
Citation: Gafarov, E.R.; Werner, F.

Connected and Autonomous Vehicle

Scheduling Problems: Some Models

and Algorithms. Algorithms 2024, 17,

421. https://doi.org/10.3390/

a17090421

Academic Editor: Roberto

Montemanni

Received: 23 August 2024

Revised: 15 September 2024

Accepted: 20 September 2024

Published: 21 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Connected and Autonomous Vehicle Scheduling Problems:
Some Models and Algorithms
Evgeny R. Gafarov 1,† and Frank Werner 2,*,†

1 V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Profsoyuznaya St. 65,
Moscow 117997, Russia; axel73@mail.ru

2 Faculty of Mathematics, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany
* Correspondence: frank.werner@ovgu.de
† These authors contributed equally to this work.

Abstract: In this paper, we consider some problems that arise in connected and autonomous vehicle
(CAV) systems. Their simplified variants can be formulated as scheduling problems. Therefore,
scheduling solution algorithms can be used as a part of solution algorithms for real-world problems.
For four variants of such problems, mathematical models and solution algorithms are presented. In
particular, three polynomial algorithms and a branch and bound algorithm are developed. These CAV
scheduling problems are considered in the literature for the first time. More complicated NP-hard
scheduling problems related to CAVs can be considered in the future.

Keywords: scheduling; optimization; dynamic programming; connected and autonomous vehicle;
precedence relations

MSC: 90 B 35; 90 C 27; 68 Q 25; 68 W 40

JEL Classification: D8; H51

1. Introduction

Connected and autonomous vehicle systems contain a set of vehicles that can au-
tomatically coordinate their routing, owing to vehicle-to-vehicle communications and a
centralized scheduler (computer). The vehicles are controlled by the centralized scheduler
residing in the network (e.g., a base station in the case of cellular systems) or a distributed
scheduler, where the scheduler is autonomously selected by the vehicles. Such vehicle
systems can coordinate the vehicles in order to speed up the traffic, minimize traffic jams,
and they also take into account environment aspects by reducing emissions.

Vehicle routing and scheduling problems have been intensively investigated over the
last decades. There exist a huge number of papers dealing with particular aspects or also
covering relationships with related research fields, see, for instance, refs. [1–5] to name
only a few papers. A complete special issue with 16 papers on different aspects of vehicle
routing and scheduling has been edited by Repoussis and Gounaris [6]. For surveys in this
field, the reader is referred to the papers [7–9]. During the last years, new challenges arose
in connection with autonomous driving of vehicles.

Vehicle-to-vehicle (V2V) communications can be used as a potential solution to many
problems arising in the area of traffic control. Several approaches have been developed
including the modeling of a complete autonomous driving system as a multi-agent system,
where the vehicles interact to ensure an autonomous functionality such that emergency
braking and traffic jam are avoided as much as possible. Nowadays, vehicle systems are de-
veloped towards fully connected and fully autonomous systems. Vehicular communication
technologies have been considered, for instance, in the papers [10,11].

Algorithms 2024, 17, 421. https://doi.org/10.3390/a17090421 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17090421
https://doi.org/10.3390/a17090421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0709-3591
https://doi.org/10.3390/a17090421
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17090421?type=check_update&version=2

Algorithms 2024, 17, 421 2 of 11

In [12], the authors dealt with the optimization of the departure times, travel routes,
and the longitudinal trajectories of connected and autonomous vehicles and also the control
of the signal timings at the intersections to obtain a stable traffic flow in such a way that
the vehicles do not need to stop before they enter an intersection. In addition, the vehicle
queues before the intersections should not become too large. In this paper, all the data
(i.e., the departure times, travel routes, and signal timings) are determined by a central
controller, but the trajectories of the vehicles are fixed by distributed roadside processors,
which constitute a hierarchical traffic management scheme together.

In [13], the authors considered the control of the required lane changes of a system
of autonomous vehicles on a road segment with two lanes before the vehicles arrive at a
given critical position. This paper presents an algorithm that realizes the lane change of an
individual vehicle in the shortest possible time. Then, this algorithm is iteratively used to
manage all the lane changes which are necessary on the road segment under consideration
in such a way that traffic safety is maintained.

In the paper by [14], the problem of scheduling a CAV, which crosses an intersection,
was considered with the goal to optimize the traffic flow at the intersection. In addition,
a solution algorithm was presented.

In [15], the problem of scheduling the time phases of a traffic light was considered
with the objective to improve the traffic flow by reducing the waiting time of the traveling
vehicles at the indicated road intersections.

To the best of our knowledge, in this paper, simplified CAV problems are formulated
as classical scheduling problems for the first time. Scheduling solution algorithms can be
used as a part of solution algorithms for real-world CAV problems. In the future, more
sophisticated NP-hard scheduling models can be considered.

The aim of the paper is to encourage the researchers to consider CAV problems as
scheduling problems and to use classical methods of scheduling theory to investigate the
complexity and to solve them.

