization. Here, gi(X) and hk(X)
represent the inequality and equality constraint functions, respectively, with m inequality
constraints and p equality constraints. The problem becomes a nonlinear optimization
problem if at least one of the functions f (X), gi(X), or hk(X) is nonlinear.

Minimize : f (X)

Subject to :

gi(X) ≤ 0, i = 1, 2, . . . , m

hk(X) = 0, k = 1, 2, . . . , p

aj ≤ xj ≤ bj, j = 1, . . . , n

X =
(
x1, x2, . . . , xn

)
(19)

Metaheuristic algorithms are generally devised for both constrained and uncon-
strained search spaces. However, to apply these algorithms to COPs, additional mecha-
nisms are required to integrate the constraints into their objective function. In addressing
COPs, it becomes essential to manage both feasible and infeasible solutions, with greater
emphasis on the latter. Although completely ignoring infeasible solutions could simplify
the process, such an approach might lead to the loss of potentially valuable information
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about certain promising areas within the function landscape. To circumvent this issue, a
traditional method involves imposing a penalty for infeasible solutions. This method in-
cludes a constraint violation in the penalized candidate solutions, effectively transforming
them into an unconstrained objective function, which is then optimized using techniques
suited for unconstrained optimization.

The measure of how much a candidate solution X deviates from the given constraints
is defined as the constraint violation V(X), as shown in Equations (20) and (21). The
evaluation of this violation in the COP typically utilizes the (22) equations.

V(X) =

{
0, if X ∈ F
> 0, if X /∈ F

, where F is the feasible region (20)

V(X) = max
(

max
i

{0, gi(X)}, max
k

{|hk(X)|}
)

(21)

V(X) = ∑
i

max{0, gi(X)}m + ∑
k
|hk(X)|m (22)

In COP, the technique of constraint handling is a critical criterion to achieve the optimal
solution within the feasible region, if such a region exists. This approach primarily aims
to exploit infeasible candidate solutions and extract useful information for the stochastic
search process. For managing constraints, Deb’s rules [58] are employed, considering both
the constraint violation and the value of the objective function.

Handling active constraints in COPs presents significant challenges. All equality
constraints are inherently active, and for inequality constraints, those which satisfy gi(X) =
0 at the global optimum are deemed active constraints. Hence, issues involving equality
constraints require cautious handling to ensure high-quality solutions. A common practice
is to transform equality constraints into inequality constraints. This transformation often
involves a variety of techniques, one of which is the use of a tolerance parameter (tp). This
parameter assists in converting equality constraints into their inequality counterparts. Thus,
the constraints of Equation (19) can be expressed as follows. Let Gineq denote the set of
constraints, where the set is defined as:

Gineq = {X ∈ Rn : gi(X) ≤ 0, i = 1, . . . , m and |hi(X)− tp| ≤ 0, i = 1, . . . , p} (23)

where tp is the tolerance parameter for the equality constraints represented by function hi.
The objective is to minimize the fitness function f (X) subject to the constraints in Gineq:

min
X

f (X) subject to X ∈ Gineq (24)

8. Application FVIM to Solve Structural Engineering Design Problems

This section demonstrates the effectiveness of FVIMDE algorithms through the resolu-
tion of five structural engineering design problems. The performance is compared with
state-of-the-art and metaheuristic algorithms.

8.1. Experimental Setup

The parameter settings for all engineering problems are shown in Table 17.

Table 17. Evaluation parameters summary.

Parameter Details

Stopping criterion Maximum of 1000 function evaluations

Runs 30 independent runs

Statistical results Best (BEST), mean (MEAN), worst (WORST), and standard deviation (SD)
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In the engineering design problems, the FVIMDE has been compared with various
optimization algorithms. The algorithms evaluated encompass: Moth-Flame Optimization
(MFO) [53], Whale Optimization Algorithm (WOA) [51], Multi-Verse Optimizer (MVO) [50],
Sine Cosine Algorithm (SCA) [52], Equilibrium Optimizer (EO) [59], Henry Gas Solubil-
ity Optimization (FOX) [60], Sea-Horse optimizer (SHO) [61], Artificial hummingbird
algorithm [35], Reptile Search Algorithm (RSA) [62], and Dragonfly algorithm [63].

8.1.1. Tension/Compression Spring Design Problem

The Tension/Compression Spring Design Problem (See Figure 4)is a pivotal optimiza-
tion challenge in mechanical engineering, aiming to minimize the spring’s weight while
adhering to various physical and geometric constraints [64]. This entails optimizing key
design variables such as wire diameter, mean coil diameter, and the number of active coils,
which influence the spring’s mechanical properties. The choice of material also plays a
critical role in determining the spring’s strength and resilience, with manufacturing con-
siderations impacting the feasibility and cost-effectiveness of the design. Engineers tackle
this problem using a blend of analytical methods, empirical formulas, and computational
techniques like finite element analysis to simulate the spring’s performance under load,
and optimization algorithms to efficiently navigate the design space. The ultimate goal is
to develop a spring that meets specific load-bearing requirements, durability standards,
and application-specific conditions, embodying the integration of theoretical principles,
practical constraints, and advanced optimization strategies in engineering design.

Figure 4. Tension/compression spring design problem.

The primary goal is to minimize the fabrication cost of a spring, governed by three
parameters and four constraints. These include wire diameter (x1), spring coil diameter
(x2), number of active coils (x3), and constraints related to deflection (g1(X)), shear stress
(g2(X)), surge frequency (g3(X)), and outer diameter limit (g4(X)).

The mathematical formulation of the problem is as follows:
Let LB = [lb1, lb2, lb3] and UB = [ub1, ub2, ub3] denote the lower and upper bounds of

the design variables, respectively. Here, lbi and ubi represent the lower and upper bounds
of the ith design variable. Vio denotes any violation conditions, and Obj represents the
objective function to be minimized. The global minimum achieved is denoted by GloMin.

The objective function, denoted as z, is defined as:

z = x2
1 · x2 · (x3 + 2)

where x1, x2, and x3 are the design variables representing certain characteristics of the spring.
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Constraints g are defined as follows:

g1(x) = 1 −
x3

2 · x3

71785 · x4
1
≥ 0

g2(x) =
4 · x2

2 − x1 · x2

12566 · (x2 · x3
1 − x4

1)
+

1
5108 · x2

1
− 1 ≥ 0

g3(x) = 1 − 140.45 · x1

x2
2 · x3

≥ 0

g4(x) =
x1 + x2

1.5
− 1 ≥ 0

where gi(x) represents the ith constraint function, and x1, x2, and x3 are the design
variables.

The lower and upper bounds for the design variables are defined by LB and UB,
respectively, and any other conditions such as violation conditions are defined by Vio.

As can be seen in Table 18 for the Tension/Compression Spring Design Problem, the
FVIMDE optimizer resulted in efficient outcomes. An analysis of the results demonstrates
that the mean objective function value obtained by FVIMDE is 1.2665E-02, the most com-
petitive across all optimizers considered in this study. The consistency of the FVIMDE
algorithm is validated by an exceedingly low standard deviation of 1.4363E-09, indicative
of a high level of result repeatability and algorithmic robustness. This suggests that the
variability in the quality of solutions across different executions is negligible, signifying a
stable convergence towards the global optimum.

Table 18. Results of tension/compression spring design problem, run = 30, FES = 1000, agents
No. = 50.

Optimizer Mean Std Max Min Value X1 X2 X3

FVIMDE 1.2665E-02 1.4363E-09 1.2665E-02 1.2665E-02 5.1686E-02 3.5663E-01 1.1294E+01
GWO 1.3401E-02 3.4570E-04 1.4014E-02 1.3009E-02 5.4997E-02 4.3879E-01 7.8022E+00
HHO 1.3186E-02 6.4970E-05 1.3258E-02 1.3051E-02 5.00E-02 3.1378E-01 1.4637E+01
MVO 1.8210E-01 1.5741E-01 5.2245E-01 2.1680E-02 6.0214E-02 5.2439E-01 9.4024E+00
CPO 1.4828E-02 1.8026E-03 1.8760E-02 1.3051E-02 5.5594E-02 4.5532E-01 7.2742E+00
FOX 5.4527E-02 4.7292E-02 1.4619E-01 1.0625E-02 5.00E-02 2.5000E-01 1.5000E+01
ZOA 2.9691E-02 9.0947E-03 4.4030E-02 1.8975E-02 5.7850E-02 4.0690E-01 1.1935E+01
FOX 1.3122E-02 1.5122E-04 1.3220E-02 1.2747E-02 5.00E-02 3.1725E-01 1.4072E+01
AVOA 1.3466E-02 6.6278E-04 1.5278E-02 1.2804E-02 5.0140E-02 3.2034E-01 1.3899E+01
SCA 1.3106E-02 1.6643E-04 1.3248E-02 1.2798E-02 5.00E-02 3.1728E-01 1.4134E+01
MFO 1.2709E-02 1.9473E-05 1.2720E-02 1.2666E-02 5.1787E-02 3.5907E-01 1.1153E+01
WOA 1.3323E-02 1.2549E-04 1.3498E-02 1.3077E-02 5.00E-02 3.1683E-01 1.4510E+01

Further scrutiny reveals that the differences between the maximum values and the
minimum values are small, which solidifies the assertion of FVIMDE’s steadfast perfor-
mance in each independent run. The parameters corresponding to the optimal design
dimensions, denoted as X1, X2, and X3, are identified as 5.1686E-02, 3.5663E-01, and
1.1294E+01, respectively. These parameter values specify the dimensions that yield the
minimum objective value, which in the context of engineering design, translates to an
optimal spring configuration. However, the number of active coils P = x1, the diameter of
the winding D = x2, and the diameter of the wire d = x3. FVIMDE has converged to a set
of dimensions given by x1 = 5.1686E-02, x2 = 3.5663E-01, and x3 = 1.1294E+01, which lie
within the physical ranges of [0.05,2], [0.25,1.3], and [2,15], respectively.

Comparatively, FVIMDE outperforms the other algorithms, which exhibit higher
means and standard deviations, suggesting a less optimal mean performance and a higher
variability in their search outcomes.
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8.1.2. The Welded Beam Design Problem

The Welded Beam Design Optimization Problem is a fundamental engineering chal-
lenge that focuses on designing an optimal welded beam structure under specific constraints
while minimizing costs [65]. The problem involves determining the optimal dimensions
of the beam, such as the length, width, height, and thickness of the weld, to ensure the
structure’s safety and functionality. Engineers must balance various factors, including
material strength, beam deflection, shear stress, and bending stress, ensuring the design
adheres to industry standards and safety regulations. The objective often includes mini-
mizing the cost associated with the material and fabrication while maximizing the beam’s
performance under expected loads. This optimization problem is typically addressed
using computational methods, including numerical optimization techniques and finite
element analysis, to explore the design space efficiently and identify the most cost-effective
and reliable beam design. Through this problem, engineers enhance their understanding
of how different design variables impact the structural integrity and cost-efficiency of
welded beams, contributing to more effective and economical structural design practices
in engineering.

