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Abstract: To achieve the optimal solution between construction costs and carbon emis-
sions in the multi-target optimization scheduling, this paper proposes a multi-objective
optimization scheduling design for wind–solar energy storage microgrids based on an
improved oppositional gradient grey wolf optimization (OGGWO) algorithm. First, two
new features were added to the traditional grey wolf optimization (GWO) algorithm to
solve the multi-target optimization scheduling of grid-connected microgrids, aiming to
improve solution quality and convergence speed. Furthermore, Gaussian walk and Lévy
flight are introduced to enhance the search capability of the proposed OGGWO algorithm.
This method expands the search range while sacrificing only a small amount of search
speed, contributing to obtaining the global optimal solution. Finally, the gradient direction
is considered in the feature search process, allowing for a comprehensive understanding
of the search space, which facilitates achieving the global optimum. Experimental results
indicate that, compared to traditional methods, the proposed improved OGGWO algorithm
can achieve standard deviations of 4.88 and 4.46 in two different scenarios, demonstrating
significant effectiveness in reducing costs and pollution.

Keywords: wind–solar energy storage microgrid; multi-objective optimization scheduling;
oppositional gradient grey wolf optimization (OGGWO) algorithm; Gaussian walk

1. Introduction
With the global emphasis on sustainable development and environmental protection,

the construction of new power systems dominated by new energy, and the large-scale
development of energy sources such as wind and solar power, are receiving increasing
attention. However, due to the randomness of power generation and output fluctuations,
they face the problem of consumption in actual power grids. The wind–solar–hydrogen
storage system, as an effective solution, has its optimized management crucial for ensur-
ing stability and economy of energy supply. Microgrids can overcome the voltage and
frequency instability caused by the volatility and randomness of renewable energy outputs,
such as photovoltaics and wind power, through the coordinated control of energy storage
output. However, as the scale of microgrids has increased significantly, efficiently utilizing
renewable energy output has become critically important.

Microgrids can integrate multiple distributed energy resources (DERs), such as mi-
croturbines (MTs), wind turbines (WTs), batteries (BATs), fuel cells (FCs), photovoltaics
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(PVs), and other energy sources [1,2]. When constructing microgrid scheduling mod-
els, many variables are considered, so intelligent algorithms are mostly used for solving.
Yingjun et al. [3] proposed a microgrid grid–connected optimization scheduling model
based on mutation particle swarm algorithm, and simulated it to verify the feasibility
and superiority of the optimized PSO algorithm applied to the microgrid optimization
scheduling model in different time periods. Wu et al. [4] improved the Empire Competition
Algorithm using Gaussian and Cauchy mutations, and solved the microgrid optimization
scheduling model using the Gaussian Cauchy Empire Competition Algorithm. The correct-
ness of the model and the superiority of the solution method were verified. Singh et al. [5]
proposed a multi-strategy collaborative for bottle sea squirts (MSC-BSS), which considers
both operation and environmental pollution simultaneously. With comprehensive cost as
the objective function, constraints such as power balance, ramp rate, and extreme power of
interconnection lines are set. Then, MSC-BSS is utilized to address the microgrid scheduling
model. By comparing simulation results, the superiority of MSC-BSS over other algorithms
and the rationality of optimizing microgrid systems are verified. Although intelligent
algorithms have good solving accuracy, they are prone to getting stuck in local optima
during the solving process, which can lead to the inability to fully utilize renewable energy.

The broad integration of new energy sources into the grid has raised the level of uncer-
tainty in power dispatch, making the optimization of microgrid scheduling an important
research focus. Qiao et al. [6] proposed a day ahead real-time collaborative scheduling
method for wind power storage large-scale bases, which determines the start–stop plan and
adjustable output range of thermal power units based on rough wind power prediction. In
the real-time stage, scheduling strategies are generated according to quantile rules based on
the current wind and solar output. He et al. [7] introduced an optimization strategy for the
engagement of wind, thermal, and energy storage systems in frequency regulation utilizing
robust model predictive control. Response models for wind, fire, and energy storage were
established separately, and a double-layer robust optimization model was constructed to
minimize the frequency regulation cost of the system under the maximum uncertainty of
wind turbine output. Lin et al. [8] proposed a wind–fire storage collaborative frequency reg-
ulation control strategy based on multi-scale decomposition, which can effectively achieve
the joint participation of wind–fire storage in frequency regulation. Thermal power units
generate certain carbon emissions and have significant start-up, shutdown, and operating
costs. The ability to regulate resources during power generation is limited, so it is crucial to
consider a coordinated multi-target optimization scheduling strategy for wind, fire, and
storage systems.