Although the solution algorithms presented have a large running time and are some-
how still useless in practice, we have shown that some CAV problems are polynomially
solvable. Solution algorithms can be advanced in future research.

In this paper, we consider four scheduling problems that arise in connection with
CAVs. The remainder of this paper is as follows. In each of the Sections 2–5, we consider
one of these problems. The problem with a road of two lanes and one lane closure is
considered in Section 2. Section 3 deals with the case of a turn to a main road. Section 4
considers the case of a road with three lanes and a lane closure on the middle lane. Section 5
deals with a crossroad having dividing lanes. For each of these cases, an appropriate
scheduling problem is formulated and a solution algorithm is given. Finally, Section 6 gives
a few concluding remarks.

2. A Road with Two Lanes and One Lane Closure

In this section, we consider a road with two lanes, where two sets of CAVs, N1 and
N2, are given. The CAVs from the set N1 go on lane 1, and the CAVs from the set N2 go on
lane 2. Both lanes have the same direction. On lane 2, there is a lane closure and the CAVs
from the set N2 have to move to lane 1, see Figure 1.

We have to find a sequence of passing the lane closure by the CAVs from the sets N1
and N2 in order to minimize a given objective function, e.g., the total passing time.

We assume that

• a maximal feasible speed of the CAVs is given. The CAVs either go with the maximal
feasible speed or brake in order to let another CAV change the lane.

• an acceleration is not taken into account.
• the time needed to change the lane is not taken into account, i.e., it is equal to zero.
• the CAVs have the same length.
• the safe distance between two CAVs is the same for all vehicles.

Algorithms 2024, 17, 421 3 of 11

Since the problems investigated in this paper have not been considered in the literature
so far, these assumptions are made for the first time to obtain simplified models. In real-
world problems, these assumptions can be false, although solution algorithms for simplified
models can be used to solve sub-problems or to obtain lower or upper bounds.

Figure 1. A road with two lanes and one lane closure.

The same problem arises, e.g., on railway sections and in automated warehouses of
logistics companies with autonomous robot transporters. This simplified problem can be
formulated as a single machine scheduling problem as follows.

Given a set N = N1
⋃

N2 of n jobs that have to be processed on a single machine from
time 0 on. For each job j, a processing time pj = p > 0, a release date rj ≥ 0, a due date
dj ≥ 0, and a weight wj > 0 are given. The machine can process no more than one job at
a time. The processing time p can be computed from the maximal feasible speed and the
length of a CAV. The value rj corresponds to the earliest time when the processing of the
vehicle can start, resulting from the position of the CAV j on the road.

For example, let the speed of each car be 60 km per hour and the length of the closed
road section be 100 m. Thus, a car needs 6 s to pass the road closure. Therefore, we assume
p = 6 (in seconds). Let a car j be 0 m from the beginning of the road closure and a car
i be 200 m behind. So, we assume rj = 0 and ri = 12 according to their speed and the
distances. Moreover, let the starting time of any schedule computed be 05:00:00 a.m. which
we consider as time 0. Let the due date for car i be 05:00:15, then we assume di = 15. It is
obvious that the tardiness of car i is no less that 6 + 12 − 15 = 3 seconds in any feasible
schedule.

We call a feasible schedule active if one cannot reduce the objective function value by
shifting a single job to an earlier time without violating the constraints. Without loss of
generality, we consider only active schedules in this paper.

A schedule is uniquely determined by a permutation π of the CAVs of the set N.
Let Sj(π) be the starting time of job j in the schedule π. Then, Cj(π) = Sj(π) + p is
the completion time of job j in the schedule π. A precedence relation can be defined as
follows. For the jobs from the set N1 = {j1, j2, . . . , jn1}, we have j1 → j2 → · · · → jn1 ,
where n1 = |N1| and j → i means that the processing of job j precedes the processing of
job i. Thus, there is a chain of jobs on lane 1. Analogously, a chain of jobs is defined for the
set N2 = {i1, i2, . . . , in2}.

For the single machine scheduling problem of minimizing total completion time,
the goal is to find an optimal schedule π∗ that minimizes

∑ Cj = ∑
j∈N

Cj(π). (1)

Here, the completion time of a job is equal to the time when the vehicle passes the
closed lane segment. We denote this problem by 1|2 chains, pj = p, rj|∑ Cj according to the
traditional three-field notation α|β|γ for scheduling problems proposed by [16], where α
describes the machine environment, β gives the job characteristics and further constraints,
and γ describes the optimization criterion.

Let
Tj(π) = max{0, Cj(π)− dj}

be the tardiness of job j in the schedule π. If Cj(π) > dj, then job j is tardy and we have
Uj = 1; otherwise, Uj = 0.