The objective here is to minimize the manufacturing cost of a welded beam, involving
four optimized variables and seven constraints. These include the thickness of the weld
(x1), the length of the clamped bar (x2), the height of the bar (x3), and the thickness of the
bar (x4) and constraints like shear stress, bending stress in the beam, buckling load, end
deflection of the beam, normal stress, and boundary considerations. The design of the
welded beam is depicted in Figure 5.

Figure 5. The welded beam design problem.

The mathematical formulation of the problem is as follows:
Let LB = [lb1, lb2, lb3, lb4] and UB = [ub1, ub2, ub3, ub4] denote the lower and upper

bounds of the design variables, respectively. Here, lbi and ubi represent the lower and
upper bounds of the ith design variable. Vio denotes any violation conditions, and Obj
represents the objective function to be minimized. The global minimum achieved is denoted
by GloMin.

The objective function, denoted as z, is defined as:

z = 1.10471 · x2
1 · x2 + 0.04811 · x3 · x4 · (14 + x2)

where x1, x2, x3, and x4 are the design variables representing certain characteristics of the
welded beam.
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Constraints g are defined as follows:

g1(x) = x2 · x3 − x1 ≥ 0

g2(x) =
p√

2 · x1 · x2
− 1.5 ≥ 0

g3(x) =
p√

2 · x1 · x2
− 1.5 ≥ 0

g4(x) =
6 · p · l
x4 · x2

3
− 30000 ≥ 0

g5(x) =
4 · p · l3

E · x3
3 · x4

− 10000 ≥ 0

g6(x) =
p

2 ·
√

2 · x1 · x2
− 13600 ≥ 0

g7(x) =
√
(

p
2 ·

√
2 · x1 · x2

)2 +
m · x2

2 · r
+ (

m
j
)2 − 30000 ≥ 0

g8(x) =
p · l

x4 · x2
3
− 30000 ≥ 0

g9(x) = p − pc ≥ 0

g10(x) =
√
(

p
2 ·

√
2 · x1 · x2

)2 +
m · x2

2 · r
+ (

m
j
)2 − 30000 ≥ 0

where gi(x) represents the ith constraint function, and x1, x2, x3, and x4 are the design
variables. p represents the load, l represents the length, E represents the modulus of
elasticity, m represents the bending moment, r represents the radius of gyration, and j
represents the section modulus. pc represents the critical load.

The lower and upper bounds for the design variables are defined by LB and UB,
respectively, and any other conditions such as violation conditions are defined by Vio.

As can be seen in Table 19, the results presented indicate that FVIMDE achieves a mean
value of 1.724948, a maximum of 1.725806, and an impressively low standard deviation
of 0.000302, showcasing its strong performance consistency and reliability in converging
towards optimal solutions.

Table 19. Results of the weld beam design problem, run = 30, agents = 50, FES = 1000.

Optimizer Mean Max Std Best X1 X2 X3 X4

FVIMDE 1.724948 1.725806 0.000302 1.724852 0.20573 3.470489 9.036624 0.20573
FVIM 1.726068 1.726818 0.00049 1.725337 0.205748 3.47167 9.036949 0.205761
WSO 1.724852 1.724852 2.44E-11 1.724852 0.20573 3.470489 9.036624 0.20573
ZOA 1.803883 1.887076 0.06735 1.725173 0.205635 3.471647 9.03894 0.205718
SCA 1.816392 1.856325 0.03809 1.725198 0.205717 3.470253 9.03908 0.205726
RTH 1.724852 1.724852 1.01E-14 1.745062 0.199505 3.619743 9.094364 0.205716
PSO 1.726374 1.727971 0.000855 1.724852 0.20573 3.470489 9.036624 0.20573
POA 1.724852 1.724852 1.78E-09 1.724852 0.20573 3.470489 9.036624 0.20573
MVO 1.735975 1.771371 0.013881 1.726231 0.205337 3.482284 9.035197 0.205814
AVOA 1.724852 1.724853 1.85E-07 1.724852 0.20573 3.470489 9.036624 0.20573
FOX 1.731082 1.758473 0.01269 1.724852 0.20573 3.470489 9.036624 0.20573
MFO 1.724852 1.724852 4.66E-11 1.724852 0.20573 3.470489 9.036624 0.20573
HOA 2.365591 2.562652 0.14433 2.067993 0.287823 2.784202 7.682421 0.292287
BBO 1.872117 2.319204 0.175173 1.727696 0.203668 3.515431 9.036619 0.20573
GWO 1.726062 1.728523 0.000917 1.725133 0.205712 3.471168 9.037725 0.205733
ROA 1.724852 1.724853 1.3E-07 1.724852 0.20573 3.470489 9.036624 0.20573
CPO 1.729198 1.735134 0.002661 1.726255 0.20513 3.483531 9.03688 0.205799
COA 1.725016 1.725156 8.17E-05 1.724925 0.205697 3.471248 9.036709 0.20573
Chimp 2.273522 2.564183 0.209989 1.982986 0.204561 4.149214 10 0.205138
HHO 1.724852 1.724852 1.42E-12 1.724852 0.20573 3.470489 9.036624 0.20573
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FVIMDE’s best value aligns closely with the lowest values obtained by other high-
performing algorithms such as WSO, POA, AVOA, MFO, ROA, and HHO. These algorithms
exhibit minimal variations in their performance metrics, especially in terms of standard
deviation, which suggests a robustness similar to that of FVIMDE. In contrast, other
algorithms such as ZOA and SCA show higher mean and maximum values, coupled with
larger standard deviations. This indicates variability in their performance, which may lead
to less reliable outcomes in similar optimization tasks. Moreover, algorithms like HOA
and Chimp demonstrate poorer metrics with much higher mean and standard deviations,
underscoring their unsuitability for this particular problem under the tested conditions.

8.1.3. Cantilever Beam Design Problem

The Cantilever Beam Design Problem constitutes a pivotal aspect of structural en-
gineering, focusing on the optimal design of a beam fixed at one end, known as a can-
tilever [15]. Engineers aim to determine the most efficient dimensions and material prop-
erties for the beam to withstand specified loads while adhering to various constraints.
Key considerations include minimizing deflection, stress, and material usage while max-
imizing strength and stability. The design variables typically encompass beam length,
cross-sectional dimensions, material properties, and support conditions. Engineers lever-
age analytical methods, empirical equations, and computational simulations to address
this optimization problem effectively. Finite element analysis and optimization algorithms
facilitate the exploration of the design space, enabling engineers to identify the most suit-
able beam configuration that balances performance, safety, and cost-effectiveness. Through
the Cantilever Beam Design Problem, engineers advance their understanding of structural
behavior and develop strategies to create robust and efficient beam designs for a wide
range of applications, from bridges and buildings to mechanical components and aerospace
structures. The Cantilever Beam Design Problem involves a structure composed of five
hollow square cross-sections, as illustrated in Figure 6.

Figure 6. Cantilever beam design problem.

The mathematical formulation of the problem is as follows:
Let LB = [lb1, lb2, lb3, lb4, lb5] and UB = [ub1, ub2, ub3, ub4, ub5] denote the lower and

upper bounds of the design variables, respectively. Here, lbi and ubi represent the lower
and upper bounds of the ith design variable. Vio denotes any violation conditions, and
Obj represents the objective function to be minimized. The global minimum achieved is
denoted by GloMin.

The objective function, denoted as z, is defined as:

z = 0.0624 · (x1 + x2 + x3 + x4 + x5)

where x1, x2, x3, x4, and x5 are the design variables representing certain characteristics of
the cantilever beam.

Constraints g are defined as follows:

g1(x) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≥ 0
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where gi(x) represents the ith constraint function, and x1, x2, x3, x4, and x5 are the de-
sign variables.

The lower and upper bounds for the design variables are defined by LB and UB,
respectively, and any other conditions such as violation conditions are defined by Vio.

As can be seen in Table 20, in the evaluation of optimization techniques for the Can-
tilever Beam Design Problem, the FVIMDE algorithm has demonstrated a highly effective
performance. The statistical measurements for FVIMDE reveal a mean objective function
value of 1.340, with an exceedingly narrow standard deviation of 1.765 × 10−7, indicating
an extraordinary level of precision in FVIMDE’s outcomes across various computational
iterations. This precision is complemented by the consistency of the maximum value,
which precisely matches the mean and best values, denoting a good stability in reaching
the optimal solution.

Table 20. Results of the cantilever beam design problem, run = 30, agents = 50, FES = 1000.

Statistical Measurements (X1–X4) for Minimum Value
Sheet Name Mean Std Max Best X1 X2 X3 X4 X5

FVIMDE 1.340E+00 1.765E-07 1.340E+00 1.340E+00 6.017E+00 5.306E+00 4.498E+00 3.501E+00 2.152E+00
SNS 1.340E+00 6.326E-07 1.340E+00 1.340E+00 6.018E+00 5.307E+00 4.495E+00 3.504E+00 2.150E+00
GWO 2.062E+00 6.002E-01 3.217E+00 1.511E+00 8.534E+00 4.145E+00 5.071E+00 4.510E+00 1.962E+00
HHO 3.796E+00 5.335E-01 4.712E+00 2.969E+00 7.249E+00 7.984E+00 1.058E+01 1.179E+01 9.974E+00
MVO 6.371E+00 1.449E+00 8.901E+00 4.017E+00 2.630E+01 6.630E+00 3.912E+00 1.197E+01 1.556E+01
CPO 2.805E+00 1.710E+00 5.983E+00 1.399E+00 7.231E+00 5.051E+00 3.861E+00 4.319E+00 1.951E+00
FOX 7.552E+00 1.139E+00 9.611E+00 6.061E+00 1.550E+01 5.194E+01 2.087E+01 4.175E+00 4.650E+00
ZOA 4.532E+00 9.627E-01 5.712E+00 2.931E+00 7.721E+00 3.787E+00 2.553E+01 5.680E+00 4.249E+00
FOX 5.668E+00 8.355E-01 6.703E+00 4.446E+00 2.396E+01 1.483E+01 5.848E+00 1.304E+01 1.358E+01
AVOA 3.229E+00 1.315E+00 5.863E+00 1.625E+00 5.697E+00 8.405E+00 4.295E+00 4.685E+00 2.954E+00
SCA 3.098E+00 1.933E+00 7.983E+00 1.756E+00 1.052E+01 7.122E+00 4.686E+00 2.823E+00 2.988E+00
MFO 1.341E+00 4.005E-04 1.341E+00 1.340E+00 5.976E+00 5.352E+00 4.506E+00 3.500E+00 2.142E+00
WOA 3.574E+00 8.699E-01 5.001E+00 1.749E+00 4.906E+00 9.387E+00 6.039E+00 5.316E+00 2.387E+00

The design variables for the minimum value solution, denoted by X1 through X5,
have been optimized to 6.017, 5.306, 4.498, 3.501, and 2.152, respectively. These values
represent critical dimensions or properties in the cantilever beam design that adhere to the
constraints and objectives set forth in the problem.

