
Academic Editor: Daniele Frigioni

Received: 5 November 2024

Revised: 13 December 2024

Accepted: 30 December 2024

Published: 5 January 2025

Citation: Kshemkalyani, A.D.; Misra,

A. Impossibility Results for Byzantine-

Tolerant State Observation,

Synchronization, and Graph

Computation Problems. Algorithms

2025, 18, 26. https://doi.org/10.3390/

a18010026

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Impossibility Results for Byzantine-Tolerant State Observation,
Synchronization, and Graph Computation Problems
Ajay D. Kshemkalyani 1,* and Anshuman Misra 2

1 Department of Computer Science, University of Illinois Chicago, Chicago, IL 60607, USA
2 Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA;

misra47@pfw.edu
* Correspondence: ajay@uic.edu

Abstract: This paper considers the solvability of several fundamental problems in asyn-
chronous message-passing distributed systems in the presence of Byzantine processes
using distributed algorithms. These problems are the following: mutual exclusion, global
snapshot recording, termination detection, deadlock detection, predicate detection, causal
ordering, spanning tree construction, minimum spanning tree construction, all–all shortest
paths computation, and maximal independent set computation. In a distributed algorithm,
each process has access only to its local variables and incident edge parameters. We show
the impossibility of solving these fundamental problems by proving that they require a
solution to the causality determination problem which has been shown to be unsolvable in
asynchronous message-passing distributed systems.

Keywords: Byzantine fault-tolerance; “happened before” relation; causality; state observation;
synchronization; graph computation; distributed system; asynchronous message-passing

1. Introduction
This paper considers the solvability of several fundamental state observation, synchro-

nization, and graph computation problems in asynchronous message-passing distributed
systems in the presence of Byzantine processes using distributed algorithms. In a distributed
algorithm, each process has access only to its local variables and incident edge parameters
(such as edge weight, edge cost, edge delay); its local variables are not accessible to any
other process/node. We show the impossibility of solving these fundamental problems by
proving that they require a solution to the causality determination problem [1–3], which
has been shown to be unsolvable in asynchronous message-passing distributed systems [4].

In a seminal paper, Lamport formulated the “happened before” or the causality
relation, denoted →, between events in an asynchronous distributed system [5]. Given two
events e and e′, the causality determination (CD) problem asks to determine whether e → e′.
Examples of events from real-world applications include users making bids in an online
auction, physical parameters like temperature and pH value reaching certain thresholds
in a chemical manufacturing plant, and program variable values in a parallel program
satisfying an application-specific predicate. In computing systems, applications of causality
determination include determining consistent recovery points in distributed databases,
deadlock detection, termination detection, distributed predicate detection, distributed
debugging and monitoring, and the detection of race conditions and other synchronization
errors [6]. It was shown in [4] that it is impossible to determine the causality or the
happens before relation → between two events e1 and e2 when there is even a single
Byzantine process in an asynchronous message-passing distributed system. False negatives

Algorithms 2025, 18, 26 https://doi.org/10.3390/a18010026

https://doi.org/10.3390/a18010026
https://doi.org/10.3390/a18010026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-3987-7945
https://doi.org/10.3390/a18010026
https://www.mdpi.com/article/10.3390/a18010026?type=check_update&version=2

Algorithms 2025, 18, 26 2 of 14

and/or false positives are possible. A false negative means that e → e′ whereas e ̸→ e′

is perceived/detected. A false positive means that e ̸→ e′ whereas e → e′ is detected.
Specifically, the following results were shown.

1. It is impossible to determine causality e → e′ between events in the presence of even
a single Byzantine process when e is a communication (send or receive) event and
processes communicate by unicasting. This is because both false positives and false
negatives can occur.

2. A similar impossibility result when processes communicate by broadcasting was
shown. In this case, false positives cannot occur but false negatives can occur.

3. A similar impossibility result to the unicasting case was shown where processes
communicate by multicasting. Both false positives and false negatives can occur.

We show that many problems in distributed computing in the presence of Byzantine
processes, which might be locally solved at event(s) at individual processes but require
another process to detect the occurrence of such event(s), are not solvable in asynchronous
message-passing systems by showing that solving them requires solving the CD problem.
This also establishes the CD problem as a fundamental first-class problem as all the other
problems for which we show impossibility results inherently require causality determina-
tion between a pair of events. The occurrence of false negatives (false positives) in the CD
problem manifests as the occurrence of liveness and safety violations in these problems.
A direct implication of our results is that none of the many algorithms proposed to solve
these problems over the past five decades for failure-free systems/crash failures can be
adapted for Byzantine failures.

We consider the following problems; the reader is referred to any standard textbook
such as [6–10] for a centralized source of algorithms to solve these problems in asyn-
chronous message-passing failure-free systems/graphs.

1. Synchronization and state observation problems.

(a) Distributed mutual exclusion (ME). This problem requires enforcing that only
a single process is in control (in execution) of a specific piece of code called the
critical section at any point in time.

(b) Global snapshot recording (GSR). This problem requires recording the states
of distributed processes and communication channels in a consistent manner
so that no process records an effect whose cause has not been recorded at other
processes. More specifically, no message is recorded as received by a receiving
process in its recorded state if the corresponding message sender process has
not recorded that message as sent in its recorded state.