Algorithms 2024, 17, 421 4 of 11

Subsequently, we consider also the following objective functions:

∑ wjCj = ∑ wjCj(π) — total weighted completion time,

∑ Tj = ∑ Tj(π) — total tardiness,

∑ wjTj = ∑ wjTj(π) — total weighted tardiness;

∑ wjUj = ∑ wjUj(π) — weighted number of tardy jobs,

Cmax = max
{

Cj(π)
}

— makespan

It is known that the problems 1|chains, pj = p, rj|∑ wjCj and 1|chains, pj = p, rj|∑ wjTj
with an arbitrary number of chains are NP-hard, see [17]. This has been proven by a reduc-
tion from the 3-partition problem.

In [18], polynomial time dynamic programming algorithms have been presented to
solve the problems 1|pj = p, rj|∑ Tj and 1|pj = p, rj|∑ wjUj.

In an optimal schedule for the problem 1|2 chains, pj = p, rj|∑ Cj, the jobs are pro-
cessed in non-decreasing order of the values rj. This can be easily proven by contradiction.
Assume that we have an optimal schedule π = (. . . , j2, j1, . . .), where rj1 < rj2 . Then, for
the schedule π′ = (. . . , j1, j2, . . .), we have ∑ Cj(π) ≥ ∑ Cj(π

′). For an illustration of the
concepts introduced above, we consider the following small Example 1.

Example 1. Let N1 = {1, 2}, N2 = {3, 4}. Moreover, the values p = 2, r1 = 0, r2 =
3, r3 = 1, r4 = 4, and d1 = d2 = 10, d3 = 3, d4 = 6 are given. For the chosen job sequence
π = (1, 3, 2, 4), we obtain

S1(π) = 0, S3(π) = 2, S2(π) = 4, S4(π) = 6

and
C1(π) = 2, C3(π) = 4, C2(π) = 6, C4(π) = 8.

Thus, we obtain
4

∑
j=1

Cj(π) = 20 and
4

∑
j=1

Tj(π) = 1 + 2 = 3.

For the job sequence π′ = (3, 4, 1, 2), we obtain

4

∑
j=1

Tj(π
′) = 0.

We note that there exists a set Θ of possible completion times of all jobs with |Θ| ≤ n2

since:

• without loss of generality, we consider only active schedules, where no job can be
processed earlier without loss of feasibility;

• there are no more than n different values rj;
• all processing times are equal to p and thus, for any job j ∈ N, its completion time is

equal to ri + lp, i ∈ N, l ≤ n.

The problems 1|2 chains, pj = p, rj| f , f ∈ {∑ wjCj, ∑ wjTj, ∑ wjUj} can be solved by a
dynamic program (DP). In the DP, we consider the jobs i1, i2, . . . , in2 ∈ N2 one by one, where
i1 → i2 → · · · → in2 . Thus, at each stage k of the dynamic program, we consider a single job
ik, k = 1, 2, . . . , n2. Moreover, at each stage k > 1 we consider all states (f k−1, Ck−1

max , posk−1)
and the corresponding best partial solutions (sequences of jobs) stored at the previous stage.
The meaning of the above triplet is as follows. Here, f k−1 is the value of the considered
objective function for the partial solution. Ck−1

max = Cik−1
∈ Θ denotes the completion time

of job ik−1 in the corresponding partial solution. Finally, posk−1 ∈ {0, 1, 2, . . . , n1} describes
the position of a job, and this means that job ik−1 is processed between the jobs jpos ∈ N1

and jpos+1 ∈ N1, 0 < pos < n1. For each job ik and a state (f k−1, Ck−1
max , posk−1), we compute

Algorithms 2024, 17, 421 5 of 11

new states (f ′, C′
max, pos′), where pos′ ≥ pos, and C′

max is the completion time of job ik in a
new partial solution, where job ik is scheduled after job jpos′ ∈ N1. If, at any stage, there are
two states (f ′, C′

max, pos′) and (f ′′, C′′
max pos′) with f ′ ≤ f ′′ and C′

max ≤ C′′
max, we only keep

the state (f ′, C′
max, pos′). After the last stage, we have to select the best found complete

solution among all states generated.
Let us explain a state (f 1, C1

max, pos1) by means of Example 1. In Algorithm 1, at stage
k = 1, we have ik = 3. Thus, we consider the partial schedule π = (1, 3) and the
corresponding state (f 1, C1

max, pos1). For the objective function ∑ Cj, we have

(f 1, C1
max, pos1) = (C1(π) + C3(π), C3(π), 1) = (6, 4, 1).

For the objective function ∑ Tj, we have

(f 1, C1
max, pos1) = (T1(π) + T3(π), C3(π), 1) = (1, 4, 1).

Algorithm 1: A pseudo-code of Algorithm 1 is presented below.
1. StatesSet = {(0, 0, 0)};
2. FOR EACH ik ∈ N2 DO

2.1 NewStatesSet = {};

2.2 FOR EACH (f k−1, Ck−1
max , posk−1) ∈ StatesSet DO

2.2.1 Let PositionsList = {posk−1, posk−1 + 1, . . . , n1};

2.2.2 FOR EACH pos′ ∈ PositionsList DO

2.2.2.1 Calculate f ′ for the resulting partial solution, if job ik is
processed after jpos′ , according to the partial solution corresponding
to state (f k−1, Ck−1

max , posk−1);

2.2.2.2 Add (f ′, C′
max, pos′) to NewStatesSet. If in NewStatesSet, there

is a state (f ′′, C′′
max, pos′) with f ′ ≤ f ′′ and C′

max ≤ C′′
max, then

exclude the state (f ′′, C′′
max, pos′) from NewStatesSet;

2.2.2.3 If ik is the last job in the set N2, then schedule all unscheduled
jobs from the set N1 at the earliest possible time.