When comparing with the other algorithms, FVIMDE’s performance is not only con-
sistent but also indicates a significant margin of superiority in locating the minimum value
solution. For instance, algorithms like the GWO and WOA present higher standard devia-
tions and maximum values, which suggest a less consistent approach towards optimization
and potential difficulty in reliably identifying the global optimum.

The data evidently position the FVIMDE algorithm as an efficient and reliable opti-
mization tool for the Cantilever Beam Design Problem, manifesting an impressive capability
to navigate the search space and converge towards an optimal solution with a high degree
of accuracy and repeatability. Such characteristics are indispensable in engineering design
optimization, where the reliability of the computational tool directly impacts the feasibility
and performance of the designed structure.

8.1.4. Three-Bar Truss Design Problem

The Three-Bar Truss Design Problem is a classic optimization challenge in structural
engineering, focusing on optimizing the design of a truss system composed of three
bars [66]. The goal is to minimize the weight or maximize the strength of the truss while
satisfying certain constraints. Typically, the design variables include dimensions such as
the lengths or cross-sectional areas of the bars, which influence the truss’s behavior under
load. The constraints often involve limits on stresses, deflections, or geometric properties
to ensure the truss meets performance requirements and remains structurally stable. This
problem serves as a fundamental example in structural optimization, demonstrating the
trade-offs between different design objectives and constraints in engineering design. It
has applications in various fields such as civil engineering, aerospace engineering, and
mechanical engineering, where lightweight and efficient structural designs are crucial for
performance and safety.
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The objective of the Three-Bar Truss Design Problem is to design a truss with minimum
weight without violating any constraints (see Figure 7).

Figure 7. Three-bar truss design problem.

The mathematical formulation of the problem is as follows:
Let LB = [lb1, lb2, . . . , lbn] and UB = [ub1, ub2, . . . , ubn] denote the lower and upper

bounds of the design variables, respectively. Here, lbi and ubi represent the lower and
upper bounds of the ith design variable. Vio denotes any violation conditions, and Obj
represents the objective function to be minimized. The global minimum achieved is denoted
by GloMin.

The objective function, denoted as z, is defined as:

z = 100 · (2
√

2x1 + x2)

where x1 and x2 are the design variables representing certain characteristics of the three-
bar truss.

Constraints g are defined as follows:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
· 2 − 2 ≥ 0

g2(x) =
x2√

2x2
1 + 2x1x2

· 2 − 2 ≥ 0

g3(x) =
1√

2x2 + x1
· 2 − 2 ≥ 0

where gi(x) represents the ith constraint function, and x1 and x2 are the design variables.
The lower and upper bounds for the design variables are defined by LB and UB,

respectively, and any other conditions such as violation conditions are defined by Vio.
Table 21 shows that the statistical measurements yield a mean objective function

value of 252.3, accompanied by a standard deviation of 12.72, signifying the average and
variability of performance across multiple runs. The maximum value achieved by FVIMDE
is 265.6, with the best-recorded value being lower at 232.0, reflecting the optimizer’s
capacity to identify highly effective solutions, albeit with a notable range of outcomes.

The design variables X1 and X2, corresponding to the optimized parameters of the
truss design, attained values of 0.69 and 0.3688, respectively, at the best solution. These
values are critical as they directly influence the structural integrity and weight of the truss,
which are pivotal considerations in engineering design.

When comparing with the results of other optimizers, FVIMDE’s performance man-
ifests as competitive, specifically in terms of achieving the lowest ’best’ value, which is
indicative of the potential to reach superior design solutions. Notwithstanding the broad
standard deviation, which suggests a greater variability in solution quality, the ability of
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FVIMDE to reach a notably lower ’best’ value may be advantageous in practical applications
where the optimal design is paramount, despite the variability.

Table 21. Results of the three-bar truss design problem, run = 30, agents = 50, FES = 1000.

Statistical Measurements (X1–X2) for Best Value
Optimizer Mean Std Max Best X1 X2

FVIMDE 2.523E+02 1.272E+01 2.656E+02 2.320E+02 6.900E-01 3.688E-01
GWO 2.639E+02 1.921E-07 2.639E+02 2.639E+02 7.887E-01 4.083E-01
HHO 2.598E+02 5.064E+00 2.640E+02 2.498E+02 7.681E-01 3.257E-01
MVO 2.636E+02 3.371E-01 2.639E+02 2.628E+02 7.831E-01 4.135E-01
CPO 2.598E+02 4.458E+00 2.643E+02 2.515E+02 7.236E-01 4.688E-01
FOX 2.636E+02 8.884E-01 2.651E+02 2.620E+02 7.819E-01 4.086E-01
ZOA 2.639E+02 6.783E-08 2.639E+02 2.639E+02 7.887E-01 4.082E-01
FOX 2.636E+02 7.599E-01 2.640E+02 2.615E+02 7.833E-01 3.996E-01
AVOA 2.632E+02 5.715E-01 2.639E+02 2.620E+02 7.768E-01 4.227E-01
SCA 2.633E+02 1.660E+00 2.650E+02 2.601E+02 8.002E-01 3.376E-01
MFO 2.586E+02 4.265E+00 2.641E+02 2.524E+02 7.962E-01 2.722E-01
WOA 2.639E+02 1.376E-04 2.639E+02 2.639E+02 7.885E-01 4.088E-01
MFO 2.635E+02 3.574E-01 2.639E+02 2.628E+02 7.898E-01 3.940E-01

Other optimizers, such as the Grey Wolf Optimizer (GWO) and the Whale Optimiza-
tion Algorithm (WOA), exhibit lower standard deviations, reflecting a more consistent
approach to the solution space exploration, albeit potentially at the cost of not reaching
as optimal a solution, as indicated by their ’best’ values. This analysis underscores the
significance of FVIMDE’s strategy in navigating the search space, striking a balance be-
tween exploration and exploitation, and exhibiting a noteworthy proficiency in discerning
high-quality solutions for the Three-Bar Truss Design Problem.

8.1.5. Tabular Column Design Problem

The Tabular Column Design Problem is a crucial engineering optimization challenge
aiming to determine the optimal dimensions of a tubular column while considering various
constraints and objectives [67]. In this problem, the goal is to minimize the weight of
the column while ensuring it meets specific strength and stability requirements. Key
parameters include the outer diameter of the column (x1) and the thickness of its wall
(x2). The objective function seeks to minimize the weight of the column while adhering to
constraints such as maintaining a minimum aspect ratio, limiting the maximum stress the
column can endure, and ensuring geometric feasibility. By optimizing these parameters,
engineers can design tubular columns that are both structurally sound and efficient in
terms of material usage.

The objective of the Tabular Column Design Problem is to minimize the cost of design-
ing a uniform column of the tabular section, incorporating material and construction costs.
The column, made of material with a length (L), yield stress (S), modulus of elasticity (E),
and density (D), is designed to carry a compressive load (P). This problem is characterized
by two optimized variables: the mean diameter of the column (x1) and the tube thickness
(x2). It includes six constraints: ensuring the stress in the column is less than the buckling
stress (g1(X)) and the yield stress (g2(X)); restricting the mean diameter between 2 and
14 cm (g3(X) and g4(X)); and limiting the column thickness to the commercially available
range of 0.2–0.8 cm (g5(X) and g6(X)).

The Tubular Column Design Problem involves optimizing the design of a tubular
column subjected to specific constraints and objectives. Let x1 represent the outer diameter
of the column and x2 represent the thickness of the column’s wall. The objective function z
aims to minimize the weight of the column while meeting strength requirements and is
expressed as:

z = 9.8x1x2 + 2x1
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Subject to the following constraints:

g1 = 1.59 − x1x2 ≥ 0

g2 = 47.4 − x1x2(x2
1 + x2

2) ≥ 0

g3 =
2
x1

− 1 ≥ 0

g4 =
x1

14
− 1 ≥ 0

g5 =
2
x1

− 1 ≥ 0

g6 =
x1

8
− 1 ≥ 0

Here, g1 illustrates that the column’s dimensions maintain a minimum aspect ratio,
g2 imposes a limit on the maximum stress the column can withstand, and g3, g4, g5, and
g6 are additional geometric constraints on the column’s dimensions to ensure stability
and feasibility.

Table 22 shows that FVIMDE has good performance over the Tabular Column Design
Problem, where the mean objective function value achieved by FVIMDE is 26.49, which is
reflective of its robust optimization capability across various trials. The astoundingly low
standard deviation of 2.160E-09 points to an unparalleled level of precision and consistency
in the results—a characteristic that is paramount in engineering design applications where
reliability and predictability are of utmost significance.

Table 22. Results of the tabular column design problem, run = 30, agents = 50, FES = 1000.

Statistical Measurements (X1–X4) for Minimum Value
Sheet Name Mean Std Max Best K L

FVIMDE 2.649E+01 2.160E-09 2.649E+01 2.649E+01 5.452E+00 2.916E-01
SNS 2.649E+01 3.413E-09 2.649E+01 2.649E+01 5.452E+00 2.916E-01
GWO 2.655E+01 3.984E-02 2.661E+01 2.649E+01 5.460E+00 2.910E-01
HHO 2.663E+01 8.973E-02 2.676E+01 2.653E+01 5.444E+00 2.931E-01
MVO 2.931E+01 1.346E+00 3.119E+01 2.693E+01 5.232E+00 3.211E-01
CPO 2.664E+01 9.296E-02 2.682E+01 2.654E+01 5.417E+00 2.959E-01
FOX 3.032E+01 1.989E+00 3.310E+01 2.698E+01 5.234E+00 3.220E-01
ZOA 2.663E+01 8.878E-02 2.679E+01 2.649E+01 5.428E+00 2.939E-01
FOX 2.762E+01 1.409E+00 3.111E+01 2.653E+01 5.473E+00 2.906E-01
AVOA 2.681E+01 1.914E-01 2.706E+01 2.650E+01 5.419E+00 2.950E-01
SCA 2.664E+01 1.049E-01 2.681E+01 2.651E+01 5.457E+00 2.916E-01
MFO 2.659E+01 6.546E-02 2.672E+01 2.651E+01 5.462E+00 2.912E-01
WOA 2.649E+01 4.410E-04 2.649E+01 2.649E+01 5.452E+00 2.916E-01

The congruity between the mean, maximum, and ’best’ values, all recorded at 26.49,
further substantiates the FVIMDE algorithm’s steadfast performance in arriving at the
most favorable solution. The reported parameter values for K and L, at 5.452 and 0.2916
respectively, which correspond to the minimum objective value, indicate specific design
dimensions for the tabular column that are optimized for performance.

The distinguished performance of the FVIMDE algorithm can presumably be ascribed
to its adept exploitation of the search space and the subtle fine-tuning of solutions. This
is facilitated by FVIMDE’s structured approach to maintaining a hierarchy of potential
solutions and dynamically updating their positions, which is likely to attributed to its
superior convergence characteristics.