(c) Termination detection (TD). This problem requires determining the occurrence
of a consistent global state such that all processes have gone from an active to
passive (locally terminated) state and there are no messages in transit whose
receipt would cause the recipient to transition from a passive to active state.

(d) Distributed deadlock detection (DD). When a process requests resources, it
blocks on other processes. A process can block in the single-request model,
OR request model, AND request model, or the AND-OR request model. Dis-
tributed deadlock detection requires determining a consistent global state in
which the processes are blocked on each other in a cycle or more generally a
knot topology, for the above request models.

(e) Distributed predicate detection (PD). This problem requires detecting a con-
sistent global state in which the variables local to different processes satisfy
a predicate ϕ. The predicate may be an arbitrary relational predicate such as

Algorithms 2025, 18, 26 3 of 14

xi + yj > 10 or a restricted conjunctive predicate such as xi = 3∧ yj = 8, where
xi and yj are variables local to processes pi and pj, respectively.

(f) Causal ordering of messages (CO). This problem requires enforcing that if
s1 → s2 for send events s1 and s2, then for all common destinations of the
corresponding messages m1 and m2, m2 is not delivered before m1.

2. Distributed graph problems.

(a) Spanning tree construction (ST). A spanning tree of a graph G = (V, L) where V
is the set of nodes and L is the set of edges is an acyclic sub-graph ST = (V, L′)

where |L′| = |V| − 1. The ST construction problem requires identifying edges of
a graph as belonging to L′.

(b) Distributed minimum spanning tree construction (MST). In a weighted graph,
a MST is a spanning tree having a minimum sum of edge weights among all
spanning trees of the graph. The MST construction problem requires identify-
ing edges of a graph as belonging to the MST.

(c) All–all shortest paths construction (AASP). Given a weighted graph, this problem
requires identifying the shortest length paths from each node to each other node.

(d) Maximal independent set construction (MIS). An MIS of a graph G = (V, L) is
a subset V′ ⊆ V such that for all u, v ∈ V′, (u, v) ̸∈ L and ̸ ∃w ∈ V \ V′ such
that V′ ∪ {w} is an MIS. The MIS construction problem requires identifying
the nodes in an MIS.

Solving these problems using distributed algorithms requires the determination of the
existence of a causal path between two events e and e′ where e is an event where a process
finishes setting its local variables as a result of the distributed algorithm and e′ is an event
where an(other) process detects the global completion of the distributed algorithm in order
to use/further process the result of the distributed algorithm. The determination of the
existence of such a causal path in the execution in a Byzantine system is not solvable as
shown in [4] and hence, these problems are also not solvable.

Finally, we generalize our results and show that any problem which uses a distributed
algorithm is subject to at least the same limitations as the CD problem in a Byzantine
failure-prone system.

The area of distributed computing is known for many impossibility results, even for
the more benign crash failure model—such as for the consensus problem in asynchronous
systems [11]. Or, for example, it is known that mutual exclusion cannot be solved even
in a crash-prone system, so the result also applies to Byzantine failures. Lynch [12,13]
has given a hundred impossibility results in distributed computing. Other impossibility
results have been given in [14,15]. These impossibility results identified several classes
of more basic tasks or more elementary problems that need to be solved in order to solve
these problems. However, none of these more basic tasks was identified as the task of
causality determination between events. In our paper, the impossibility results for the
problems we identify are related to the impossibility of solving the more basic task—
causality determination between events.

Previously, Lynch [12,13] observed that (in the shared memory architecture), the
inherent limitations are imposed by local knowledge. This complemented Chandy-Misra’s
results on how processes learn [16] via message chains hints at our results which are in the
context of Byzantine processes. While some of our results may not be very surprising, they
nevertheless state and formalize an important outcome for a large number of important,
real-world, and practical problems in asynchronous message-passing distributed systems
subject to Byzantine failures that have not been previously enunciated. All these problems
require relating the partial solutions of the problem at various processes to detecting at
another process that these partial solutions have been reached.

Algorithms 2025, 18, 26 4 of 14

Roadmap. Section 2 gives the system model. Section 3 formulates the problem of
determining causality. Section 4 gives our main impossibility results about the solvability
of basic problems using distributed algorithms in the Byzantine failure model. Section 5
gives a discussion and concludes.

2. System Model
We consider an asynchronous distributed system having Byzantine processes which

are processes that can misbehave [17]. A correct process behaves exactly as specified by
the algorithm whereas a Byzantine process may deviate arbitrarily from its protocol by
exhibiting arbitrary behaviour at any point during the execution. A Byzantine process
cannot impersonate another process or spawn new processes.

The distributed system is modeled as an undirected graph G = (P, C). Here, P is the
set of processes communicating asynchronously in the distributed system. Let |P| = n.
C is the set of FIFO (logical) communication links over which processes communicate by
message passing. A process is interchangably used with a node in the graph.

The distributed system is asynchronous, i.e., there is no fixed upper bound δ on the
message latency, nor any fixed upper bound ψ on the relative speeds of processors [18].