2.3 StatesSet := NewStatesSet;

3. Select the best found complete solution among all states generated.

Theorem 1. The problems 1|2 chains, pj = p, rj| f , f ∈ {∑ wjCj, ∑ wjTj, ∑ wjUj} can be solved
in O(n5) time by a dynamic program.

Proof. Dynamic programming is a mathematical optimization method, where a compli-
cated problem is split into simpler sub-problems in a recursive manner.

In Algorithm 1, each state (f , Cmax, pos) (here we skip the upper index for simplicity of
the notations), calculated at stage k − 1, divides the problem into two sub-problems. In the
first sub-problem, all jobs j ∈ {j1, j2, . . . , jpos} and all jobs i ∈ {i1, . . . , ik−2} are considered.
In the second sub-problem, all jobs j ∈ {jpos+1, . . . , jn1} and all jobs i ∈ {ik, . . . , in2} are
considered. Let π′ be an optimal solution for the first sub-problem and π′′ be an optimal
solution for the second one. Then π = (π′, ik−1, π′′) is an optimal solution corresponding
to state (f , Cmax, pos).

The proof of optimality of Algorithm 1 can be performed by induction. Let, for an
instance of a problem, π∗ = (π1, ik, π2) be an optimal solution and f ∗ be the optimal value

Algorithms 2024, 17, 421 6 of 11

of the considered objective function. Moreover, let posk ∈ {0, 1, . . . , n1, n1 + 1}, k = 1, . . . , n,
be the position of job ik ∈ N2 in the job sequence. This means that job jposk is processed
before job ik and job jposk+1 is processed after it, where j0 means that job ik is processed
before job j1 and jn1+1 means hat job ik is processed after job jn1 . Let f ′ be the objective
function value for the job sub-sequence (π1, ik).

Next, we prove the following Property (*).
Property (*): At each stage k of Algorithm 1, for each job ik the state (fk, Cik , posk) and the
corresponding partial job sequence (πk, ik) will be considered, where Cik (π

∗) = Cik and
f ′ = fk.

For stage 1, Property (*) holds since we consider and save in the set of states all
n1 + 1 possible positions for job i1. Let Property (*) hold for stage k − 1, i.e., the state
(fk−1, Cik−1

, posk−1) is contained in the set of states.
Then, according to step [2.2.2] of Algorithm 1, the state (fk, Cik , posk) will be considered

and stored in the set of states.
So, according to step [3.] of Algorithm 1, the job sequence π will be constructed

with the objective function value f = f ∗ and the problems 1|2 chains, pj = p, rj| f , f ∈
{∑ wjCj, ∑ wjTj, ∑ wjUj} can be solved by a dynamic program.

There are O(n) stages and O(n3) states (f , Cmax, pos) at each stage, since Cmax ∈ Θ
with |Θ| ≤ n2, and pos ∈ {0, 1, . . . , n1}. At the next stage, for each state generated at the
previous stage in step [2.2.2], we need to consider O(n) new states.

To perform all steps [2.2.2.1] in [2.2.2], we need O(n) operations. In step [2.2.2.1],
to construct a partial solution, we need to schedule the jobs jposk−1+1, jposk−1+2, . . . , jpos′ into

the partial solution, i.e., to calculate their starting times according to Ck−1
max , the release dates,

and the processing time. We need O(1) operations to calculate the starting time of each job,
and we calculate the starting time for a job only once in step [2.2.2], e.g., the starting time of
job jposk−1+1 is calculated only once in [2.2.2]. So, to perform all steps [2.2.2.1] in the cycle
[2.2.2], we need O(n) operations, and to perform all steps [2.2.2.1] in Algorithm 1, we need
O(n5) operations.

To perform step [2.2.2.2] in O(1) time, we additionally keep PositionsList in a 2-
dimensional array with O(n2) rows corresponding to all possible values Cmax and O(n)
columns corresponding to all possible values pos. We initiate the array in step [2.1]. So,
to check a dominated value, we need O(1) time. Thus, we need O(n5) operations to
perform all steps [2.2.2.1] in Algorithm DP.

To perform all steps [2.2.2.3] in Algorithm 1, we need O(n5) time, since it is performed
only for the last job in the set N2.

So, the running time of Algorithm 1 is O(n5).
The theorem has been proven.

We conjecture that there are other solution algorithms with a running time less
than O(n5). Here, our motivation is only to show that the problems are polynomially
solvable. For real-world problems, there are more parameters and constraints that have
to be taken into consideration, and they can be possibly solved by other methods than
dynamic programming.