9. Conclusions

This study introduced the Hybrid FVIMDE Algorithm, ingeniously combining the Fi-
nite Volume Integration Method (FVIM) with Differential Evolution (DE) to tackle complex
optimization challenges across engineering design domains. Our extensive evaluations,
conducted over a diverse set of benchmarks, including CEC2017, CEC2022, and an ad-
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ditional 50 benchmark functions, demonstrate the robustness and superior performance
of FVIMDE against traditional optimization algorithms. FVIMDE showed outperformed
results in benchmark tests and also showcased remarkable proficiency in addressing real-
world structural engineering problems. We compared its efficacy in solving five complex
structural engineering tasks against other established algorithms, revealing its potential
to outperform in terms of both efficiency and outcome quality. The FVIMDE hybrid al-
gorithm combines the strengths of FVIM for precise exploitation and DE for dynamic
exploration, maintaining an effective balance that enhances convergence rates and solu-
tion accuracy. The algorithm’s design ensures adaptability and robustness across various
optimization scenarios.

The success of FVIMDE invites further exploration into its applications and enhance-
ments, particularly in expanding its utility to other types of engineering challenges and
exploring adaptive parameter tuning mechanisms to further its efficacy. Future studies may
also explore diverse hybridization methods for FVIM and tackle clustering or classification
problems, large-scale optimizations, and multiobjective optimizations.
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Appendix A. 2022 IEEE Congress on Evolutionary Computation (CEC2022)
Benchmark Functions

Table A1. The 2022 IEEE Congress on Evolutionary Computation (CEC2022) benchmark functions.

No. Category Function Description fmin

Unimodal functions

F1 Unimodal function Shifted and fully rotated Zakharov function 300

Multimodal functions

F2 Shifted and fully rotated Rosenbrock function 400
F3 Shifted and fully rotated Expanded Schaffer f6 function 600
F4 Shifted and fully rotated non-continuous Rastrigin function 800
F5 Shifted and fully rotated Levy function 900

Hybrid functions

F6 Hybrid function 1 (N = 3) 1800
F7 Hybrid function 2 (N = 6) 2000
F8 Hybrid function 3 (N = 5) 2200

Composition functions

F9 Composition function 1 (N = 5) 2300
F10 Composition function 2 (N = 4) 2400
F11 Composition function 3 (N = 5) 2600
F12 Composition function 4 (N = 6) 2700
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Appendix B. 2017 IEEE Congress on Evolutionary Computation (CEC2017)
Benchmark Suites

Table A2. 2017 IEEE Congress on Evolutionary Computation (CEC2017) benchmark suites.

F No. Functions Fi(x*)

Unimodal 1 Shifted and rotated Bent Cigar function 100
functions 2 Shifted and rotated Zakharov function 200

3 Shifted and rotated Rosenbrock’s function 300
4 Shifted and rotated Rastrigin’s function 400
5 Shifted and rotated expanded Scaffer’s F6 function 500

Simple multimodal 6 Shifted and rotated Lunacek Bi_Rastrigin function 600
functions 7 Shifted and rotated Non-Continuous Rastrigin’s function 700

8 Shifted and rotated Levy function 800
9 Shifted and rotated Schwefel’s function 900
10 Hybrid function 1 (N = 3) 1000
11 Hybrid function 2 (N = 3) 1100
12 Hybrid function 3 (N = 3) 1200
13 Hybrid function 4 (N = 4) 1300

Hybrid 14 Hybrid function 5 (N = 4) 1400
functions 15 Hybrid function 6 (N = 5) 1500

16 Hybrid function 6 (N = 5) 1600
17 Hybrid function 6 (N = 5) 1700
18 Hybrid function 6 (N = 6) 1800
19 Hybrid function 6 (N = 6) 1900
20 Composition function 1 (N = 3) 2000
21 Composition function 2 (N = 3) 2100
22 Composition function 3 (N = 4) 2200
23 Composition function 4 (N = 4) 2300

Composition 24 Composition function 5 (N = 5) 2400
functions 25 Composition function 6 (N = 5) 2500

26 Composition function 7 (N = 6) 2600
27 Composition function 8 (N = 6) 2700
28 Composition function 9 (N = 3) 2800
29 Composition function 10 (N = 3) 2900

Appendix C. 50 Benchmark Functions

Table A3. Fifty benchmark functions: D: dimensions; C: characteristics; U: unimodal; M: multimodal;
S: separable; N: non-separable.

Name Characteristics Function Dimension Range, fopt

Steptint U, S f1(x) = 25 + ∑n
i=1⌊xi⌋ 5, [−5.12, 5.12], 0

Step U, S f2(x) = ∑n
i=1(⌊xi + 0.5⌋)2 30, [−100, 100], 0

Sphere U, S f3(x) = ∑n
i=1 x2

i 30, [−100, 100], 0
SumSquares U, S f4(x) = ∑n

i=1 i · x2
i 30, [−10, 10], 0

Quartic U, S f5(x) = ∑n
i=1 i · x4

i + random[0, 1) 30, [−1.28, 1.28], 0
Beale U, N f6(x) = (1.5 − x1 + x1x2)

2 + (2.25 − x1 + x1x2
2)

2 + (2.625 − x1 + x1x2
3)

2 2, [−4.5, 4.5], 0
Easom U, N f7(x) = − cos(x1) cos(x2)e−(x1−π)2−(x2−π)2

2, [−100, 100],−1
Matyas U, N f8(x) = 0.26(x2

1 + x2
2)− 0.48x1x2 2, [−10, 10], 0

Colville U, N
f9(x) = 100(x1 − x2

2)
2 + (x1 − 1)2 + 90(x3 − x2

4)
2+

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)
4, [−10, 10], 0

Trid6 U, N f10(x) = ∑6
i=1(xi − 1)2 − ∑6

i=2 xixi−1 6, [−D2, D2],−50
Trid10 U, N f11(x) = ∑10

i=1(xi − 1)2 − ∑10
i=2 xixi−1 10, [−D2, D2],−210

Zakharov U, N f12(x) = ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4 10, [−5, 10], 0

Powell U, N
f13(x) = ∑n/4

i=1(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i)

2+

(x4i−2 − 2x4i−1)
4 + 10(x4i−3 − x4i)

4 24, [−4, 5], 0

Schwefel 2.22 U, N f14(x) = ∑n
i=1 |xi|+ ∏n

i=1 |xi| 30, [−10, 10], 0

Schwefel 1.2 U, N f15(x) = ∑n
i=1

(
∑i

j=1 xj

)2
30, [−100, 100], 0

Rosenbrock U, N f16(x) = ∑n−1
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2) 30, [−30, 30], 0

Dixon-Price U, N f17(x) = (x1 − 1)2 + ∑n
i=2 i(2x2

i − xi−1)
2 30, [−10, 10], 0

Foxholes M, S f18(x) =
[

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)6

]−1
2, [−65.536, 65.536], 0.998

Branin M, S f19(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos(x1) + 10 2, [−5, 10]× [0, 15], 0.398

Bohachevsky 1 M, S f20(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7 2, [−100, 100], 0
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Table A4. Benchmark functions; D: dimensions; C: characteristics; U: unimodal; M: multimodal; S:
separable; N: non-separable.

Name Characteristics Function Dimension Range, fopt

Booth M, S f21(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2, [−10, 10], 0

Rastrigin M, S f22(x) = 10n + ∑n
i=1[x

2
i − 10 cos(2πxi)] 30, [−5.12, 5.12], 0

Schwefel M, S f23(x) = 418.9829n − ∑n
i=1[xi sin(

√
|xi|)] 30, [−500, 500],−12569.5

Michalewicz2 M, S f24(x) = −∑2
i=1 sin(xi) sin20

(
ix2

i
π

)
2, [0, π],−1.8013

Michalewicz5 M, S f25(x) = −∑5
i=1 sin(xi) sin20

(
ix2

i
π

)
5, [0, π],−4.6877

Michalewicz10 M, S f26(x) = −∑10
i=1 sin(xi) sin20

(
ix2

i
π

)
10, [0, π],−9.6602

Schaffer M, N f27(x) = 0.5 + sin2(
√

x2
1+x2

2)−0.5
(1+0.001(x2

1+x2
2))

2 2, [−100, 100], 0

Six Hump Camel Back M, N f28(x) = (4 − 2.1x2
1 +

x4
1

3 )x2
1 + x1x2 − 4(x2

2 − x4
2)x2

2 2, [−5, 5],−1.03163

Bohachevsky2 M, N f29(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3 2, [−100, 100], 0

Bohachevsky3 M, N f30(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1 + 4πx2) + 0.3 2, [−100, 100], 0

Shubert M, N f31(x) = ∑5
i=1 i cos((i + 1)x1 + i)∑5

j=1 j cos((j + 1)x2 + j) 2, [−10, 10],−186.7309

Goldstein-Price M, N
f32(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2+

6x1x2 + 3x2
2)]× [30 + (2x1 − 3x2)

2(18 − 32x1+

12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2, [−2, 2], 3

Kowalik M, N f33(x) = ∑11
i=1

ai−
x1(b

2
i +bi x2)

b2
i +bi x3+x4

a2
i

4, [−5, 5], 0.00031

Shekel5 M, N f34(x) = −∑5
i=1

1
(xi−ai)TC(xi−ai)+ci

4, [0, 10],−10.1532

Shekel7 M, N f35(x) = −∑7
i=1

1
(xi−ai)TC(xi−ai)+ci

4, [0, 10],−10.4028

Shekel10 M, N f36(x) = −∑10
i=1

1
(xi−ai)TC(xi−ai)+ci

4, [0, 10],−10.5363

Perm M, N f37(x) = ∑n
k=1

(
∑n

i=1(i
k + β)((xi/i)k − 1)

)2
4, [−D, D], 0

PowerSum M, N f38(x) = ∑4
k=1

(
∑n

i=1(xk
i )− bk

)2
4, [0, D], 0

Hartman3 M, N f39(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

3, [0, 1],−3.86

Hartman6 M, N f40(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij(xj − pij)
2
)

6, [0, 1],−3.32

Table A5. Benchmark functions: D: dimensions, C: characteristics, U: unimodal, M: multimodal, S:
separable, N: non-separable.