In this paper, we consider only distributed algorithms to solve various problems. A
distributed algorithm is one in which each process has access only to its local variables and
incident edge parameters; its local variables are not accessible to any other process/node.
Exchange of variable values can be carried out explicitly through message-passing. The
adjacent process may be Byzantine and hence, information received from it can corrupt
local variables.

Let ex
i , where x ≥ 1, denote the x-th event executed by process pi. An event may be an

internal event, a message send event, or a message receive event. Let the state of pi after ex
i

be denoted sx
i , where x ≥ 1, and let s0

i be the initial state. The execution at pi is the sequence
of alternating events and resulting states, as ⟨s0

i , e1
i , s1

i , e2
i , s2

i . . .⟩. The execution history at pi

is the finite execution at pi up to the current or most recent or specified local state. The
happened before [5] relation, denoted →, is an irreflexive, asymmetric, and transitive partial
order defined over events in a distributed execution that is used to define causality.

Definition 1. The happened before relation → on events consists of the following rules:

1. Program Order: For the sequence of events ⟨e1
i , e2

i , . . .⟩ executed by process pi, ∀ x, y such
that x < y, we have ex

i → ey
i .

2. Message Order: If event ex
i is a message send event executed at process pi and ey

j is the

corresponding message receive event at process pj, then ex
i → ey

j .

3. Transitive Order: If e → e′ ∧ e′ → e′′, then e → e′′.

Definition 2. The causal past of an event e is denoted as CP(e) and is defined as the set of events
in E that causally precede e under →.

3. The Causality Determination Problem Formulation
The problem formulation in this section is based on [4]. An algorithm to solve the

causality determination problem collects the execution history of each process in the system
and derives causal relations from it. Let Ei denote the actual execution history at pi and
let E =

⋃
i{Ei}. For any causality determination algorithm, let Fi be the execution history

at pi as perceived and collected by the algorithm and let F =
⋃

i{Fi}. F thus denotes the
execution history as collected by the algorithm. Let T(E) and T(F) denote the sets of all
events in E and F, respectively. Analogous to Definition 1, we can define the happened before
relation on T(F) instead of on T(E).

Algorithms 2025, 18, 26 5 of 14

Let e1 → e2|E and e1 → e2|F be the evaluation (1 (true) or 0 (false)) of e1 → e2 using E
and F, respectively. Byzantine processes may corrupt the collection of F to make it different
from E. We assume that a correct process pi needs to determine whether ex

h → e∗i holds
and e∗i is an event in T(E). If ex

h ̸∈ T(E), then ex
h → e∗i |E evaluates to false. If ex

h ̸∈ T(F)
(or e∗i ̸∈ T(F)), then ex

h → e∗i |F evaluates to false. We assume an oracle that is used for
determining the correctness of the causality determination algorithm; this oracle has access
to E, which can be any execution history such that T(E) ⊇ CP(e∗i). Byzantine processes
may collude as follows.

1. To delete ex
h from Fh or in general, record F as any alteration of E such that ex

h →
e∗i |F = 0, while ex

h → e∗i |E = 1; or
2. To add a fake event ex

h in Fh or in general, record F as any alteration of E such that
ex

h → e∗i |F = 1, while ex
h → e∗i |E = 0.

Without loss of generality, we have that ex
h ∈ T(E) ∪ T(F). Note that ex

h belongs to
T(F) \ T(E) when it is a fake event in F.

Definition 3. The causality determination problem CD(E, F, e∗i) for any event e∗i ∈ T(E) at a
correct process pi is to devise an algorithm to collect the execution history E as F at pi such that
valid(F) = 1, where

valid(F) =

{
1 if ∀ex

h , ex
h → e∗i |E = ex

h → e∗i |F
0 otherwise

When one is returned, the algorithm output matches the actual truth and solves CD
correctly. Thus, returning one indicates that the problem has been solved correctly by the
algorithm using F. A value of 0 is returned if either

• ∃ex
h such that ex

h → e∗i |E = 1 ∧ ex
h → e∗i |F = 0 (denoting a false negative, abbreviated

FN); or
• ∃ex

h such that ex
h → e∗i |E = 0 ∧ ex

h → e∗i |F = 1 (denoting a false positive, abbrevi-
ated FP).

To determine whether CD is solved correctly, we have to evaluate ∀ex
h , ex

h → e∗i |E =

ex
h → e∗i |F even if ex

h ∈ T(F) \ T(E) because such an ex
h is recorded by the algorithm as part

of F. The key observation we make is that in CD, a single Byzantine process pb can cause F
(as recorded by the algorithm) to be different from E.

• An FN arises because a send–receive event pair (eu
f , ev

g) of E in a causal chain from ex
h

to e∗i is missing as per F. In addition, an FN may arise if ex
h is a receive event or an

internal event, ex
h ∈ E \ F.

• An FP arises because a non-existent send–receive message pair (eu
f , ev

g) in E appears in
a causal chain from ex

h to e∗i as per F. In addition, an FP may arise if ex
h is an internal

event, ex
h ∈ F \ E.