3. Turn to a Main Road

There is a set N1 of CAVs going along a main road and a set N2 of CAVs turn-
ing into the main road from a side road (see Figure 2). In contrast to the problems
1|2 chains, pj = p| f , f ∈ {Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj}, we have now pj = p1, j ∈ N1

and pj = p2, j ∈ N2. We denote these problems by 1|2 chains, pj ∈ {p1, p2}, rj| f , f ∈
{Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj}.

These problems can be solved by the same Algorithm 1. In Algorithm 1, we describe
the states in the same way: (f , Cmax, pos). For any job j ∈ N in an active schedule for these
problems, its completion time is equal to ri + lp1 + vp2, i ∈ N, l ≤ n, v ≤ n. Thus, we have
|Θ| ≤ n3, and the running time of Algorithm 1 is O(n6).

Algorithms 2024, 17, 421 7 of 11

Figure 2. Turn to a main road.

4. A Road with Three Lanes and a Road Closure on the Middle Lane

In addition to the problems 1|2 chains, pj = p, rj| f , f ∈ {Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj},
there are an additional lane 3 and a subset N3 of jobs (see Figure 3). The jobs of the set N1
should be processed on machine M1, and the jobs of the set N3 should be processed on
machine M3. The jobs of the set N2 can be processed on any of these two machines.
Precedence relations among the jobs of the set N3 can be defined as a chain of jobs.

Figure 3. A road with three lanes and a closure on the middle lane.

We denote these problems by P2|dedicated, 3 chains, pj = p, rj| f , f ∈ {Cmax, ∑ wjCj,
∑ wjTj, ∑ wjUj}. These problems can be solved by a modified Algorithm 1, where we
consider the positions pos between the jobs of the set N1 and between the jobs of the set N3.

We illustrate the dynamic programming algorithm for this problem by the following
Example 2.

Example 2. Let N1 = {1, 2}, N2 = {3, 4}, N3 = {5, 6}. Moreover, the values
p = 2, r1 = 0, r2 = 3, r3 = 1, r4 = 4, r5 = 1, r6 = 4, and d1 = 2, d2 = 5,
d3 = 3, d4 = 6, d5 = 3, d6 = 8 are given. We consider the minimization of total tardi-
ness, i.e., f = ∑ Tj. Denote by M1 the machine, where the jobs from the set N1 have to be processed
and by M3 the machine, where the jobs from the set N3 have to be processed. The initial positions of
the jobs and an optimal schedule are presented in Figure 4.

In Algorithm 1, at each stage we consider all states

(pos1, C1
max, pos3, C3

max, f)

stored at the previous stage. Here, pos1 is the first possible position for the current job on machine
M1, C1

max denotes the completion time of the last job scheduled on machine M1, pos3 gives the first
possible position for the current job on machine M3, and C3

max denotes the completion time of the
last job scheduled on machine M3.

In the following Table 1, all states computed in the two stages for the jobs j = 3 and j = 4 are
presented. In the first column S1, the index numbers of the states are given. In the second column
S2, we present the original state from which the current state is computed. P1 represents pos1, C1

denotes C1
max, P3 represents pos3, and C3 denotes C3

max. π1 gives the corresponding job sequence
on machine M1 and π3 describes the corresponding job sequence on machine M3. In the columns
Cj, j = 1, . . . , 6, the corresponding completion times are given. In the columns Tj, j = 1, . . . , 6,
the corresponding tardiness values are given. In the last column, the resulting total tardiness values
f = ∑ Tj are presented.

Algorithms 2024, 17, 421 8 of 11

Table 1. Calculations of Algorithm 1 for Example 2.

r1 r2 r3 r4 r5 r6 d1 d2 d3 d4 d5 d6
0 3 1 4 1 5 2 5 3 6 3 8

S1 S2 P1 C1 P3 C3 π1 π3 C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 f

Stage j = 3

1 0 3 3 3 0 0 0 0 0 0 0
2 1 4 1, 3 2 4 0 0 1 0 0 0 1
3 2 7 1, 2, 3 2 5 7 0 0 4 0 0 0 4
4 0 3 3 3 0 0 0 0 0 0 0
5 5 7 5, 3 5 3 0 0 2 0 0 0 2
6 6 9 5, 6, 3 9 3 7 0 0 6 0 0 0 6

Stage j = 4

7 1 0 6 3, 4, 1,
2 5, 6 8 10 3 6 3 7 6 5 0 0 0 0 11

8 1 1 7 3, 1, 4,
2 5, 6 5 9 3 7 3 7 3 4 0 1 0 0 8

9 1 2 9 3, 1, 2,
4 5, 6 5 7 3 9 3 7 3 2 0 3 0 0 8

10 1 0 0 5 3, 1, 2 4, 5, 6 5 7 3 6 8 10 3 2 0 0 5 2 12
11 1 0 5 6 3, 1, 2 5, 4, 6 5 7 3 6 3 8 3 2 0 0 0 0 5
12 1 0 6 9 3, 1, 2 5, 6, 4 5 7 3 9 3 7 3 2 0 3 0 0 8
13 2 1 1, 3, 4,