Name C Function D Range fopt

Griewank MN f41(x) = 1
4000 ∑n

i=1 x2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

Ackley MN f42(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

( 1
n ∑n

i=1 cos 2πxi
)
+ 20 + e 30 [−32, 32] 0

Penalized MN f43(x) = πn
[
10 sin2(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
]
+ ∑n

i=1 u(xi , 10, 100, 4) 30 [−50, 50] 0

Penalized2 MN
f44(x) =

0.1
[
sin2(3πx1) + ∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]
]
+ ∑n

i=1 u(xi , 5, 100, 4)
30 [−50, 50] 0

Langerman2 MN f45(x) = −c exp
(
− 1

π ∑n
j=1(xj − aij)

2
)

cos
(

π ∑n
j=1(xj − aij)

2
)

2 [0, 10] 1.08

Langerman5 MN f46(x) similar to f5 5 [0, 10] 1.5

Langerman10 MN f47(x) similar to f5 10 [0, 10] -

FletcherPowell2 MN f48(x) = ∑n
i=1(Ai − Bi)

2 where Ai = ∑n
j=1(aij sin αj + bij cos αj), Bi = ∑n

j=1(aij sin xj + bij cos xj) 2 [−π, π] 0

FletcherPowell5 MN f49(x) similar to f8 5 [−π, π] 0

FletcherPowell10 MN f50(x) similar to f8 0 [−π, π] 0
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Appendix D. Wilcoxon Rank Sum Results over CEC2022 Benchmarks

Table A6. Wilcoxon rank sum results over CEC2022 benchmarks (F1–F12), run = 30, FES = 1000,
agents No. = 30.

Function FVIM FLO STOA SOA SPBO AO SSOA Chimp CPO ROA

F1 4.07716E-11 3.02E-11 1.78E-10 7.39E-11 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 468.00 U: 465.00 U: 483.00 U: 474.00 U: 465.00 U: 467.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F2 1.10234E-08 3.02E-11 1.61E-10 4.98E-11 3.02E-11 8.89E-10 3.02E-11 3.02E-11 4.11E-07 3.02E-11
U: 528.00 U: 465.00 U: 482.00 U: 470.00 U: 465.00 U: 500.00 U: 465.00 U: 465.00 U: 572.00 U: 465.00
S S S S S S S S S S

F3 3.68973E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 467.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F4 0.000189162 4.5E-11 0.001174 9.26E-09 3.02E-11 0.325527 3.02E-11 1.07E-09 6.01E-08 5.49E-11
U: 1168.00 U: 469.00 U: 695.00 U: 526.00 U: 465.00 U: 848.00 U: 465.00 U: 502.00 U: 548.00 U: 471.00
N S S S S E S S S S

F5 3.01986E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F6 1.77691E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.03E-09 3.34E-11
U: 483.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 509.00 U: 466.00
S S S S S S S S S S

F7 9.26029E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 526.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F8 4.80107E-07 3.02E-11 2.37E-10 3.02E-11 3.02E-11 4.08E-11 3.02E-11 3.02E-11 2.39E-08 3.02E-11
U: 574.00 U: 465.00 U: 486.00 U: 465.00 U: 465.00 U: 468.00 U: 465.00 U: 465.00 U: 537.00 U: 465.00
S S S S S S S S S S

F9 3.01986E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F10 0.000421751 2.92E-09 1.73E-06 4.8E-07 1.73E-07 3.65E-08 9.76E-10 2.39E-08 2.92E-09 2.92E-09
U: 676.00 U: 513.00 U: 591.00 U: 574.00 U: 561.00 U: 542.00 U: 501.00 U: 537.00 U: 513.00 U: 513.00
S S S N S S S S S S

F11 2.0338E-09 4.5E-11 2.03E-09 5E-09 3.02E-11 7.12E-09 3.69E-11 4.5E-11 8.1E-10 1.21E-10
U: 509.00 U: 469.00 U: 509.00 U: 519.00 U: 465.00 U: 523.00 U: 467.00 U: 469.00 U: 499.00 U: 479.00
S S S S S S S S S S

F12 0.002958985 3.02E-11 0.08771 0.673495 3.02E-11 2.83E-08 3.02E-11 8.99E-11 3.02E-11 3.02E-11
U: 632.00 U: 465.00 U: 1031.00 U: 886.00 U: 465.00 U: 539.00 U: 465.00 U: 476.00 U: 465.00 U: 465.00

Total S:11, N:1, E:0 S:12, N:0, E:0 S:11, N:0, E:1 S:10, N:1, E:1 S:12, N:0, E:0 S:11, N:0, E:1 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0

Table A7. Continue Wilcoxon rank sum results over CEC2022 benchmarks (F1–F12), run = 30,
FES = 1000, agents No. = 30.

WOA PSO MFO SHIO ZOA MTDE SCA DOA SCSO GA SA

3.02E-11 1.96E-10 3.82E-10 4.98E-11 4.62E-10 2.96E-11 4.98E-11 3.82E-10 1.61E-10 3.02E-11 3.02E-11
U: 465.00 U: 484.00 U: 491.00 U: 470.00 U: 493.00 U: 465.00 U: 470.00 U: 491.00 U: 482.00 U: 465.00 U: 465.00
S S S S S S S S S S S
3.82E-09 1.69E-09 9.49E-07 1.6E-07 8.1E-10 2.99E-11 3.02E-11 6.72E-10 5.07E-10 3.02E-11 3.02E-11
U: 516.00 U: 507.00 U: 583.00 U: 560.00 U: 499.00 U: 465.00 U: 465.00 U: 497.00 U: 494.00 U: 465.00 U: 465.00
S S S S S S S S S S S
3.02E-11 3.69E-11 0.200949 2.44E-09 3.02E-11 3E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 467.00 U: 1002.00 U: 511.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S E S S S S S S S S
1.41E-09 0.340288 0.082357 0.982307 0.023243 2.98E-11 4.5E-11 0.025101 2.78E-07 3.02E-11 3.02E-11
U: 505.00 U: 980.00 U: 797.00 U: 917.00 U: 1069.00 U: 465.00 U: 469.00 U: 763.00 U: 567.00 U: 465.00 U: 465.00
S E E E N S S S S S S
3.02E-11 3.02E-11 1.03E-06 3.02E-11 3.02E-11 2.99E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 584.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S S
4.2E-10 8.99E-11 2.15E-10 2.03E-09 1.29E-09 2.99E-11 3.02E-11 0.000141 9.76E-10 3.02E-11 3.02E-11
U: 492.00 U: 476.00 U: 485.00 U: 509.00 U: 504.00 U: 465.00 U: 465.00 U: 657.00 U: 501.00 U: 465.00 U: 465.00
S S S S S S S S S S S
3.02E-11 2.03E-09 1.43E-08 3.02E-11 3.16E-10 2.97E-11 3.02E-11 1.09E-10 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 509.00 U: 531.00 U: 465.00 U: 489.00 U: 465.00 U: 465.00 U: 478.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S S
3.02E-11 0.00238 0.1809 1.03E-06 0.000309 2.97E-11 3.02E-11 2.57E-07 2.39E-08 3.02E-11 9.26E-09
U: 465.00 U: 709.00 U: 824.00 U: 584.00 U: 599.00 U: 465.00 U: 465.00 U: 566.00 U: 537.00 U: 465.00 U: 526.00
S S E S S S S S S S S
3.02E-11 3.02E-11 0.000282 3.02E-11 3.02E-11 2.96E-11 3.02E-11 0.001249 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 1155.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 619.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S S
2.03E-09 0.012732 1.19E-06 0.011228 5E-09 1.69E-08 4.44E-07 8.48E-09 1.16E-07 1.7E-08 1.11E-06
U: 509.00 U: 746.00 U: 586.00 U: 743.00 U: 519.00 U: 533.00 U: 573.00 U: 525.00 U: 556.00 U: 533.00 U: 585.00
S S N S S S S S S S -
9.76E-10 3.5E-09 0.000149 8.1E-10 8.1E-10 3E-11 8.48E-09 1.69E-09 2.44E-09 4.5E-11 8.48E-09
U: 501.00 U: 515.00 U: 658.00 U: 499.00 U: 499.00 U: 465.00 U: 525.00 U: 507.00 U: 511.00 U: 469.00 U: 525.00
S S S S S S S S S S S
4.62E-10 0.233989 0.00081 2.03E-07 3.02E-11 2.99E-11 3.02E-11 7.12E-09 0.001004 3.02E-11 2.37E-10
U: 493.00 U: 834.00 U: 1142.00 U: 563.00 U: 465.00 U: 465.00 U: 465.00 U: 523.00 U: 692.00 U: 465.00 U: 486.00

S:12, N:0, E:0 S:10, N:0, E:2 S:7, N:2, E:3 S:11, N:0, E:1 S:11, N:1, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:11, N:1, E:0
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Appendix E. Wilcoxon Sum Rank Test Results over 50 Benchmarks

Table A8. Wilcoxon results over CEC2017 benchmarks (F1–F12), run = 30, FES = 1000, agents No. = 30.

Function FVIM FLO STOA SOA SPBO AO SSOA Chimp CPO ROA

F1 1.17E-05 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.73E-07 3.02E-11
U: 618.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 1269.00 U: 465.00
S S S S S S S S N S

F2 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.2E-10 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 492.00 U: 465.00
S S S S S S S S S S

F3 3.02E-11 3.02E-11 4.08E-11 3.02E-11 3.02E-11 7.77E-09 3.02E-11 3.02E-11 3.82E-09 3.02E-11
U: 465.00 U: 465.00 U: 468.00 U: 465.00 U: 465.00 U: 524.00 U: 465.00 U: 465.00 U: 1314.00 U: 465.00
S S S S S S S S N S

F4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.09E-10 3.02E-11 3.02E-11 1.07E-07 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 478.00 U: 465.00 U: 465.00 U: 555.00 U: 465.00
S S S S S S S S S S

F5 8.15E-05 3.02E-11 3.2E-09 7.69E-08 3.02E-11 8.1E-10 3.02E-11 3.02E-11 4.98E-11 3.02E-11
U: 648.00 U: 465.00 U: 514.00 U: 551.00 U: 465.00 U: 499.00 U: 465.00 U: 465.00 U: 470.00 U: 465.00
S S S S S S S S S S

F6 0.019883 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 757.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F7 0.245814 3.02E-11 5.46E-09 1.31E-08 3.02E-11 3.52E-07 3.02E-11 3.02E-11 7.39E-11 3.02E-11
U: 994.00 U: 465.00 U: 520.00 U: 530.00 U: 465.00 U: 570.00 U: 465.00 U: 465.00 U: 474.00 U: 465.00
E S S S S S S S S S

F8 0.000201 3.02E-11 1.78E-10 5.07E-10 3.02E-11 4.2E-10 3.02E-11 3.02E-11 3.34E-11 3.02E-11
U: 663.00 U: 465.00 U: 483.00 U: 494.00 U: 465.00 U: 492.00 U: 465.00 U: 465.00 U: 466.00 U: 465.00
S S S S S S S S S S

F9 2.23E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.07E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 510.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 472.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S

F10 1.29E-06 3.02E-11 7.69E-08 2.32E-06 3.02E-11 4.11E-07 3.02E-11 3.02E-11 9.92E-11 4.08E-11
U: 587.00 U: 465.00 U: 551.00 U: 595.00 U: 465.00 U: 572.00 U: 465.00 U: 465.00 U: 477.00 U: 468.00
S S S S S S S S S S

F11 8.89E-10 3.02E-11 4.5E-11 7.39E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.15E-10 3.02E-11
U: 500.00 U: 465.00 U: 469.00 U: 474.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 485.00 U: 465.00
S S S S S S S S S S

F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00

Total S:11, N:0, E:1 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:10, N:2, E:0 S:12, N:0, E:0

Table A9. Continued Wilcoxon results over CEC2017 benchmarks (F1–F12), run = 30, FES = 1000,
agents No. = 30.