It has been proved in [4] that for send and receive events, solving the CD problem in
asynchronous message-passing systems prone to Byzantine process failures is subject to
both false positives and false negatives under the unicast and multicast modes of commu-
nication, and subject to false negatives under the broadcast mode of communication.

4. Impossibility Results
Consider the following class of problems. There are events exh

h at which local (possibly
partial) solution(s) at ph are obtained but which require the detection of such exh

h events
at some event ey

i at a remote process pi. In the presence of Byzantine processes, such
problems are not solvable in asynchronous message-passing systems because this requires

Algorithms 2025, 18, 26 6 of 14

solving the CD problem. This also establishes the CD problem as a fundamental first-class
problem as these other problems for which we show impossibility results inherently require
causality determination between a pair of events. The occurrence of false negatives (false
positives) in the CD problem manifests as the occurrence of liveness and safety violations
in these problems. A direct implication of our results is that none of the many algorithms
proposed to solve these problems over the past five decades for failure-free systems/crash
failures [6–10] can be adapted for Byzantine failures.

We begin by showing the following result regarding internal events at a process.

Theorem 1. For an internal event ex
h , it is impossible to prevent false negatives or false positives in

determining ex
h → e∗i correctly at a correct process pi, i.e., matching ex

h → ey
i |E = ex

h → ey
i |F, in an

asynchronous message passing system with one or more Byzantine processes.

Proof. There may be no other event in the rest of the system to corroborate the occurrence
of an internal event at a process. A Byzantine process ph can choose not to reveal an internal
event ex

h to the rest of the system, leading to a false negative that cannot be prevented. It
may also choose to add a fake internal event ex

h in what it reveals to the rest of the system,
leading to a false positive that cannot be prevented.

For the problems for which we are about to show the impossibility results, the event
ex

h under consideration is seen as an internal event.

4.1. Synchronization and State Observation Problems
4.1.1. Distributed Mutual Exclusion (ME)

The ME problem is specified as follows.

• Safety specification of ME states that no two processes should gain access to the
critical section (CS) at the same time.

• Liveness specification of ME states that some process should eventually be able to
gain access to the critical section (CS). In addition, fairness requirements of varying
degrees of stringency are typically specified.

Theorem 2. In a system with even one Byzantine process, the distributed ME problem is subject to
the same limitations (exposure to false positives and false negatives) as the CD problem, resulting in
safety and liveness violations.

Proof. Solving ME requires satisfying

ΦME(e
ŷ
i)

de f
= (ex

h → ey
i |E = ex

h → ey
i |F = 1) ∧ ϕ(eŷ

i),

where ex
h is an “exit CS (critical section)” event, y ≤ ŷ, ϕ is a predicate capturing the other

requirements of the ME problem besides the first predicate, eŷ
i is an event where the CS is

entered, and → is defined on messages of the ME algorithm.
As ex

h is an internal event, from Theorem 1 for the CD problem, detecting ex
h → ey

i is
susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate ex

h → ey
i |E = ex

h → ey
i |F in the formula ΦME can be satisfied. Hence, ME cannot

be solved.
A false positive of the CD problem is a safety violation—multiple processes in CS—in

the ME problem. A false negative of the CD problem is a liveness violation—no process
can enter CS—in the ME problem.

Algorithms 2025, 18, 26 7 of 14

4.1.2. Global Snapshot Recording (GSR)

The GSR problem is specified as follows.

• Safety specification of GSR states that a recorded global state should include the
recording of the local state of each process, that all in-transit messages in each channel
should be recorded, and that such a global state should be consistent.

• Liveness specification of GSR states that once a recording of a global snapshot is
initiated, its recording should be eventually completed.

Theorem 3. In a system with even one Byzantine process, the distributed GSR problem is subject
to the same limitations (exposure to false positives and false negatives) as the CD problem, resulting
in safety and liveness violations.

Proof. Solving GSR requires satisfying

ΦGSR(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1) ∧ ϕ(eŷ
i),

where exh
h is an event where the process records its local state, (∀h) yh ≤ ŷ, ϕ is a predicate

capturing the other requirements of the GSR problem (the recorded local states at the
various processes are consistent, the channel states recording is complete) besides the first
predicate, eŷ

i is an event where the completion of the global state recording is detected, and
→ is defined on snapshot recording algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦGSR can be satisfied. Hence, GSR

cannot be solved.
A false positive of the CD problem can result in a safety violation—an inconsistent

global state, supposing the false positive event is where the process is supposed to record
its local state as per the algorithm but does not, receives application messages, and later
records the local state—in the GSR problem. Alternately, in the definition of ΦGSR, let ex

h be
an event where the process completes the recording of its local state and states of incoming
channels. A false positive of the CD problem can result in a safety violation—an incomplete
global state, with some local states and channel states not recorded—in the GSR problem.
A false negative of the CD problem is a liveness violation—a global snapshot recording
detection never occurs—in the GSR problem.

4.1.3. Termination Detection (TD)

The TD problem is specified as follows.

• Safety specification of TD states global termination—all processes passive and no
in-transit application messages in a (transitless) consistent global state—should not be
declared unless global termination has occurred.