In dealing with the economic dispatch problem of smart microgrids, it is necessary
to consider the practical problems in the power dispatch process of smart microgrid
systems, so multi-target optimization of the joint system is often required. Teo et al. [9]
used the NSGA II algorithm with operating costs and pollutant emissions as objective
functions to achieve multi-target optimization operation of a grid-connected microgrid
testing system. Teo et al. [10] proposed an adaptive genetic algorithm to optimize the
operation of microgrids by considering power loss and voltage distribution as objective
functions, and used multi-target optimization methods to solve the upper level optimization
model of distribution network scheduling. Al-Tameemi et al. [11] introduced a multi-target
PSO algorithm to solve the multi-target energy management issue in grid connected
microgrids, with operating costs and pollutant emissions as objective functions. Simulation
was conducted in a microgrid testing system composed of wind turbines, solar cells,
batteries, internal combustion engines, and diesel generators. Zhang et al. [12] constructed
a dual layer optimization configuration model for cloud energy storage driven by economic,
low-carbon, and reliable multiple objectives, and implemented a model solution based
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on a second-generation nondominated genetic algorithm, verifying the effectiveness of
the cloud energy storage mode in improving system investment and operation efficiency.
However, in current research, the proposed multi-target optimization algorithms are not
accurate enough in finding the optimal solution between reducing pollutant emissions and
minimizing power generation costs, and their convergence speed is slow.

Mirjalili introduced GWO motivated by the predatory actions of grey wolves [13].
Usually, there are four wolf types: Alpha, then Beta, Delta, and lastly Omega [14,15]. In
a wolf pack, the Alpha is the dominant leader and the primary decision-maker, while
other pack members must follow Alpha’s orders and decisions. The second position is
occupied by the Beta wolf, who acts as a mediator between the Alpha wolf and the rest of
the wolves. It helps the alpha wolf and becomes the first choice of nominee for Alpha, in
case the Alpha wolf dies or is too old for swarm management. In terms of rank, Omega is
the lowest-ranked grey wolf [16,17], following other top-ranked grey wolves. Delta tends
to manage Omega wolves, while also assisting Alpha and Beta wolves. As the number
of iterations of the GWO algorithm increases, the diversity of the grey wolf population
decreases, leading to a decrease in search ability and a tendency to fall into local optima
rather than global optima. Opposition-based learning (OBL) is a powerful optimization
tool, and the successful implementation of OBL involves evaluating the populations of
opposite and current stations of the same generation in order to obtain better candidate
solutions for a given problem [18].

In order to obtain the optimal value of multi-objective optimization scheduling in
terms of carbon emission cost and time-dependent electricity tariffs, this paper proposes a
multi-objective optimization scheduling design for wind–solar energy storage microgrids
based on an improved oppositional gradient grey wolf optimization (OGGWO) algorithm.
The main contributions are as follows:

(1) The OGGWO is introduced for multi-target optimization planning of grid-tied
microgrids, enhancing solution quality and convergence speed. This algorithm incorporates
instantaneous considerations of estimates and their equivalent oppositional estimates,
leveraging the advantages of gradient features to provide output boundaries for thermal
power units. Additionally, the combination of gradient features takes into account the
gradient direction during the optimization scheduling process, facilitating an improved
approximation of candidate solutions for objective cost and emissions.

(2) To improve the exploration capabilities of the introduced OGGWO algorithm, Gaus-
sian random walk and Lévy flight strategies are incorporated, which increase the search
range while sacrificing minimal search speed, aiding in obtaining a global optimal solution.

This paper is organized as follows. Section 2 introduces the microgrid optimization
scheduling model used in this paper, an improved grey wolf optimization algorithm with
opposite gradients, and the multi-objective optimization process of microgrids. In Section 3
is the example analysis, which proves the advantages of the proposed OGGWO algorithm
in two different scenarios. The conclusion is made in Section 4.

2. Microgrid Optimization Scheduling Model
This section is divided into two parts: 2.1 Mathematical Model of Microgrid and

2.2 Grey Wolf Optimization Algorithm Based on Oppositional Gradient. The objective
function equation in Section 2.1 is combined with the constraint equation to establish a
mathematical model for microgrid optimization scheduling. The purpose of microgrid
optimization scheduling is to minimize consumption costs and pollution emissions while
satisfying power constraints. Then, the introduced OGGWO algorithm in Section 2.2 is
used to find the optimal solution of the objective function equation when satisfying the
constraint equation.
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2.1. Mathematical Model of Microgrid
2.1.1. Objective Function

The task of multi-objective optimization for microgrids is to minimize economic costs
and carbon emissions as much as possible while satisfying all constraints. The optimization
and scheduling objective functions of microgrids are mainly divided into cost objective
function and carbon emission objective function.