Function WOA PSO MFO SHIO ZOA MTDE SCA DOA SCSO GA SA

F1 3.02E-11 5.09E-06 0.970491 2.67E-09 7.6E-07 2.9E-11 3.02E-11 2.37E-10 0.222573 3.02E-11 3.02E-11
U: 465.00 U: 606.00 U: 912.00 U: 512.00 U: 580.00 U: 465.00 U: 465.00 U: 486.00 U: 832.00 U: 465.00 U: 465.00
S S E S S S S S E S S

F2 3.02E-11 3.02E-11 5.97E-05 3.02E-11 3.02E-11 2.89E-11 3.02E-11 3.02E-11 3.34E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 643.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 466.00 U: 465.00 U: 465.00
S S S S S S S S S S S

F3 3.34E-11 4.98E-11 0.251881 3.02E-11 1.46E-10 2.86E-11 3.02E-11 9.76E-10 4.98E-11 3.02E-11 3.02E-11
U: 466.00 U: 470.00 U: 837.00 U: 465.00 U: 481.00 U: 465.00 U: 465.00 U: 501.00 U: 470.00 U: 465.00 U: 465.00
S S E S S S S S S S S

F4 3.02E-11 3.02E-11 5.99E-11 5.07E-10 3.02E-11 2.89E-11 3.02E-11 2.87E-10 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 472.00 U: 494.00 U: 465.00 U: 465.00 U: 465.00 U: 488.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S S

F5 6.07E-11 7.2E-05 1.69E-09 2.03E-09 2.23E-09 2.91E-11 3.02E-11 2.61E-10 2.15E-10 3.02E-11 1.17E-09
U: 472.00 U: 646.00 U: 507.00 U: 509.00 U: 510.00 U: 465.00 U: 465.00 U: 487.00 U: 485.00 U: 465.00 U: 503.00
S S S S S S S S S S S

F6 3.02E-11 0.000422 0.045063 5.49E-11 3.02E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 676.00 U: 779.00 U: 471.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00
S S S S S S S S S S S

F7 1.78E-10 0.662735 0.013832 0.000812 0.000132 2.94E-11 3.02E-11 1.85E-08 1.29E-09 3.02E-11 3.47E-10
U: 483.00 U: 885.00 U: 748.00 U: 688.00 U: 656.00 U: 465.00 U: 465.00 U: 534.00 U: 504.00 U: 465.00 U: 490.00
S E S S S S S S S S S

F8 3.34E-11 0.000201 1.54E-09 9.06E-08 0.000399 2.88E-11 3.02E-11 6.12E-10 2.15E-10 3.02E-11 3.02E-11
U: 466.00 U: 663.00 U: 506.00 U: 553.00 U: 675.00 U: 465.00 U: 465.00 U: 496.00 U: 485.00 U: 465.00 U: 465.00
S S S S S S S S S S S

F9 3.02E-11 4.44E-07 0.104666 3.34E-11 3.02E-11 2.95E-11 3.02E-11 3.02E-11 3.34E-11 3.02E-11 3.02E-11
U: 465.00 U: 573.00 U: 805.00 U: 466.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 466.00 U: 465.00 U: 465.00
S S E S S S S S S S S

F10 9.76E-10 0.137323 2.02E-08 2.68E-06 0.025101 2.99E-11 1.09E-10 1.09E-10 1.43E-08 3.69E-11 0.006097
U: 501.00 U: 814.00 U: 535.00 U: 597.00 U: 763.00 U: 465.00 U: 478.00 U: 478.00 U: 531.00 U: 467.00 U: 729.00
S E S S S S S S S S S

F11 8.99E-11 2.92E-09 1.25E-07 8.99E-11 3.34E-11 2.89E-11 3.02E-11 3.02E-11 3.47E-10 3.02E-11 3.02E-11
U: 476.00 U: 513.00 U: 557.00 U: 476.00 U: 466.00 U: 465.00 U: 465.00 U: 465.00 U: 490.00 U: 465.00 U: 465.00
S S S S S S S S S S S

F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.94E-11 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 465.00 U: 467.00 U: 465.00 U: 465.00 U: 465.00

Total S:12, N:0, E:0 S:10, N:0, E:2 S:9, N:0, E:3 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:12, N:0, E:0 S:11, N:0, E:1 S:12, N:0, E:0 S:12, N:0, E:0
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Table A10. Wilcoxon Sum rank test results over 50 benchmarks (F1–F25), run = 30, FES = 1000, agents
No. = 30.

Function FVIM FLO STOA SOA MVO AO SSOA Chimp CPO ROA

F1 3.02E-11 1.21E-12 3.02E-11 4.08E-11 3.02E-11 3.02E-11 1.01E-12 3.02E-11 3.02E-11 3.02E-11
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 915.0000 U: 915.0000 U: 915.0000
E E E E E E S E E E

F2 0.160802 0.160802 0.160802 0.160802 2.27E-12 0.160802 0.160802 1 0.160802 0.160802
U: 945.0000 U: 945.0000 U: 945.0000 U: 945.0000 U: 465.0000 U: 945.0000 U: 945.0000 U: 915.0000 U: 945.0000 U: 945.0000
E E E E S E E E E E

F3 3.02E-11 1.21E-12 3.02E-11 4.08E-11 3.02E-11 3.02E-11 1.21E-12 0.000132 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1362.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 656.0000 U: 1365.0000 U: 1365.0000
N N S N S N N S N N

F4 3.02E-11 1.21E-12 3.02E-11 4.08E-11 3.02E-11 3.02E-11 1.21E-12 8.88E-06 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1362.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 614.0000 U: 1365.0000 U: 1365.0000
N N S N S N N S N N

F5 3.65E-08 3.02E-11 0.026077 1.07E-09 1.09E-10 3.02E-11 3.02E-11 8.48E-09 3.02E-11 3.02E-11
U: 1288.0000 U: 1365.0000 U: 1066.0000 U: 1328.0000 U: 478.0000 U: 1365.0000 U: 1365.0000 U: 1305.0000 U: 1365.0000 U: 1365.0000
N N N N S N N N N N

F6 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F7 1.21E-12 0.00137 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 780.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F8 3.02E-11 1.21E-12 8.35E-08 3.02E-11 3.02E-11 3.02E-11 1.21E-12 3.02E-11 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 552.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000
N N S N S N N N N S

F9 3.02E-11 1.21E-12 3.02E-11 3.02E-11 3.02E-11 6.01E-08 3.02E-11 3.02E-11 0.009069 5.07E-10
U: 465.0000 U: 1365.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 548.0000 U: 465.0000 U: 465.0000 U: 738.0000 U: 494.0000
S N S S S S S S N S

F10 6.7E-11 3.02E-11 3.02E-11 3.02E-11 6.7E-11 3.02E-11 3.02E-11 3.02E-11 2.96E-05 3.02E-11
U: 473.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 473.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 1198.0000 U: 465.0000
S S S S S S S S N S

F11 0.001518 3.02E-11 3.02E-11 3.02E-11 0.311188 1.25E-07 3.02E-11 3.02E-11 1.46E-10 3.02E-11
U: 700.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 984.0000 U: 557.0000 U: 465.0000 U: 465.0000 U: 1349.0000 U: 465.0000
S S S S E S S S N S

F12 3.02E-11 1.72E-12 0.011711 3.02E-11 3.02E-11 3.02E-11 1.72E-12 0.304177 3.02E-11 1.43E-05
U: 1365.0000 U: 1365.0000 U: 744.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 845.0000 U: 1365.0000 U: 1209.0000
N N S N S N N E N N

F13 3.47E-10 1.21E-12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-12 3.02E-11 3.02E-11 3.02E-11
U: 1340.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000
N N N N S N N N N N

F14 3.02E-11 3.02E-11 2.23E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.028129 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 510.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 766.0000 U: 1365.0000 U: 1365.0000
N N S N S N N S N N

F15 3.02E-11 9.4E-12 4.5E-11 3.02E-11 3.02E-11 3.02E-11 1.72E-12 0.011228 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 1361.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 743.0000 U: 1365.0000 U: 1365.0000
N N N N S N N S N N

F16 0.610008 1.21E-12 0.001597 0.000856 3.02E-11 3.02E-11 1.61E-10 4.62E-10 0.3871 3.02E-11
U: 950.0000 U: 1365.0000 U: 701.0000 U: 689.0000 U: 465.0000 U: 1365.0000 U: 482.0000 U: 493.0000 U: 856.0000 U: 1365.0000
E N S S S N S S E N

F17 0.003034 3.02E-11 0.001442 5.19E-07 6.7E-11 3.02E-11 3.02E-11 2.32E-06 9.53E-07 5.07E-10
U: 1116.0000 U: 1365.0000 U: 699.0000 U: 1255.0000 U: 473.0000 U: 1365.0000 U: 1365.0000 U: 595.0000 U: 583.0000 U: 1336.0000
S N N N S N N S N N

F18 1.94E-11 0.520149 1.21E-10 7.35E-11 2.2E-10 9.93E-11 1.28E-11 2.2E-10 1.28E-11 1.63E-10
U: 471.0000 U: 878.5000 U: 489.0000 U: 484.0000 U: 495.0000 U: 487.0000 U: 467.0000 U: 495.0000 U: 467.0000 U: 492.0000
S E S S N S S N S S

F19 1.21E-12 4.57E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 480.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F20 1.21E-12 4.57E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.041911
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 855.0000
E E E E S E E E E S

F21 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F22 0.000253 1.21E-12 4.44E-07 4.2E-10 1.78E-10 1.21E-12 1.21E-12 2E-06 1.21E-12 1.21E-12
U: 1163.0000 U: 1365.0000 U: 1257.0000 U: 1338.0000 U: 483.0000 U: 1365.0000 U: 1365.0000 U: 1237.0000 U: 1365.0000 U: 1365.0000
N N N N S N N N N N

F23 0.099258 1.59E-10 0.258051 0.652044 8.48E-09 0.020681 3.02E-11 3.32E-06 5.97E-05 3.02E-11
U: 1027.0000 U: 1344.0000 U: 992.0000 U: 946.0000 U: 1305.0000 U: 1072.0000 U: 465.0000 U: 1230.0000 U: 643.0000 U: 1365.0000
E N E E N N S N S N

F24 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F25 6.12E-10 3.02E-11 4.5E-11 3.02E-11 3.96E-08 3.02E-11 3.02E-11 3.02E-11 1.96E-10 3.02E-11
U: 496.0000 U: 465.0000 U: 469.0000 U: 465.0000 U: 543.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 484.0000 U: 465.0000
S S S S S S S S S S
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Table A11. Wilcoxon Sum rank test results over 50 benchmarks (F26–F50), run = 30, FES = 1000,
agents No. = 30.