• Liveness specification of TD states that some process should eventually be able to
detect global termination once it has occurred.

Theorem 4. In a system with even one Byzantine process, the distributed TD problem is subject to
the same limitations (exposure to false positives and false negatives) as the CD problem, resulting in
safety and liveness violations.

Algorithms 2025, 18, 26 8 of 14

Proof. Solving TD requires satisfying

ΦTD(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1) ∧ ϕ(eŷ
i),

where exh
h is an event where the process becomes passive, (∀h) yh ≤ ŷ, ϕ is a predicate

capturing the other requirements of the TD problem—other processes are passive in a
transitless consistent global state—besides the first predicate, eŷ

i is an event where global
termination is detected, and → is defined on termination detection algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦTD can be satisfied. Hence, TD cannot

be solved.
A false positive of the CD problem is a safety violation—no real global termination has

occurred—in the TD problem. A false negative of the CD problem is a liveness violation—
real global termination is not detectable—in the TD problem.

4.1.4. Distributed Deadlock Detection (DD)

The DD problem is specified as follows.

• Safety specification of DD states that only a process that is part of a deadlock cycle or
knot should be aborted/killed as part of deadlock resolution.

• Liveness specification of DD states that once a deadlock (cycle or knot in the wait-for
graph) occurs in a consistent global state it should be detected and deadlock resolution
performed.

Theorem 5. In a system with even one Byzantine process, the distributed DD problem is subject to
the same limitations (exposure to false positives and false negatives) as the CD problem, resulting in
safety and liveness violations.

Proof. Solving DD requires satisfying

ΦDD(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1) ∧ ϕ(eŷ
i),

where exh
h is an event where the process gets blocked, (∀h) yh ≤ ŷ, ϕ is a predicate capturing

the other requirements of the DD problem (existence of a cycle or knot in the wait-for graph
in a consistent global state) besides the first predicate, eŷ

i is an event where the deadlock is
detected, and → is defined on deadlock detection algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i

is susceptible to false positives and false negatives. Thus, it cannot be guaranteed that
the predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦDD can be satisfied. Hence, DD

cannot be solved.
A false positive of the CD problem can result in a safety violation—unnecessary

abortion—in the DD problem. A false negative of the CD problem is a liveness violation—
deadlock not detectable—in the DD problem.

4.1.5. Distributed Predicate Detection (PD)

The PD problem is specified as follows.

• Safety specification of PD states that a global predicate ψ is not declared as true when
the global predicate is false.

Algorithms 2025, 18, 26 9 of 14

• Liveness specification of PD states that some process should eventually be able to
detect that a global predicate had become true after the predicate became true.

Theorem 6. In a system with even one Byzantine process, the distributed PD problem is subject to
the same limitations (exposure to false positives and false negatives) as the CD problem, resulting in
safety and liveness violations.

Proof. Solving PD requires satisfying

ΦPD(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1) ∧ ϕ(eŷ
i),

where exh
h is an event where the local variable at the process takes a value that can satisfy the

global predicate ψ, (∀h) yh ≤ ŷ, ϕ is a predicate capturing the other requirements of the PD
problem—conditions on how the various local variable values can be combined to satisfy
the global predicate ψ—besides the first predicate, eŷ

i is an event where the global predicate
ψ is detected as true, and → is defined on predicate detection algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦPD can be satisfied. Hence, PD cannot

be solved.
A false positive of the CD problem is a safety violation—there is no real satisfaction of

the global predicate ψ—in the PD problem. A false negative of the CD problem is a liveness
violation—the global predicate ψ that becomes true is never detected (because the process
did not disclose its local value that could satisfy ψ)—in the PD problem.

4.1.6. Causal Ordering of Messages (CO)

The CO problem is specified as follows [19–22].

• Safety specification of CO states that if the send event of message m causally happens
before send event of message m′, then at each common destination of m and m′, m′

cannot be delivered before m.
• Liveness specification of CO states that a message sent by a correct process to another

correct process should be eventually delivered.

Theorem 7. In a system with even one Byzantine process, the distributed CO problem is subject to
the same limitations (exposure to false positives and false negatives) as the CD problem, resulting in
safety and liveness violations.

Proof. Solving CO requires satisfying

ΦCO(e
ŷ
i)

de f
=

∧
ex

h

(ex
h → ez

j |E = ex
h → ez

j |F) ∧ ϕ(eŷ
i),

where ex
h is a send event of a message to pi, ez

j is an event where pj sends a message m∗ to
pi, ϕ is a predicate on when/whether pi can safely deliver m∗ sent at ez

j to itself (i.e., has
received and determines it is safe to give m∗ with respect to all other messages sent to itself
in the execution to the application), eŷ

i is an event where pi delivers the message m∗ from
pj, and → is defined on application messages.

As ex
h is a send event, from [4] for the CD problem, detecting ex

h → ez
j is susceptible

to false positives and/or false negatives. Thus, it cannot be guaranteed that the predicate
ex

h → ez
j |E = ex

h → ez
j |F in the formula ΦCO can be satisfied. Hence, CO cannot be solved.