Cost objective function: The target function of power generation and the purchase
cost objective function is shown as

min f1(X) = ∑T
i=1

{
∑

Ng
i=1 [Ui(t)PGi(t)BGi(t) + SGi(t)|Ui(t)− Ui(t + 1)|]− (PGrid(t)BGrid(t))+
∑Ns

j=1
[
Uj(t)Psi(t)Bsj(t) + Ssj

∣∣Uj(t)− Uj(t + 1)
∣∣]− (PGrid(t)BGrid(t))

}
(1)

where T represents the total duration, Ng represents the generation of energy, Ns represents
a storage unit, Ui(t) represents the state of the i-th generate unit at time t (on or off),
PGi(t) represents the output capacity when the i-th storage device is turned on, and BGi(t)
represents the energy cost of the i-th storage device at time t when it is turned on. The
energy cost of the j-th storage device at time t when turned off is BSj(t), and SGi(t) and Ssj(t)
represent the costs involved in the i-th storage device and j-th storage device during the
startup or shutdown function, respectively. In addition, PGrid(t) and BGrid(t) represent the
capacity and cost exchanged with the provided market, respectively.

Emission mitigation: The objective function for emission mitigation can be shown as

min f 2(X) = ∑T
t−1

{
∑Ng

i=1 [Ui(t)PGi(t)EGi(t)] + ∑Ns
j=1

[
Uj(t)Ps(t)Esj(t)

]
+

(
PGridj(t)EGridj(t)

)}
(2)

where EGi(t) represents the pollution level of the i-th generator unit, and the pollution level
of the J storage unit is represented by Etj(t). EGr(t) indicates the pollution level in the market
at time t.

2.1.2. Restriction Condition

The main constraint on electricity is the limit of the power generated by the generator
set, which can be divided into power equilibrium conditions, climbing speed limit, and
inequality constraint.

Power Equilibrium Conditions: The constraint condition for power balance is to
ensure dynamic balance between power production and consumption in microgrids

Nk

∑
k=1

PLK(t) =
Ng

∑
i=1

[PGi(t)] +
Ns

∑
j=1

[
Psj(t)

]
+ (PGrid(t)) (3)

where PLK represents the K quantity at the load level, and Nk represents the total number
of available load levels in the power grid.

Climbing Speed Limit: Climbing speed limit refers to the maximum rate at which a
generator set or other component in the power system can change its output power per
unit time

Ri
down · ∆t ≤ P(h)i − P(h − 1)i ≤ Ri

up · ∆t (4)

where Ri
down represents the decrease in output power of ithDG, and Ri

up indicates an
increase in jthDG output power. In addition, ∆t represents the time step, measured in
hours.
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Inequality Constraint: All units discussed in this paper have upper and lower bounds
on their power generation capability. The units include distributed generators, storage
devices, and markets

PGi,min(t) ≤ PGi(t) ≤ PGi,max(t)
Psj,min(t) ≤ Psj(t) ≤ Psj,max(t)
PGrid,min(t) ≤ PGrid(t) ≤ PGrid,max(t)

(5)

where PGi,min(t) indicates the minimum output power in the open state; PGi,max(t) indicates
the maximum output power in the open state; PSj,min(t) and PSj,max(t) represent the mini-
mum and maximum output power in the closed state, respectively; and PGrid,min(t) and
PGrid,max(t) represent the minimum and maximum values of the power exchanged between
customs and the market, respectively.

The constraint on the charging and discharging rate of storage devices is shown as

SOCtj(t) = SOCtj(t − 1) + Pchg/Dchg(t)

0 ≤
∣∣∣Pchg/Dchg(t)

∣∣∣ ≤ PCDSj,max
(6)

where SOCtj(t) represents the current charging amount of the storage unit at that
time, SOCtj(t−1) represents the amount of charge before the storage unit was charged,
Pchg/Dechg(t) corresponds to the charging (discharging) amount at the th hour, and the
maximum charging (discharging) rate is represented by PCDtj,max.

2.2. Grey Wolf Optimization Algorithm Based on Oppositional Gradient

This paper adds two new features to the traditional GWO algorithm, forming a grey
wolf optimizer based on opposing gradients. The first feature is the introduction of a
new OBL based program in the OGGWO algorithm for updating the position formula of
Omega Wolf, using gradient data to improve the development and exploration skills of the
algorithm. The second feature is the introduction of Gaussian walk and Lévy flight (LF) in
traditional GWO, allowing for random selection of Gaussian walk or Lévy flight to update
the wolf’s position in each iteration. These random walks enhance the randomness of the
improved OGGWO model and facilitate exploration. Gaussian walk generates a compact
cluster with many small steps and executes an equal number of loops. These small steps
are randomly selected, which can help the algorithm avoid local optima and enhance the
search capability of the proposed OGGWO model [19]. In this case, OGGWO can randomly
switch between Gaussian and LF walks [20]. The mathematical expressions for Gaussian
walk and Lévy flight are shown in Equations (7) and (8)

Xt+1
i = Xt

i + N(0, σ) (7)

Xt+1
i = Xt

i + Levy(β) (8)

where N(0, σ) represents a Gaussian distribution with a mean of 0 and a standard deviation
of σ, Lévy (β) represents a Lévy distribution with a parameter of β, and Xt

i represents the
position of the i-th wolf.