2 5, 6 2 8 4 6 3 7 0 3 1 0 0 0 4

14 2 2 1, 3, 2,
4 5, 6 2 6 4 8 3 7 0 1 1 2 0 0 4

15 2 1 0 6 1, 3, 2 4, 5, 6 2 6 4 6 8 10 0 1 1 0 5 2 9
16 2 1 5 6 1, 3, 2 5, 4, 6 2 6 4 6 3 8 0 1 1 0 0 0 2
17 2 1 6 9 1, 3, 2 5, 6, 4 2 6 4 9 3 7 0 1 1 3 0 0 5
18 3 2 2 9 1, 2, 3,

4 5, 6 2 5 7 9 3 7 0 0 4 3 0 0 7
19 3 2 0 5 1, 2, 3 4, 5, 6 2 5 7 9 11 13 0 0 4 3 8 5 20
20 3 2 5 6 1, 2, 3 5, 4, 6 2 5 7 9 3 11 0 0 4 3 0 3 10
21 3 2 6 9 1, 2, 3 5, 6, 4 2 5 7 9 3 7 0 0 4 3 0 0 7
22 4 0 6 4, 1, 2 3, 5, 6 8 10 3 6 5 7 6 5 0 0 2 0 13
23 4 1 6 1, 4, 2 3, 5, 6 2 8 3 6 5 7 0 3 0 0 2 0 5
24 4 2 7 1, 2, 4 3, 5, 6 2 5 3 7 5 7 0 0 0 1 2 0 3
25 4 0 6 1, 2 3, 4, 5,

6 2 5 3 6 8 10 0 0 0 0 5 2 7

26 4 5 7 1, 2 3, 5, 4,
6 2 5 3 7 5 9 0 0 0 1 2 1 4

27 4 6 9 1, 2 3, 5, 6,
4 2 5 3 9 5 7 0 0 0 3 2 0 5

28 5 0 6 5 4, 1, 2 5, 3, 6 9 11 5 7 3 7 7 6 2 1 0 0 16
29 5 1 7 5 1, 4, 2 5, 3, 6 2 9 5 7 3 7 0 4 2 1 0 0 7
30 5 2 7 5 1, 2, 4 5, 3, 6 2 5 5 7 3 7 0 0 2 1 0 0 3
31 5 5 1, 2 5, 3, 4,

6 2 5 5 7 3 9 0 0 2 1 0 1 4

32 5 6 1, 2 5, 3, 6,
4 2 5 5 9 3 7 0 0 2 3 0 0 5

33 6 0 11 6 4, 1, 2 5, 6, 3 13 15 9 11 3 7 11 10 6 5 0 0 32
34 6 1 6 6 1, 4, 2 5, 6, 3 2 13 9 11 3 7 0 8 6 5 0 0 19
35 6 2 11 6 1, 2, 4 5, 6, 3 2 5 9 11 3 7 0 0 6 5 0 0 11
36 6 6 11 1, 2 5, 6, 3,

4 2 5 9 11 3 7 0 0 6 5 0 0 11

An optimal solution is found in state 16. Let us consider an extended instance with an
additional job 7 in the set N2, where 3 → 4 → 7. Then, in Algorithm DP, we will have 3 stages.
At the state 15, we will have (pos1, C1

max, pos3, C3
max, f) = (1, 4, 0, 6, 2), π1 = (1, 3) and π2 =

(4). At the state 16, we will have (pos1, C1
max, pos3, C3

max, f) = (1, 4, 1, 6, 2), π1 = (1, 3) and
π2 = (5, 4). So, we only keep the state 16, since pos3 is larger for state 16 and the other parameters
of the states are the same.

Algorithms 2024, 17, 421 9 of 11

Figure 4. The initial positions of the jobs and an optimal schedule for Example 2.

5. A Crossroad with Dividing Lines

In this section, we consider a crossroad with dividing lines and four sets, N1, N2, N3, N4,
of CAVs. They share four sectors of a crossroad denoted by M1, M2, M3, M4 (see Figure 5).
We have to find an optimal sequence of passing these sectors.

We can formulate the following job shop scheduling problem with four machines.
There are four sets, N1, N2, N3, N4, of jobs and four machines corresponding to the sectors
M1, M2, M3, M4. Each job j consists of two operations. For each job j ∈ N1, its first operation
has to be processed on machine M1 and its second one has to be processed on machine
M2. For each job j ∈ N2, its first operation has to be processed on machine M2 and its
second one has to processed on machine M4. For each job j ∈ N3, its first operation has to
be processed on machine M3 and its second one has to be processed on machine M1. For
each job j ∈ N4, its first operation has to be processed on machine M4 and its second one
has to be processed on machine M3. The processing times of the operations are equal to p.
Precedence relations can be given as chains of jobs.