Algorithms 2025, 18, 26 10 of 14

A false positive of the CD problem can result in a liveness violation—waiting indefi-
nitely at pi for the delivery of m∗ until the prior delivery of m′ that was never sent by ph—in
the CO problem. A false negative of the CD problem is a safety violation—not waiting for
the delivery of m′ that was sent by ph at ex

h to pi—in the CO problem.

4.2. Distributed Graph Problems
4.2.1. Spanning Tree Construction (ST)

The ST problem is specified as follows.

• Safety specification of ST states that a spanning tree (having n − 1 edges and an
acyclic sub-graph) is selected.

• Liveness specification of ST states that some process should eventually be able to
detect that the spanning tree construction is completed.

Theorem 8. In a system with even one Byzantine process, the distributed ST construction problem
is subject to the same limitations (exposure to false positives and false negatives) as the CD problem,
resulting in safety and liveness violations.

Proof. Solving ST requires satisfying

ΦST(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1),

where exh
h is an event where ph has selected its incident spanning tree edges (of an actual

spanning tree), (∀h) yh ≤ ŷ, eŷ
i is an event where pi determines that the distributed spanning

tree determination is complete, and → is defined on spanning tree algorithm messages.
As exh

h is an internal event, from Theorem 1 for the CD problem, detecting exh
h → eyh

i is
susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦST can be satisfied. Hence, ST cannot

be solved.
A false positive of the CD problem is a safety violation—a cycle or a non-tree sub-

graph is created instead of a spanning tree—in the ST problem. A false negative of the CD
problem is a liveness violation—completion of the distributed spanning tree construction is
not detectable to any pi—in the ST problem.

4.2.2. Minimum Spanning Tree Construction (MST)

The MST problem is specified as follows.

• Safety specification of MST states that a spanning tree (having n − 1 edges and an
acyclic sub-graph) having the minimum possible sum of edge weights is selected.

• Liveness specification of MST states that some process should eventually be able to
detect that the minimum spanning tree construction is completed.

Theorem 9. In a system with even one Byzantine process, the distributed MST construction
problem is subject to the same limitations (exposure to false positives and false negatives) as the CD
problem, resulting in safety and liveness violations.

Proof. Solving MST requires satisfying

ΦMST(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1),

Algorithms 2025, 18, 26 11 of 14

where exh
h is an event where ph has selected its incident spanning tree edges (of an actual

minimum spanning tree), (∀h) yh ≤ ŷ, eŷ
i is an event where pi determines that the dis-

tributed determination of the minimum spanning tree is complete, and → is defined on
minimum spanning tree algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦMST can be satisfied. Hence, MST

cannot be solved.
A false positive of the CD problem is a safety violation—a cyclic sub-graph or a

non-tree sub-graph or a non-minimal spanning tree is identified as a minimum spanning
tree—in the MST problem. A false negative of the CD problem is a liveness violation—
completion of the minimum spanning tree construction is not detectable by any pi—in the
MST problem.

4.2.3. All–All Shortest Paths Construction (AASP)

The AASP problem is specified as follows.

• Safety specification of AASP states that for each node of a graph acting as a source
(or sink) node, (the spanning tree representing) the shortest paths to (or from) every
other node are selected.

• Liveness specification of AASP states that each process should eventually be able
to detect that the construction of the shortest paths spanning tree rooted at itself
is completed.

Theorem 10. In a system with even one Byzantine process, the distributed AASP construction
problem is subject to the same limitations (exposure to false positives and false negatives) as the CD
problem, resulting in safety and liveness violations.

Proof. Solving AASP requires satisfying

(∀i)ΦAASP(e
ŷi

i)
de f
=

∧
i
(
∧
h

(e
xi

h
h → e

yi
h

i |E = e
xi

h
h → e

yi
h

i |F = 1)),

where e
xi

h
h is an event where ph has identified its adjacent edges in a shortest paths sink tree

rooted at pi (of an actual shortest path sink tree of pi), (∀h) yi
h ≤ ŷi, eŷi

i is an event where pi

determines that the distributed determination of the shortest path sink tree rooted at itself
is complete, and → is defined on the shortest path sink tree algorithm messages.

As e
xi

h
h is an internal event, from Theorem 1 for the CD problem, detecting e

xi
h

h → e
yi

h
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that for any

i, the predicate e
xi

h
h → e

yi
h

i |E = e
xi

h
h → e

yi
h

i |F in the formula ΦAASP can be satisfied. Hence,
AASP cannot be solved.

A false positive of the CD problem is a safety violation—a shortest paths sink tree is
not used as the sink tree rooted at some pi—in the AASP problem. A false negative of the
CD problem is a liveness violation—completion of the construction of the shortest paths
sink tree rooted at some pi is not detectable by that pi—in the AASP problem.

4.2.4. Maximal Independent Set Construction (MIS)

The MIS problem is specified as follows.

• Safety specification of MIS states that no two nodes that are neighbors add themselves
to the maximal independent set and no superset of the set so constructed satisfies the
independent set property.

Algorithms 2025, 18, 26 12 of 14

• Liveness specification of MIS states that some process should eventually be able to
detect that the maximal independent set construction is complete.