Figure 1 illustrates the flowchart of the introduced grey wolf optimization algorithm
based on adversarial gradient for multi-target optimization scheduling of wind and thermal
storage microgrids.
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Figure 1. Flowchart of the grey wolf optimizer based on the opposing gradient.

The overall flowchart is as shown above, and the detailed steps are listed below:
Step 1: The position of grey wolves (search agents) is randomly initialized in the search

space.
This step further fixes the number of iterations, followed by population size (number

of wolves).
Step 2: For each search agent, the fitness value is determined as it denotes the distance

between prey and the wolf.
Step 3: The opposite points are initialized and used to generate the opposite population

so as to calculate the fitness values of every individual population.
Step 4: Sorting is executed for both current and opposite populations (pop and opop

respectively), in line with their fitness values.
Step 5: The nP number of the fittest solution is selected out of a combination of current

and the corresponding opposite population.
Step 6: Based on fitness values, three solutions are found such as best (a), second-best

(b) and finally, the third best (d). These solutions correspond to Alpha, Beta, and Delta
category wolves, respectively.

Step 7: Based on Equation (9), the position of the grey wolves is modified

Xi
W(t + 1) = γ

∂ f Min

∂Xi ≤ ∂ f
∂Xi

w
(t) < γ

∂ f Max

∂Xi f or i = 1, · · · , m and w = 1, · · · , n (9)

Xi
W(t) = rand(0, 1)λi(t)

(
∂ f

∂Xi
w
(t)

)
, Otherwise, for i = 1, · · · , m and w = 1, · · · , n (10)

In this equation, i corresponds to the index of decision variables in an optimization

problem. On the contrary, n denotes the count of grey wolves.; ∂ f Max

∂Xi and ∂ f Min

∂Xi correspond
to the maximum positive slope and minimum negative rate of change in every dimension at
each step of the algorithm. Furthermore, γ represents a continuous parameter determined
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in the range [0, 1], rand(0, 1) represents a random number with an interval of (0, 1). As per
the formulation given above,λi is updated using Equation (11) as given herewith

λi(t) =
0.1

[
Ubi − Lbi]

max
(∣∣∣ ∂ f Min

∂Xi

∣∣∣, ∣∣∣ ∂ f Max

∂Xi

∣∣∣) (11)

where Lb represents the lower bound and Ub represents the upper bound of the problem.
This results in the following equation straightforwardly:∣∣∣∣λi(t)

∂ f
∂Xi

w
(t)

∣∣∣∣ ≥ 10
(

Ubi − Lbi
)

(12)

The gradient of the problem in few optimization problems may remain unknown.
This is attributed to the non-differentiability of objective function or discrete features
possessed by decision variables. In order to overcome these issues, the following equation
is presented:

∂ f
∂x

=
[ f (t)− f (t − 1)]
[X(t)− X(t − 1)]

(13)

Step 8: The fitness value is updated based on the modified position of grey wolves.
Step 9: Alpha, Beta, and Delta values are updated.
Step 10: The position of Omega wolves is updated using Equations (14) and (15) that

employ Gaussian walk and Lévy flight

Xi
W,new = Xi

W + KGaussian(|θi|, σ)−
(
ξ × θi − ξ ′ × Xi

W
)
,

f or i = 1, · · · , m and w = 1, · · · , n
(14)

Xi
W,new = Xi

W + Xi
W Levy(η),

f or i = 1, · · · , m and w = 1, · · · , n
(15)

In the formula, the best solution is denoted by θi whereas |σ| corresponds to the
standard deviation of Gaussian distribution. The Gaussian parameter is changed by
OGGWO as σ = |K × (xi − BP)|, while it also reduces the length of steps at the time of
iterations by fixing = log(l)

l . Here, l corresponds to the number of iterations. Further, Xi
W,new,

now corresponds to the new position of the wolves, whereas Xi
W denotes the current

position. In addition to these, ξ ′ and ξ denote random numbers in (0, 1]. Equation (16)
denotes the calculation for Lévy flight

Lexy(x) =
[0.01 × σ × r1]

|r2|
1
β

(16)

where the random numbers are denoted by r1 and r2 between (0, 1]; and β corresponds
to constant, which is equal to 1.5. In Equation (14), σ is computed with the help of the
following equation:

σ =

[
Γ(1 + β) sin

(
πβ

2

)
/
(

Γ(1 + β)

2
β

[
2

(β−1)
2

])]1/β

(17)

Step 11: The opposite population is created out of the current population using the
jumping rate.

Step 12: The nP number of the fittest solution is selected after integrating the current
and the opposite populations.