Function FVIM FLO STOA SOA MVO AO SSOA Chimp CPO ROA

F26 0.019112 1.29E-09 2.15E-10 2.23E-09 6.36E-05 2.03E-09 3.02E-11 3.02E-11 0.464273 5.57E-10
U: 1074.0000 U: 504.0000 U: 485.0000 U: 510.0000 U: 644.0000 U: 509.0000 U: 465.0000 U: 465.0000 U: 865.0000 U: 495.0000
N S S S S S S S E S

F27 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000
E E E E S E E E E E

F28 2.36E-12 2.64E-12 2.36E-12 2.36E-12 2.36E-12 2.36E-12 2.36E-12 2.36E-12 2.36E-12 2.36E-12
U: 465.0000 U: 466.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F29 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 825.0000
E E E E S E E E E S

F30 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 765.0000
E E E E S E E E E S

F31 1.36E-07 0.000433 4.08E-11 3.02E-11 1.7E-08 3.02E-11 3.02E-11 3.02E-11 6.52E-09 3.69E-11
U: 558.0000 U: 676.5000 U: 468.0000 U: 465.0000 U: 533.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 522.0000 U: 467.0000
S S S S S S S S S S

F32 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F33 1.87E-05 3.83E-05 3.82E-09 3.02E-11 5.19E-07 0.000132 4.12E-06 3.02E-11 0.000213 0.000125
U: 625.0000 U: 636.0000 U: 516.0000 U: 465.0000 U: 575.0000 U: 656.0000 U: 603.0000 U: 465.0000 U: 664.0000 U: 655.0000
S S S S S N S S N S

F34 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F35 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F36 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F37 2.32E-06 1.21E-10 4.31E-08 1.2E-08 0.211561 2.15E-10 3.02E-11 3.02E-11 2.6E-08 2.23E-09
U: 595.0000 U: 479.0000 U: 544.0000 U: 529.0000 U: 1000.0000 U: 485.0000 U: 465.0000 U: 465.0000 U: 538.0000 U: 510.0000
S S S S E S S S S S

F38 0.325527 1.86E-09 5.57E-10 1.61E-10 9.83E-08 2.19E-08 3.02E-11 3.02E-11 0.001302 4.98E-11
U: 848.0000 U: 508.0000 U: 495.0000 U: 482.0000 U: 1276.0000 U: 536.0000 U: 465.0000 U: 465.0000 U: 697.0000 U: 470.0000
E S S S N S S S S S

F39 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11 1.01E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F40 0.455297 3.82E-10 3.02E-11 3.02E-11 0.10547 0.005084 3.02E-11 3.96E-08 0.145319 3.02E-11
U: 966.0000 U: 491.0000 U: 465.0000 U: 465.0000 U: 805.0000 U: 725.0000 U: 465.0000 U: 543.0000 U: 1014.0000 U: 465.0000
E S S S E S S S E S

F41 0.014872 1.21E-12 1.39E-06 0.141278 3.02E-11 1.21E-12 1.21E-12 0.015014 1.21E-12 5.22E-12
U: 1078.0000 U: 1365.0000 U: 588.0000 U: 1015.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 750.0000 U: 1365.0000 U: 1365.0000
N N S E S N N S N N

F42 2.96E-11 1.21E-12 3.02E-11 3.02E-11 3.02E-11 1.21E-12 1.21E-12 3.02E-11 1.21E-12 3.34E-11
U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1364.0000
N N S S S N N S N N

F43 0.021506 1.21E-12 0.093341 1.17E-05 8.1E-10 3.02E-11 3.02E-11 2.2E-07 3.02E-11 3.02E-11
U: 1071.0000 U: 1365.0000 U: 801.0000 U: 618.0000 U: 499.0000 U: 1365.0000 U: 465.0000 U: 564.0000 U: 1365.0000 U: 1365.0000
N N E S S N S S N N

F44 0.032651 1.21E-12 2.19E-08 3.69E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 1060.0000 U: 1365.0000 U: 536.0000 U: 467.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000
N N S S N N S S N N

F45 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F46 0.000213 4.08E-11 3.34E-11 3.02E-11 0.739399 1.41E-09 3.02E-11 3.02E-11 5.49E-11 5.49E-11
U: 664.0000 U: 468.0000 U: 466.0000 U: 465.0000 U: 938.0000 U: 505.0000 U: 465.0000 U: 465.0000 U: 471.0000 U: 471.0000
S S S S E S S S S S

F47 0.195791 3.02E-11 3.02E-11 2.87E-10 0.695215 0.000284 3.02E-11 1.33E-10 1.16E-07 3.02E-11
U: 827.0000 U: 465.0000 U: 465.0000 U: 488.0000 U: 888.0000 U: 669.0000 U: 465.0000 U: 480.0000 U: 556.0000 U: 465.0000
E S S S E S S S S S

F48 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11 1.27E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S

F49 0.000587 3.02E-11 2.83E-08 3.5E-09 0.000655 1.11E-06 3.02E-11 8.88E-06 0.000117 8.89E-10
U: 682.0000 U: 465.0000 U: 539.0000 U: 515.0000 U: 684.0000 U: 585.0000 U: 465.0000 U: 614.0000 U: 654.0000 U: 500.0000
S S S S S S S S S S

F50 3.81E-07 3.02E-11 2.61E-10 2.37E-10 0.19073 7.38E-10 3.02E-11 3.02E-11 4.18E-09 3.02E-11
U: 571.0000 U: 465.0000 U: 487.0000 U: 486.0000 U: 826.0000 U: 498.0000 U: 465.0000 U: 465.0000 U: 517.0000 U: 465.0000

Total S:25, N:14, E:11 S:26, N:17, E:7 S:37, N:5, E:8 S:32, N:10, E:8 S:39, N:4, E:7 S:27, N:17, E:6 S:33, N:12, E:5 S:37, N:6, E:7 S:23, N:18, E:9 S:32, N:15, E:3
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Table A12. Wilcoxon sum rank test results over 50 benchmarks (F1–F25), run = 30, FES = 1000, agents
No. = 30.

Function WOA PSO MFO SHIO ZOA GWO SCA DOA SCSO GA SA

F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.87E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.07E-09 3.02E-11
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 540.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 570.0000 U: 915.0000
E E E E S E E E E S E

F2 0.557056 0.160802 5.89E-11 0.160802 0.160802 0.160802 2.06E-08 0.160802 0.160802 2.37E-12 2.37E-12
U: 930.5000 U: 945.0000 U: 500.5000 U: 945.0000 U: 945.0000 U: 945.0000 U: 572.5000 U: 945.0000 U: 945.0000 U: 465.0000 U: 465.0000
E E S E E E S E E S S

F3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11
U: 1365.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 1365.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F5 4.11E-07 3.02E-11 3.02E-11 0.011228 3.02E-11 3.47E-10 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11
U: 1258.0000 U: 465.0000 U: 465.0000 U: 1087.0000 U: 1365.0000 U: 1340.0000 U: 465.0000 U: 1363.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F6 1.21E-12 0.160802 1.21E-12 4.57E-12 1.21E-12 1.21E-12 8.87E-07 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 915.0000 U: 885.0000 U: 465.0000 U: 480.0000 U: 465.0000 U: 465.0000 U: 645.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S S S S S

F7 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.87E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 645.0000 U: 465.0000 U: 465.0000 U: 915.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S E S S S

F8 3.02E-11 3.02E-11 0.000399 3.02E-11 1.21E-12 3.02E-11 0.403538 3E-11 3.02E-11 3.02E-11 3.02E-11
U: 1365.0000 U: 465.0000 U: 1155.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 858.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N E N N S S

F9 3.02E-11 7.39E-11 3.02E-11 6.07E-11 3.02E-11 3.69E-11 3.02E-11 0.000399 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 474.0000 U: 465.0000 U: 472.0000 U: 465.0000 U: 467.0000 U: 465.0000 U: 1155.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S S

F10 0.000132 2.13E-11 3.02E-11 0.001174 0.437641 1.6E-07 3.02E-11 0.001836 0.559231 3.02E-11 3.02E-11
U: 656.0000 U: 1365.0000 U: 1365.0000 U: 695.0000 U: 862.0000 U: 560.0000 U: 465.0000 U: 1125.0000 U: 875.0000 U: 465.0000 U: 465.0000
S N N S E S S S E S S

F11 0.074827 8.99E-11 5.19E-07 0.000587 2.87E-10 0.761828 3.02E-11 3.02E-11 2.78E-07 3.02E-11 3.02E-11
U: 794.0000 U: 1354.0000 U: 575.0000 U: 682.0000 U: 488.0000 U: 936.0000 U: 465.0000 U: 465.0000 U: 567.0000 U: 465.0000 U: 465.0000
E N S S S E S S S S S

F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.95E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
S S S N N N S N N S S

F13 4.98E-11 3.02E-11 3.02E-11 0.00062 3.02E-11 4.08E-11 3.02E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11
U: 1360.0000 U: 465.0000 U: 465.0000 U: 1147.0000 U: 1365.0000 U: 1362.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F14 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
U: 1365.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F15 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.92E-11 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
S S S N N N S N N S S

F16 0.78446 0.000284 3.02E-11 0.888303 0.002499 0.016285 3.02E-11 3.02E-11 0.118817 3.02E-11 3.02E-11
U: 896.0000 U: 669.0000 U: 465.0000 U: 925.0000 U: 710.0000 U: 1078.0000 U: 465.0000 U: 465.0000 U: 809.0000 U: 465.0000 U: 465.0000
E S S E S N S S E S S

F17 0.019883 6.07E-11 3.02E-11 0.025101 3.02E-11 3.82E-10 3.02E-11 5.57E-10 3.02E-11 3.02E-11 3.02E-11
U: 757.0000 U: 472.0000 U: 465.0000 U: 1067.0000 U: 1365.0000 U: 1339.0000 U: 465.0000 U: 495.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S S N N S S N S S

F18 6.64E-11 0.004764 0.682368 1.58E-11 6.03E-09 7.35E-11 1.34E-10 0.37355 4E-11 1.95E-11 2.2E-10
U: 483.0000 U: 744.0000 U: 936.5000 U: 469.0000 U: 534.0000 U: 484.0000 U: 490.0000 U: 865.0000 U: 478.0000 U: 471.0000 U: 495.0000
S S E S S S S E S S N

F19 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.79E-08 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 600.0000 U: 465.0000 U: 465.0000 U: 915.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S E S S S

F20 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12 1.21E-12
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 465.0000
E E E E E E E E E S S

F21 1.21E-12 1.21E-12 1.66E-11 1.21E-12 1.66E-11 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 495.0000 U: 465.0000 U: 465.0000 U: 660.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S S S S S

F22 1.21E-12 9.76E-10 3.34E-11 2.68E-06 1.21E-12 8.17E-11 0.695215 1.21E-12 1.21E-12 3.02E-11 3.02E-11
U: 1365.0000 U: 501.0000 U: 466.0000 U: 597.0000 U: 1365.0000 U: 1349.0000 U: 888.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S S N N E N N S S

F23 7.39E-11 0.297272 7.38E-10 0.695215 6.53E-08 0.000377 3.02E-11 0.153667 1.16E-07 3.02E-11 7.77E-09
U: 1356.0000 U: 986.0000 U: 1332.0000 U: 942.0000 U: 1281.0000 U: 1156.0000 U: 465.0000 U: 1012.0000 U: 1274.0000 U: 465.0000 U: 1306.0000
N E N E N N S E N S N

F24 1.21E-12 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12
U: 465.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 600.0000 U: 465.0000 U: 465.0000 U: 915.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S E S S S

F25 1.46E-10 0.72646 2.88E-09 3.47E-10 5.61E-05 7.38E-10 3.02E-11 1.29E-09 1.25E-07 3.02E-11 1.46E-10
U: 481.0000 U: 939.0000 U: 513.0000 U: 490.0000 U: 642.0000 U: 498.0000 U: 465.0000 U: 504.0000 U: 557.0000 U: 465.0000 U: 481.0000
S E S S S S S S S S S
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Table A13. Wilcoxon sum rank test results over 50 benchmarks (F26–F50), run = 30, FES = 1000,
agents No. = 30.