Theorem 11. In a system with even one Byzantine process, the distributed MIS construction
problem is subject to the same limitations (exposure to false positives and false negatives) as the CD
problem, resulting in safety and liveness violations.

Proof. Solving MIS requires satisfying

ΦMIS(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1),

where exh
h is an event where ph has determined whether or not it belongs to the maximal

independent set (in a true maximal independent set), (∀h) yh ≤ ŷ, eŷ
i is an event where pi

determines that the distributed maximal independent set construction is complete, and →
is defined on maximal independent set algorithm messages.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i

is susceptible to false positives and false negatives. Thus, it cannot be guaranteed that
the predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦMIS can be satisfied. Hence, MIS

cannot be solved.
A false positive of the CD problem is a safety violation—two neighboring nodes add

themselves to the maximal independent set or some node that has not added itself to
the maximal independent set can be added to the maximal independent set—in the MIS
problem. A false negative of the CD problem is a liveness violation—completion of the
maximal independent set construction is not detectable by any pi—in the MIS problem.

4.3. Generalized Theorem

A distributed algorithm is an algorithm in which each process is initialized with its
local variable values and incident edge parameters; no process has access to any other
variables and parameters of the system. The process can communicate only with its
neighboring processes (depending on the overlay, if any) along incident edges.

For any problem X which requires a distributed algorithm to solve it, there are two
characteristic events. exh

h is an internal event at which process ph completes its calculation
of local variable values required to solve the problem after communicating with other
processes in a distributed manner. eŷ

i is an event at which process pi determines that a

global solution to the problem has been attained. When h ̸= i, in order that pi at eŷ
i can

detect that problem X has been solved, there needs to be an actual causal path from exh
h to eyh

i
(∀h and where yh ≤ ŷ) that is also detectable by pi, i.e.,

∧
h exh

h → eyh
i |E = exh

h → eyh
i |F = 1.

• Safety specification of X states the correctness conditions of a solution to X, as
captured by a global formula ΦX .

• Liveness (or termination) specification of X states that some process should eventu-
ally be able to detect that a global formula ΦX has become true.

Theorem 12. In a system with even one Byzantine process, when a process pi has to detect that a
problem X has been locally solved at events exh

h , the distributed X problem is subject to the same
limitations (exposure to false positives and false negatives) as the CD problem, resulting in safety
and liveness violations.

Algorithms 2025, 18, 26 13 of 14

Proof. Solving X requires satisfying

ΦX(e
ŷ
i)

de f
=

∧
h

(exh
h → eyh

i |E = exh
h → eyh

i |F = 1) ∧ ϕ(eŷ
i),

where exh
h is an event where the local variables at the process take values that specify that

the local computation has completed at ph, (∀h) yh ≤ ŷ, ϕ is a predicate capturing the other
requirements of the X problem besides the first predicate, eŷ

i is an event where the global
formula ΦX is detected as true, and → is defined on algorithm messages for solving X.

As exh
h is an internal event, from Theorem 1 for the CD problem, detecting exh

h → eyh
i is

susceptible to false positives and false negatives. Thus, it cannot be guaranteed that the
predicate exh

h → eyh
i |E = exh

h → eyh
i |F in the formula ΦX can be satisfied. Hence, X cannot

be solved.
A false positive of the CD problem is a safety violation—there is no real satisfaction of

the global formula ΦX—in the X problem. A false negative of the CD problem is a liveness
violation—the global formula ΦX that becomes true is never detected (because the process
did not disclose its local value that could satisfy ΦX)—in the X problem.

5. Discussion and Conclusions
We proved the impossibility of solving ten important problems in distributed com-

puting in an asynchronous message-passing system susceptible to Byzantine failures. The
proofs were generalized to prove Theorem 12, which states the impossibility of solving
any problem using a distributed algorithm that requires knowledge of a local action at a
process being used by a remote event before the results of the distributed algorithm can be
used. These problems require solving the causality determination (CD) problem, which
has been shown to be unsolvable in such systems [4]. This also establishes the CD problem
as a fundamental first-class problem, akin to the consensus problem.

By theoretically establishing these impossibility results, this paper’s practical contribu-
tion is that other approaches besides such fully distributed algorithms should be used in
Byzantine environments to solve the various problems identified.

Author Contributions: Conceptualization, A.D.K. and A.M.; methodology, A.D.K.; formal analysis,
A.D.K.; investigation, A.D.K.; writing—original draft preparation, A.D.K.; writing—review and
editing, A.D.K. and A.M.; supervision, A.D.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No data was used or created in this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Schwarz, R.; Mattern, F. Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail. Distrib.