If the lengths of the dividing lines are equal to 0, then the second operation of a job
j should be processed immediately after the first one. Otherwise, for each of the sets
N1, N2, N3, N4, there are four buffers of limited capacities, namely b1, b2, b3, b4 jobs for the
corresponding set of jobs. At any moment, for the set N1, there can be up to b1 jobs for
which the first operation is completed and the second one is not yet started. We denote
these problems by J4|4 chains, pj = p, rj| f , f ∈ {Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj}.

Figure 5. A crossroad with dividing lines.

The problems J4|4 chains, pj = p, rj| f , f ∈ {Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj} can be
solved by a branch-and-bound (B&B) algorithm. The search (rooted) tree is constructed
by the following branching rule. For any node of the tree, we consider the following
8 possible branches:

• Schedule the first unscheduled possible operation for a job j ∈ N1 on machine M1 at
the earliest possible starting time. If there is no such an operation, skip this branch.

• Schedule the first unscheduled possible operation for a job j ∈ N3 on machine M1 at
the earliest possible starting time.

Algorithms 2024, 17, 421 10 of 11

• Schedule the first unscheduled possible operation for a job j ∈ N1 on machine M2 at
the earliest possible starting time.

• Schedule the first unscheduled possible operation for a job j ∈ N2 on machine M2 at
the earliest possible starting time.

• Schedule the first unscheduled possible operation for a job j ∈ N3 on machine M3 at
the earliest possible starting time.

• Schedule the first unscheduled possible operation for a job j ∈ N4 on machine M3 at
the earliest possible starting time.

• Schedule the first unscheduled possible operation for a job j ∈ N2 on machine M4 at
the earliest possible starting time.

• Schedule the first unscheduled possible operation for a job j ∈ N4 on machine M4 at
the earliest possible starting time.

Thus, there are up to 23 = 8 branches for each node to be considered. Since there
are 2n operations, where n = |N1

⋃
N2

⋃
N3

⋃
N4|, there are no more than 2n levels in the

search tree. Thus, we have no more than (23)2n = 26n nodes to be considered. If some of
the values b1, b2, b3, b4 are equal to 0, we have fewer nodes. As an example, if each of them
is equal to 0, then we have only 23n nodes.

Moreover, we can use the following trivial upper and lower bounds for the problem
J4|4 chains, pj = p, rj|Cmax.

Upper bound. To construct a feasible solution, we use a list scheduling algorithm.
In this algorithm, we consider the unscheduled operations one-by-one according to a
non-decreasing order of the release dates of the corresponding jobs. We schedule the next
unscheduled operation at the earliest possible starting time according to the current partial
schedule. To order the set of jobs, we need O(n log n) operations. In addition, we need
O(n) operations to construct a feasible solution.

Lower bound. Consider a set of unscheduled operations N′. For each of them, we
calculate the earliest possible starting time according to the current partial schedule without
taking into account the other unscheduled operations. In such a way, we obtain a schedule
π that can be infeasible. Let CM1(π) be the makespan (i.e., the maximal completion time
of an operation assigned to the machine) for machine M1, ITM1(π) be the idle time on
machine M1 between the operations of the set N′, and OTM1(π) be the total overlap time,
where more than one operation is processed at the same time. Moreover, let

C′
M1

(π) = CM1(π) + max{0, OTM1(π)− ITM1(π)}.

Similarly, we can define C′
Mj
(π) for j = 2, 3, 4. Then,

LB1 = max{C′
M1

(π), C′
M2

(π), C′
M3

(π), C′
M4

(π)}

is a lower bound. It is easy to check that we need O(n) operations to calculate this bound.
If we use an upper bound and lower bound, then the B&B algorithm requires O(n26n)

operations.

6. Concluding Remarks

In this note, four models of scheduling problems for CAVs have been given. Three
of them can be solved by a dynamic programming algorithm in polynomial time. For the
fourth problem, a B&B algorithm has been presented. The investigations in this paper
are only a first step in the development of scheduling algorithms for CAV problems.
The presented algorithms can handle only very special problems. However, they can be
potentially used as a part of more complex algorithms for more general CAV problems
(e.g., considering more lanes, different speeds of the cars, or a closure of more lanes).
For real-world problems related to the scheduling of CAVs, fast metaheuristics and online
algorithms can be developed in the future. Finally we give two specific research questions
that are worth considering:

Algorithms 2024, 17, 421 11 of 11

• Are the problems J4|4 chains, pj = p, rj| f , f ∈ {Cmax, ∑ wjCj, ∑ wjTj, ∑ wjUj} NP-hard
or can they be solved in polynomial time?

• Are there problems with CAVs having equal processing times and a fixed number of
chains of jobs, which is an NP-hard problem?