Step 13: Steps 3–7 are repeated until the maximum number of iterations is achieved.
Step 14: The best solution is achieved as the output.
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As per the steps discussed above, the leading framework remains the same in both
GGWO and OGGWO. However, significant changes are made in the latter. For example,
OGGWO leverages a mix of original and gradient-based operators to update the position
of wolves more than the conventional GWO operators. Further, a new function is also
added in OGGWO to determine the gradient’s objective function at every point in the
solution space [21]. In addition to the above, Gaussian walk and Lévy flight have been
incorporated in OGGWO to increase randomness during the closure of every iteration.
This phenomenon significantly increases both the exploration and exploitation capability,
as long steps and short steps shift the particles in the solution space.

3. Example Analysis
In order to demonstrate the robustness and generalization ability of the proposed

OGGWO algorithm, this paper conducted experiments in two different scenarios. Scenario
1 is the distributed energy operation with emission economic restrictions and Scenario 2 is
the maximum operation of renewable energy.

3.1. Example Setup

(1) The starting parameters of the OGGWO algorithm are as follows: population
number S = 30, maximum iteration count Gm = 1000, maximum limit Ub = 100 for each
variable, and minimum limit Lb = −100 for each variable. The microgrid is composed
of a diesel generator with a power change range of 18~60 kW, a wind turbine with an
installed capacity of 90 kW, a photovoltaic array with an installed capacity of 85 kW, and
an energy storage system with a rated capacity of 900 kWh and daily load. The value of
PLK is 230 KW. The initial values of PGi,min(t), PGi,max(t), Psj,min(t), Psj,max(t), PGrid,min(t),
and PGrid,max(t) are 163 KW, 224 KW, 81 KW, 112 KW, 97 KW, and 156 KW, respectively.

(2) The microgrid model in this paper consists of wind turbines, photovoltaic power
generation, internal combustion engines, fuel cells, and batteries. Their relevant operating
parameters include the maximum and minimum limits of output capacity for each device,
ramp rate constraints, equipment maintenance factors, installation costs, etc., as shown
in Table 1. These data are sourced from the internal company database of a wind farm in
Jiangxi Province, China.

Table 1. Relevant parameters of the power supply equipment.

Equipment
Type

Power
Upper

Limit (KW)

Lower
Limit of
Power
(KW)

Climbing
Rate

(KW/MIN)

Maintenance
Coefficient
(CNY/kW)

Capacity
Factor (%)

Depreciation
Period
(year)

Installation
Cost

(CNY/kW)

WT 50 0 5 0.032 22.13 10 2.34
PV 30 0 10 0.006 29.34 20 6.61
MT 60 0 5 0.049 54.78 10 1.72
FC 40 0 5 0.029 33.62 10 4.23

BAT 30 −30 5 0.002 32.67 10 0.09

(3) Due to the fact that wind and light are clean energy sources, the pollutants gen-
erated are almost zero. Therefore, only the treatment costs of pollutants generated by
internal combustion engines, fuel cells, and large power grids are considered. The pollutant
emission coefficients and treatment costs of various pollutants are shown in Table 2.
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Table 2. Pollution treatment cost and discharge coefficient.

Types of
Pollutants

Pollutant Control
Costs (CNY)

Pollutant Emission Coefficient (g/kwh)
MT FC Grid

CO 10.18 0.047 0 0.079
CO2 0.28 715 484 889
NOX 13.209 0.27 0.017 1.511
SO2 67.136 0.038 0.0033 1.37

(4) This paper divides a day into three time periods, and the electricity prices for each
period are calculated based on the usage time electricity pricing scheme: valley period
0:00–7:00 and 23:00–24:00; during regular hours, 7:00–10:00, 15:00–18:00, and 21:00–23:00;
and during the peak hours of 10:00–15:00 and 18:00–21:00. The corresponding electricity
buying and selling cost data are shown in Table 3.

Table 3. Usage-time electricity cost table.

Time Interval Electricity Purchase
(CNY/kWh)

Electricity Sales
(CNY/kWh)

Valley period 0.52 0.39
Regular period 0.94 0.69

Peak period 1.32 1.06

(5) The output power of wind turbines and photovoltaic power generation introduced
in this paper is taken from the typical daily power generation data in East China on
December 29. The wind and solar energy output curves for Scenario 1 are shown in
Figure 2a and the wind and solar energy output curves for Scenario 2 are shown in
Figure 2b.
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3.2. Simulation Analysis of Scenario 1

Scenario 1 involves the operation of all DGs and power grids under emission/economic
restrictions as illustrated in [22]. Table 4 illustrates the optimal 24 h power generation
plan to minimize costs and emission levels without evaluation criteria. From Table 4, it is
evident that in the initial few hours of the day, the majority of the load demand is met by
fuel cells existing within the power grid and utilities through common coupling points.
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Table 4. Optimal power generation plan in Scenario 1.