Comput. 1994, 7, 149–174. [CrossRef]
2. Mattern, F. Virtual Time and Global States of Distributed Systems. In Proceedings of the Parallel and Distributed Algorithms,

North-Holland, The Netherlands, October 1988; pp. 215–226.
3. Fidge, C.J. Logical Time in Distributed Computing Systems. IEEE Comput. 1991, 24, 28–33. [CrossRef]
4. Misra, A.; Kshemkalyani, A.D. Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail. In Proceedings

of the 21st IEEE International Symposium on Network Computing and Applications (NCA), Boston, MA, USA, 14–16 December
2022; pp. 73–80. [CrossRef]

5. Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 1978, 21, 558–565. [CrossRef]
6. Kshemkalyani, A.D.; Singhal, M. Distributed Computing: Principles, Algorithms, and Systems; Cambridge University Press:

Cambridge, UK, 2011. [CrossRef]

http://doi.org/10.1007/BF02277859
http://dx.doi.org/10.1109/2.84874
http://dx.doi.org/10.1109/NCA57778.2022.10013644
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1017/CBO9780511805318

Algorithms 2025, 18, 26 14 of 14

7. Garg, V.K. Elements of Distributed Computing; Wiley: Hoboken, NJ, USA, 2002.
8. Raynal, M. Distributed Algorithms for Message-Passing Systems; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
9. Tanenbaum, A.S.; van Steen, M. Distributed Systems—Principles and Paradigms, 2nd ed.; Pearson Education: London, UK, 2007.
10. Coulouris, G.; Dollimore, J.; Kindberg, T. Distributed Systems—Concepts and Designs, 3rd ed.; International Computer Science

Series; Addison-Wesley-Longman: North York, ON, Canada, 2002.
11. Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of distributed consensus with one faulty process. J. ACM (JACM) 1985,

32, 374–382. [CrossRef]
12. Lynch, N. A Hundred Impossibility Results for Distributed Computing. In MIT Technical Report MIT/LCS/TM/394; Laboratory for

Computer Science, Massachusetts Institute of Technology: Cambridge, MA, USA, 1989.
13. Lynch, N.A. A Hundred Impossibility Proofs for Distributed Computing. In Proceedings of the Eighth Annual ACM Symposium

on Principles of Distributed Computing, Edmonton, AB, Canada, 14–16 August 1989; pp. 1–28. [CrossRef]
14. Attiya, H.; Ellen, F. Impossibility Results for Distributed Computing; Synthesis Lectures on Distributed Computing Theory; Morgan

& Claypool Publishers: San Rafael, CA, USA, 2014. [CrossRef]
15. Fich, F.E.; Ruppert, E. Hundreds of impossibility results for distributed computing. Distrib. Comput. 2003, 16, 121–163. [CrossRef]
16. Chandy, K.M.; Misra, J. How Processes Learn. Distrib. Comput. 1986, 1, 40–52. [CrossRef]
17. Lamport, L.; Shostak, R.E.; Pease, M.C. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401.

[CrossRef]
18. Dwork, C.; Lynch, N.A.; Stockmeyer, L.J. Consensus in the presence of partial synchrony. J. ACM 1988, 35, 288–323. [CrossRef]
19. Misra, A.; Kshemkalyani, A.D. Solvability of Byzantine Fault-Tolerant Causal Ordering Problems. In Proceedings of the

Networked Systems—10th International Conference, NETYS 2022, Virtual Event, 17–19 May 2022; LNCS; Springer: Cham,
Switzerland, 2022; Volume 13464, pp. 87–103. [CrossRef]

20. Misra, A.; Kshemkalyani, A.D. Causal Ordering in the Presence of Byzantine Processes. In Proceedings of the 28th IEEE
International Conference on Parallel and Distributed Systems ICPADS, Nanjing, China, 10–12 January 2022; pp. 130–138.
[CrossRef]

21. Misra, A.; Kshemkalyani, A.D. Byzantine Fault-Tolerant Causal Ordering. In Proceedings of the 24th International Conference on
Distributed Computing and Networking, ICDCN 2023, Kharagpur, India, 4–7 January 2023; pp. 100–109. [CrossRef]

22. Misra, A.; Kshemkalyani, A.D. Byzantine-Tolerant Causal Ordering for Unicasts, Multicasts, and Broadcasts. IEEE Trans. Parallel
Distrib. Syst. 2024, 35, 814–828. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-642-38123-2
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/72981.72982
http://dx.doi.org/10.2200/S00551ED1V01Y201311DCT012
http://dx.doi.org/10.1007/s00446-003-0091-y
http://dx.doi.org/10.1007/BF01843569
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/42282.42283
http://dx.doi.org/10.1007/978-3-031-17436-0_7
http://dx.doi.org/10.1109/ICPADS56603.2022.00025
http://dx.doi.org/10.1145/3571306.3571395
http://dx.doi.org/10.1109/TPDS.2024.3368280

	Introduction
	System Model
	The Causality Determination Problem Formulation
	Impossibility Results
	Synchronization and State Observation Problems
	Distributed Mutual Exclusion (ME)
	Global Snapshot Recording (GSR)
	Termination Detection (TD)
	Distributed Deadlock Detection (DD)
	Distributed Predicate Detection (PD)
	Causal Ordering of Messages (CO)

	Distributed Graph Problems
	Spanning Tree Construction (ST)
	Minimum Spanning Tree Construction (MST)
	All–All Shortest Paths Construction (AASP)
	Maximal Independent Set Construction (MIS)

	Generalized Theorem

	Discussion and Conclusions
	References