Author Contributions: Conceptualization, E.R.G. and F.W., investigation, E.R.G. and F.W., visual-
ization, E.R.G.; writing—original draft preparation, F.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are available from the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ullrich, C. Integrated Machine Scheduling and Vehicle Routing with Time Windows. Eur. J. Oper. Res. 2012, 1, 152–165.
2. Afifi, S.; Dang, D.-C.; Moukrim, A. Heuristic Solutions for the Vehicle Routing Problem with Time Windows and Synchronized

Visits. Optim. Lett. 2016, 10, 511–525. [CrossRef]
3. Norouzi, N.; Sadegh-Amalnick, M.; Tavakkoli-Moghaddam, R. Modified Particle Swarm Optimization in a Time-Dependent

Vehicle Routing Problem: Minimizing Fuel Consumption. Optim. Lett. 2017, 11, 121–134. [CrossRef]
4. Nasiri, M.M.; Rahbari, A.; Werner, F.; Karimi, R. Incorporating Supplier Selection and Order Allocation into the Vehicle Routing

and Multi-Cross-Dock Scheduling Problem. Intern. J. Prod. Res. 2018, 56, 6527–6552. [CrossRef]
5. Rahbari, A.; Nasiri, M.M.; Werner, F.; Musavi, M.; Jolai, F. The Vehicle Routing and Scheduling Problem with Cross-Docking for

Perishable Products under Uncertainty: Two Robust Bi-objective Models. Appl. Math. Modell. 2018, 70, 605–625. [CrossRef]
6. Repoussis, P.P.; Gounaris, C.E. Special Issue on Vehicle Routing and Scheduling: Recent Trends and Advances. Optim. Lett. 2013,

7, 1399–1403. [CrossRef]
7. Bunte, S.; Kliewer, N. An Overview on Vehicle Scheduling Models. Public Transport. 2009, 1, 299–317. [CrossRef]
8. Han, M.; Wang, Y. A Survey for Vehicle Routing Problems and its Derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 042024.

[CrossRef]
9. Mor, A.; Speranza, M.G.: Vehicle Routing Problems over Time: A Survey. 4OR 2020, 18, 129–149. [CrossRef]
10. Bazzal, M.; Krawczyk, L.; Govindarajan, R.P.; Wolff, C. Timing Analysis of Car-to-Car Communication Systems Using Real-Time

Calculus: A Case Study. In Proceedings of the 2020 IEEE 5th International Symposium on Smart and Wireless Systems within
the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Dortmund, Germany,
17–18 September 2020; pp. 1–8.

11. Şahin, T.; Khalili, R.; Boban, M.; Wolisz, A. Reinforcement Learning Scheduler for Vehicle-to-Vehicle Communications Outside
Coverage. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018; pp. 1–8.

12. Qian, G.; Guo, M.; Zhang, L.; Wang, Y.; Hu, S.; Wang, D. Traffic scheduling and control in fully connected and automated
networks. Transp. Res. Part C Emerg. Technol. 2021, 126, 103011. [CrossRef]

13. Atagoziev, M.; Schmidt, E.G.; Schmidt, K.W. Lane change scheduling for connected and autonomous vehicles.Transp. Res. Part C
Emerg. Technol. 2023, 147, 103985. [CrossRef]

14. Ma, M. Optimal Scheduling of Connected and Autonomous Vehicles at a Reservation-Based Intersection. Ph.D. Thesis, University
of Louisville, Louisville, KY, USA, 2022.

15. Bani Younes, M.; Boukerche, A. An Intelligent Traffic Light scheduling algorithm through VANETs. In Proceedings of the 39th
Annual IEEE Conference on Local Computer Networks Workshops, Edmonton, AB, Canada, 8–11 September 2014; pp. 637–642.

16. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Optimization and Approximation in Deterministic Machine
Scheduling: A Survey. Ann. Discr. Math. 1979, 5, 287–326.

17. Lenstra, J.K.; Rinnooy Kan, A.H.G. Complexity results for scheduling chains on a single machine. Eur. J. Oper. Res. 1980, 4,
270–275. [CrossRef]

18. Baptiste, P. Scheduling equal-length jobs on identical parallel machines. Discret. Appl. Math. 2000, 103, 21–32. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11590-015-0878-3
http://dx.doi.org/10.1007/s11590-015-0996-y
http://dx.doi.org/10.1080/00207543.2018.1471241
http://dx.doi.org/10.1016/j.apm.2019.01.047
http://dx.doi.org/10.1007/s11590-012-0603-4
http://dx.doi.org/10.1007/s12469-010-0018-5
http://dx.doi.org/10.1088/1757-899X/452/4/042024
http://dx.doi.org/10.1007/s10288-020-00433-2
http://dx.doi.org/10.1016/j.trc.2021.103011
http://dx.doi.org/10.1016/j.trc.2022.103985
http://dx.doi.org/10.1016/0377-2217(80)90111-3
http://dx.doi.org/10.1016/S0166-218X(99)00238-3

	Introduction
	A Road with Two Lanes and One Lane Closure
	Turn to a Main Road
	A Road with Three Lanes and a Road Closure on the Middle Lane
	A Crossroad with Dividing Lines
	Concluding Remarks
	References