Function WOA PSO MFO SHIO ZOA GWO SCA DOA SCSO GA SA

F26 3.08E-08 0.761828 0.706171 0.673495 0.761828 0.77312 3.02E-11 1.53E-05 2E-05 3.02E-11 0.055546
U: 540.0000 U: 894.0000 U: 941.0000 U: 886.0000 U: 936.0000 U: 895.0000 U: 465.0000 U: 622.0000 U: 626.0000 U: 465.0000 U: 785.0000
S E E E E E S S S S E

F27 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 465.0000
E E E E E E E E E S S

F28 2.36E-12 0.654333 0.160742 2.36E-12 4.95E-09 2.36E-12 2.36E-12 3.81E-05 2.36E-12 2.36E-12 2.36E-12
U: 465.0000 U: 900.0000 U: 945.0000 U: 465.0000 U: 555.0000 U: 465.0000 U: 465.0000 U: 690.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S N S S S

F29 0.333711 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 900.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 465.0000
E E E E E E E E E S S

F30 4.45E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
U: 480.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 915.0000 U: 465.0000 U: 465.0000
S E E E E E E E E S S

F31 0.001767 5.11E-10 3.27E-10 1.03E-06 0.005801 5.53E-08 3.02E-11 6.19E-10 0.000318 3.02E-11 9.76E-10
U: 703.0000 U: 1331.0000 U: 1337.0000 U: 584.0000 U: 1102.0000 U: 547.0000 U: 465.0000 U: 1329.0000 U: 671.0000 U: 465.0000 U: 501.0000
N N N S N S S N S S S

F32 2.08E-11 0.667292 0.231069 2.08E-11 2.03E-08 2.08E-11 2.08E-11 2.12E-06 2.08E-11 2.08E-11 2.08E-11
U: 465.0000 U: 888.0000 U: 839.5000 U: 465.0000 U: 540.5000 U: 465.0000 U: 465.0000 U: 601.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S S S S S

F33 7.66E-05 7.02E-07 9.17E-06 1.75E-05 0.000399 3.16E-05 1.56E-08 0.830227 0.000149 1.78E-10 4.44E-07
U: 647.0000 U: 579.0000 U: 614.5000 U: 624.0000 U: 675.0000 U: 633.0000 U: 532.0000 U: 930.0000 U: 658.0000 U: 483.0000 U: 573.0000
S S S S N S S E N S S

F34 3.02E-11 0.661701 0.183929 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.026028 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 945.0000 U: 825.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 1065.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S S S S S

F35 3.02E-11 0.007258 0.001816 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.001689 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 1095.0000 U: 1125.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 1125.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S S S S S S S S S S

F36 3.02E-11 6.77E-08 0.075258 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.075997 3.02E-11 3.02E-11 3.02E-11
U: 465.0000 U: 1275.0000 U: 1035.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 1035.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S E S S S S E S S S

F37 9.92E-11 0.004427 0.706171 2.88E-06 0.00238 9.53E-07 1.86E-09 0.559231 4.12E-06 3.02E-11 4.74E-06
U: 477.0000 U: 1108.0000 U: 941.0000 U: 598.0000 U: 709.0000 U: 583.0000 U: 508.0000 U: 955.0000 U: 603.0000 U: 465.0000 U: 605.0000
S N E S S S S E S S S

F38 4.08E-11 2.13E-05 0.17145 0.311188 0.004427 0.099258 3.34E-11 0.000903 0.176128 3.02E-11 8.84E-07
U: 468.0000 U: 1203.0000 U: 1008.0000 U: 984.0000 U: 1108.0000 U: 803.0000 U: 466.0000 U: 1140.0000 U: 823.0000 U: 465.0000 U: 582.0000
S N E E N E S S E S S

F39 1.01E-11 0.008547 0.001305 1.01E-11 1.01E-11 1.01E-11 1.01E-11 0.342316 1.01E-11 1.01E-11 1.01E-11
U: 465.0000 U: 1030.5000 U: 1050.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 465.0000 U: 861.0000 U: 465.0000 U: 465.0000 U: 465.0000
S S N S S S S E S S S

F40 0.911709 0.156048 4.79E-06 0.077272 1.47E-07 0.946956 3.82E-10 6.66E-06 0.853382 3.02E-11 1.11E-06
U: 907.0000 U: 1011.0000 U: 1217.0000 U: 1035.0000 U: 1271.0000 U: 910.0000 U: 491.0000 U: 1219.0000 U: 902.0000 U: 465.0000 U: 1245.0000
E E N E N E S N E S N

F41 1.21E-12 0.009468 3.02E-11 0.006056 1.21E-12 2.98E-11 8.15E-11 1.21E-12 1.21E-12 3.02E-11 3.02E-11
U: 1365.0000 U: 739.0000 U: 465.0000 U: 1101.0000 U: 1365.0000 U: 1339.0000 U: 475.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F42 1.87E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-12 2.28E-11 3.02E-11 4.08E-12 1.21E-12 3.02E-11 3.02E-11
U: 1365.0000 U: 465.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 1365.0000 U: 1365.0000 U: 465.0000 U: 465.0000
N S S N N N S N N S S

F43 3.02E-11 3.02E-11 3.02E-11 0.045146 0.78446 5.49E-11 3.02E-11 1.01E-08 6.74E-06 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 465.0000 U: 779.0000 U: 896.0000 U: 1359.0000 U: 465.0000 U: 527.0000 U: 1220.0000 U: 465.0000 U: 465.0000
N N S S E N S S N S S

F44 3.02E-11 3.02E-11 4.69E-08 0.051877 2.61E-10 8.99E-11 3.02E-11 3.69E-11 1.33E-10 3.02E-11 3.02E-11
U: 1365.0000 U: 1365.0000 U: 545.0000 U: 783.0000 U: 487.0000 U: 1354.0000 U: 465.0000 U: 467.0000 U: 480.0000 U: 465.0000 U: 465.0000
N N S E S N S S S S S

F45 1.21E-12 0.160742 1.21E-12 1.21E-12 1.93E-10 1.21E-12 1.21E-12 7.28E-07 1.21E-12 1.21E-12 1.21E-12
U: 465.0000 U: 885.0000 U: 915.0000 U: 465.0000 U: 525.0000 U: 465.0000 U: 465.0000 U: 645.0000 U: 465.0000 U: 465.0000 U: 465.0000
S E E S S S S S S S S

F46 1.17E-09 0.500506 0.034716 0.3871 0.002157 0.005322 3.02E-11 2.03E-07 0.000158 3.02E-11 5.49E-11
U: 503.0000 U: 869.0000 U: 772.0000 U: 974.0000 U: 707.0000 U: 726.0000 U: 465.0000 U: 563.0000 U: 659.0000 U: 465.0000 U: 471.0000
S E S E S S S S S S S

F47 7.12E-09 0.070111 0.007956 0.78446 0.001301 0.037782 3.02E-11 3.5E-09 0.000189 3.02E-11 1.03E-06
U: 523.0000 U: 792.0000 U: 735.0000 U: 896.0000 U: 697.0000 U: 774.0000 U: 465.0000 U: 515.0000 U: 662.0000 U: 465.0000 U: 584.0000
S E S E S S S S S S S

F48 1.27E-11 0.000662 0.000662 1.27E-11 8.71E-09 1.27E-11 1.27E-11 0.12526 1.27E-11 1.27E-11 1.27E-11
U: 465.0000 U: 1065.0000 U: 1065.0000 U: 465.0000 U: 535.0000 U: 465.0000 U: 465.0000 U: 817.5000 U: 465.0000 U: 465.0000 U: 465.0000
S N N S S S S E S S S

F49 0.000104 5.6E-05 0.549316 1.17E-05 9.79E-05 2.77E-05 1.1E-08 0.020679 0.000377 6.07E-11 0.001236
U: 652.0000 U: 642.0000 U: 874.0000 U: 618.0000 U: 651.0000 U: 631.0000 U: 528.0000 U: 758.0000 U: 674.0000 U: 472.0000 U: 696.0000
S S E S S S S S S S S

F50 3.82E-10 8.08E-10 7.6E-07 6.72E-10 8.15E-11 3.26E-07 3.02E-11 3.96E-08 7.12E-09 3.02E-11 3.69E-11
U: 491.0000 U: 499.0000 U: 580.0000 U: 497.0000 U: 475.0000 U: 569.0000 U: 465.0000 U: 543.0000 U: 523.0000 U: 465.0000 U: 467.0000

Total S:28, N:14, E:8 S:21, N:8, E:21 S:24, N:6, E:20 S:26, N:10, E:14 S:25, N:17, E:8 S:24, N:16, E:10 S:43, N:0, E:7 S:20, N:14, E:16 S:25, N:15, E:10 S:50, N:0, E:0 S:45, N:3, E:2
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Appendix F

Figure A1. Error measure box plot analysis over CEC2022 benchmark functions (F1–F6).
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Figure A2. Error measure box plot analysis over CEC2022 benchmark functions (F7–F12).
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Figure A3. Error measure box plot analysis over CEC2017 benchmark functions (F1–F6).
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Figure A4. Error measure box plot analysis over CEC2017 benchmark functions (F7–F12).
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Figure A5. Error measure box plot analysis over CEC2017 benchmark functions (F13–F18).
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Figure A6. Error measure box plot analysis over CEC2017 benchmark functions (F19–F24).
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Figure A7. Error measure box plot analysis over CEC2017 benchmark functions (F25–F30).
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