Hour MT
(MW) FC (MW) PV (KW) WT

(MW)
BAT

(CNY/kWh)
Grid

(MW)

1 17.28 30.04 0 9.95 −30.12 37.88
2 19.65 27.28 0 11.51 −4.81 7.56
3 6.03 22.12 0 8.12 −20.16 44.14
4 6.86 30.11 0 12.55 −12.49 24.21
5 8.79 23.13 0 12.12 −19.89 43.38
6 25.39 0 0 13.67 −18.24 54.31
7 25.13 24.11 0 12.14 −25.68 48.73
8 0 30.06 0 13.48 2.45 44.32
9 27.48 27.14 0.28 15.26 −27.34 48.56

10 29.88 30.21 2.15 19.45 29.16 −14.53
11 30.06 29.62 8.14 24.37 26.29 −24.87
12 29.29 28.14 9.83 22.14 11.14 −11.94
13 30.00 29.97 11.14 19.33 −29.87 25.78
14 0 30.01 8.92 24.13 29.24 −6.24
15 30.00 30.07 8.55 24.99 27.35 −29.78
16 22.48 24.66 3.99 19.98 −20.23 45.12
17 30 30 1.98 23.47 −29.98 46.53
18 30 30 0 18.98 9.81 46.21
19 30 22.19 0 19.01 1.02 35.78
20 30 30 0 22.31 −0.59 22.28
21 17.99 19.79 0 12.99 6.94 35.29
22 1.02 28.93 0 21.08 27.98 5.99
23 22.05 0 9 13.09 −8.16 42.02
24 0 0 0 20.11 29.41 17.48

Moreover, the microgrid’s regulatory controller sequentially powers units and exports
energy, boosting revenue during certain study periods while cutting net emissions. Con-
versely, the battery is recharged early each day, particularly taking advantage of lower-cost
charging times. As the load curve peaks later in the day, the battery discharges. Incor-
porating renewable sources like solar and wind reduces pollution but raises operational
expenses, making them economically impractical. Hence, it’s essential to cap the energy
from these sources within set emission/economic limits. The BCS parameter refers to the
temperature coefficient of the bypass diode under short-circuit conditions, which is the
rate at which the performance of the bypass diode (such as forward voltage) changes with
temperature when the photovoltaic panel is operating under short-circuit conditions.

In order to highlight the superiority of the proposed OGGWO algorithm in Scenario 1,
this paper compared the simulation results with other classic optimization algorithms in
Table 5. It can be seen that the standard deviation values of the cost and emission targets of
the proposed OGGWO are 19.97 and 4.72, respectively, with a minimum cost of 1146.55,
minimum emissions of 1262.74, and a BCS of 1223.83, which are the minimum values
compared to other classical optimization algorithms.

Figure 3 displays the outcomes of the optimization algorithm’s analysis. The results
indicate that the suggested optimization algorithm has yielded outstanding performance
regarding cost and emission objectives for both the optimal and worst-case scenarios.
Furthermore, it demonstrated a higher rate of convergence.
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Table 5. Comparison of the simulation results in Scenario 1.

Algorithm Parameter Cost (CNY) Emissions
(Kg)

EDNSGA-II [23]

Minimum cost 1164.01 1230.66
Minimum emissions 1283.80 1175.99

BCS 1243.40 1212.7
standard deviation 22.71 5.08

NSGA-II [23]

Minimum cost 1295.70 1236.5
Minimum emissions 173.77 1199.08

BCS 1317.47 1216.54
standard deviation 24.66 7.08

PSO

Minimum cost 1316.53 1241.29
Minimum emissions 1378.31 1203.12

BCS 1341.82 1220.07
standard deviation 33.51 8.14

CSA

Minimum cost 1310.50 1239.86
Minimum emissions 1373.45 1202.18

BCS 1334.62 1219.14
standard deviation 31.79 7.99

GWO

Minimum cost 1261.65 1234.08
Minimum emissions 1337.12 1195.64

BCS 1286.07 1214.31
standard deviation 24.19 6.87

GGWO

Minimum cost 1153.99 1228.14
Minimum emissions 1268.69 1173.67

BCS 1230.25 1212.03
standard deviation 21.22 4.88

OGGWO

Minimum cost 1146.55 1226.71
Minimum emissions 1262.74 1172.48

BCS 1223.83 1211.28
standard deviation 19.97 4.72
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To highlight the effectiveness of the introduced OGGWO algorithm, Figures 3 and 4
map out the convergence patterns of OGGWO in comparison to other optimization tech-
niques, aiming for the best possible solution and individual goals. The data indicate that
the OGGWO approach hit the nadir for the cost objective after 705 cycles and then remained
constant, while the GWO algorithm achieved convergence at 713 cycles. Furthermore, the
algorithm detailed in this study reached its nadir at 734 cycles, as opposed to the 745 cycles
required for the GWO algorithm to reach convergence.
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Figure 5 displays the Pareto fronts for the trade-off objectives achieved by different
methods, facilitating comparison and the identification of optimal compromise solutions.
The illustration suggests that the introduced algorithm is proficient in addressing nonlin-
ear multi-objective optimization issues, as the Pareto optimal frontier of non-dominated
solutions is evenly distributed. Consequently, the proposed algorithm expends less com-
putational effort in diminishing emissions and operational expenses. The optimization
outcomes robustly validate the algorithm’s capability to tackle equality and inequality
concerns prevalent in energy management scenarios.
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The experimental results show that the cost deviation and emission deviation of
the OGGWO algorithm proposed in this paper in Scenario 1 are CNY 21.22 and 4.88 kg,
respectively. The minimum emission is 1172.48 kg and the minimum cost is CNY 1146.55,
both of which are lower than other optimization algorithms.

3.3. Simulation Analysis of Scenario 2

In order to highlight the superiority of the OGGWO algorithm proposed in this paper
in Scenario 2, the algorithm was compared with other classic optimization algorithms, and
the results are shown in Table 6. Table 6 provides a comparative analysis of the statistical
performance of OGGWO versus other optimization algorithms across individual objectives.
When evaluating the outcomes of the GWO algorithm against the proposed OGGWO
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algorithm across different objectives, it becomes evident that the GWO algorithm exhibits
certain deficiencies and variable performance levels.

Table 6. Comparison of the simulation results in Scenario 2.

Algorithm Parameter Cost (CNY) Emissions (Kg)

EDNSGA-II [23]

Minimum cost 1491.69 1231.56
Minimum
emissions 1586.34 1162.4

BCS 1573.12 1215.63
standard deviation 42.15 1215.63

PSO

Minimum cost 1520.18 1205.29
Minimum
emissions 1589.91 1168.12

BCS 1554.07 1184.89
standard deviation 46.80 7.63

CSA

Minimum cost 1513.45 1203.14
Minimum
emissions 1573.71 1166.58

BCS 1540.06 1183.28
standard deviation 45.31 7.58

GWO

Minimum cost 1484.88 1200.23
Minimum
emissions 1551.88 1160.25

BCS 1502.96 1179.27
standard deviation 37.25 6.64

GGWO

Minimum cost 1464.54 1197.38
Minimum
emissions 1587.72 1158.03

BCS 1490.75 1177.49
standard deviation 34.67 4.63

OGGWO

Minimum cost 1457.80 1210.24
Minimum
emissions 1580.05 1156.79

BCS 1473.14 1175.82
standard deviation 33.34 4.46

Table 7 highlights the efficacy of the proposed algorithm in handling multi-objective
optimization and the optimal distribution of power among units. The data in this table sug-
gest that the deployment of high-performance units is crucial for simultaneously achieving
economic and emission targets. From Table 7, it can be inferred that compared to other
optimal solutions, the proposed algorithm appropriately handles multi-target optimization
problems while also ensuring the minimum diversity of each objective and experiment. In
contrast to the primary scenario, the overall operational expenses of the microgrid have
risen in the secondary scenario. However, when compared to the earlier state, there has
been a reduction in net emissions.
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Table 7. Optimal power generation plan in Scenario 2.

Hour MT
(MW) FC (MW) PV (KW) WT

(MW)
BAT

(CNY/kWh)
Grid

(MW)

1 29.76 0 0 9.58 −27.26 50.23
2 16.11 15.71 0 10.26 −17.72 30.25
3 6.52 22.43 0 11.18 −19.12 37.13
4 23.24 3.36 0 12.75 −21.64 42.15
5 6.16 19.58 0 14.36 −28.64 57.34
6 25.78 3.26 0 14.24 −26.21 54.78
7 26.14 23.15 0 14.23 −23.76 43.12
8 7.75 24.78 0.36 12.61 −15.34 57.64
9 0 28.66 0.41 18.17 25.64 18.31

10 26.90 28.45 2.35 17.85 28.64 −13.88
11 27.31 27.94 9.16 23.33 28.36 −28.46
12 29.76 0 11.36 21.55 28.46 −5.13
13 0 21.14 11.86 19.72 −4.64 41.21
14 26.31 28.31 11.24 23.76 24.31 −30.13
15 0 0 9.25 23.34 18.63 36.01
16 26.54 28.45 5.11 23.72 −28.76 35.77
17 24.12 28.86 0.38 22.35 −27.63 52.11
18 11.25 20.12 0.27 21.64 17.44 33.46
19 29.36 28.32 0 21.72 −28.97 58.22
20 28.76 3.41 0 20.36 −6.24 55.14
21 26.58 27.48 0 20.75 −21.25 4122
22 27.77 0 0 21.43 27.14 3.42
23 19.56 19.36 9 22.34 −18.31 34.13
24 8.52 20.23 0 21.74 −21.47 38.13

Figures 6 and 7 depict the convergence trends for operating costs and emissions of
the OGGWO, GGWO, GWO, CSA, DE, and PSO algorithms. The figures reveal that the
OGGWO algorithm exhibits consistent and rapid convergence in locating the optimal
solution, suggesting the Pareto optimal frontiers for both OGGWO and GGWO algorithms.
These illustrations suggest that the OGGWO algorithm is a viable option for addressing
multi-objective energy management challenges, outperforming other optimization methods.
Furthermore, the OGGWO algorithm presented in this study ensures an optimal spread of
non-dominated solutions and is suitable for extensive standard testing systems.
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The cost deviation and emission deviation of the OGGWO algorithm proposed in
this paper in Scenario 2 are CNY 33.34 and 4.46 kg, respectively. The minimum emission
is 1156.79 kg and the minimum cost is CNY 1457.80, both of which are lower than other
optimization algorithms. This indicates that the OGGWO algorithm proposed in this paper
obtains better results in Scenario 2, and as shown in Figure 8, the convergence speed of the
OGGWO algorithm proposed in this paper is faster in Scenario 1.
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4. Conclusions
This paper focuses on the optimal solution problem considering factors such as con-

struction cost and carbon emissions, and proposes a grey wolf optimizer (OGGWO)
based on adversarial gradient to solve the multi-objective optimization scheduling of
grid-connected microgrids, which can improve the quality of solution and convergence
speed. This algorithm includes instantaneous consideration of estimation and its equivalent
inverse estimation, utilizing the advantages of gradient features to provide information
about the output boundary of thermal power units. At the same time, the combination of
gradient features considers the gradient direction in the optimization scheduling process
to achieve enhanced approximation of target cost and emission candidate solutions. In
order to enhance the exploration and development capabilities of the proposed OGGWO
algorithm, Gaussian walk and Lévy flight techniques are introduced to increase the search
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range of the solution while sacrificing a small amount of search speed, which helps to obtain
the global optimal solution. The cost deviation and emission deviation of the OGGWO
algorithm proposed in this paper in Scenario 2 are CNY 33.34 and 4.46 kg, respectively.
The minimum emission is 1156.79 kg and the minimum cost is CNY 1457.80, both of which
are lower than other optimization algorithms. This indicates that the OGGWO algorithm
proposed in this paper obtains better results in Scenario 2, and as shown in Figure 7, the
convergence speed of the OGGWO algorithm proposed in this paper is faster in Scenario 1.

Although OGGWO has enhanced its exploration capabilities by introducing Gaussian
walk and Lévy flight techniques, there is still room for further optimization of the applica-
tion of these technologies. For example, it is possible to consider adaptively adjusting the
probability distribution parameters of Gaussian walk and Lévy flight to better balance the
relationship between global search and local search.
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Abbreviations

Variable Definition Unit
PSTC Peak output capacity KW
T Surface temperature of the photovoltaic array h
TSTC Reference temperature for the photovoltaic array h
G Intensity of light in time T
GSTC Intensity of light in time TSTC

ηMT(t) Output efficiency within time t
Ng Generation of energy
Ns Storage unit
Ui(t) State of the i-th unit at time t (on or off).
PGj(t) Output capacity when the j-th storage device is turned on KW
BGj(t) Energy cost of the i-th storage device at time t when it is turned on J
BSj(t) Energy cost of the j-th storage device at time t when turned off J
SGj(t) Costs involved j-th storage device during the startup function CNY
Ssj(t) Costs involved j-th storage device during the shutdown function CNY
PGrid(t) Capacity with the provided market KW
BGrid(t) Cost exchanged with the provided market CNY
EGridi(t) Pollution level of the i-th generator unit Kg
Esj(t) Pollution level of the J storage unit Kg
EGridj(t) Pollution level in the market at time t Kg
PLK K quantity at the load level KW
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Variable Definition Unit
Nk Total number of available load levels in the power grid
Ri

down Decrease in output power of ithDG KW
Ri

up Increase in jthDG output power KW
∆t Time step, measured in hours h
PGi,min(t) Minimum output power in the open state KW
PGi,max(t) Maximum output power in the open state KW
Psj,min(t) Minimum output power in the closed state KW
Psj,max(t) Maximum output power in the closed state KW
PGrid,min(t) Minimum values of the power exchanged between customs and the market KW
PGrid,max(t) Maximum values of the power exchanged between customs and the market KW
SOCtj(t) Current charging amount of the storage unit at that time
PCDSj,max Maximum charging (discharging) rate
N(0, σ) Gaussian distribution with a mean of 0 and a standard deviation of σ
Xt

i Position of the i-th wolf.
∂ f Max

∂Xi Maximum positive slope in every dimension at each step of the algorithm
∂ f Min

∂Xi Minimum negative rate of change in every dimension at each step of the algorithm
γ Continuous parameter determined in the range [0, 1]
λi Updated using Equation (16) as given herewith
Lb Lower bound
Ub Upper bound of the problem
|σ| Standard deviation of Gaussian distribution
σ = |K × (xi − BP)| Gaussian parameter changed by OGGWO
log(l)

l Reduces the length of steps at the time of iterations
Xi

W,new New position of the wolves
Xi

W Current position
ξ ′ Random numbers in (0, 1]
ξ Calculation for Lévy flight
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