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Abstract: Load forecasting plays a fundamental role in the new type of power system.
To address the data heterogeneity and security issues encountered in load forecasting
for smart grids, this paper proposes a load-forecasting framework suitable for residen-
tial energy users, which allows users to train personalized forecasting models without
sharing load data. First, the similarity of user load patterns is calculated under privacy
protection. Second, a complex network is constructed, and a federated user clustering
method is developed based on the Louvain algorithm, which divides users into multiple
clusters based on load pattern similarity. Finally, a personalized and adaptive differentially
private federated learning Long Short-Term Memory (LSTM) model for load forecasting is
developed. A case study analysis shows that the proposed method can effectively protect
user privacy and improve model prediction accuracy when dealing with heterogeneous
data. The framework can train load-forecasting models with a fast convergence rate and
better prediction performance than current mainstream federated learning algorithms.

Keywords: federated learning; load forecasting; adaptive differential privacy; Louvain
algorithm; clustered

1. Introduction
The new power system is a complex intelligent network that primarily integrates

new energy, along with components of information, physics, society, and big data [1,2].
The continuous introduction of technologies, such as demand response, electricity retailers,
load aggregators, digital twins, and virtual power plants, has led to increasingly complex
and variable load characteristics [3]. Load forecasting is foundational in this new power
system, essential for the planning, operation, and scheduling of future smart grids.

Limited local data hinder effective load forecasting, making collaborative modeling
essential. Recently, many load-forecasting schemes based on machine learning have been
proposed. Reference [4] presented a short-term load-forecasting model based on linear
regression. Reference [5] combined decision trees with convolutional neural networks to
predict user power consumption, and the results showed that the prediction error was
significantly reduced. In [6], a series of multiobjective predictive models were created
utilizing a range of cutting-edge machine learning (ML) methodologies. For renewable
energy, using wind power, a deep learning-driven self-conscious distributed cyber-physical
system was proposed in [7]. However, retail providers often refuse to share data due
to privacy concerns. Federated learning (FL) [8,9] offers a distributed machine learning
framework that keeps data local, presenting a novel approach to load forecasting while
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ensuring privacy [10,11]. Reference [12] compared FedAvg, single-meter prediction, multi-
meter centralized prediction, and federated stochastic gradient descent (FedSGD) methods
and verified the superiority of FedAvg in load-prediction performance. Studies [13] have
indicated that FedAvg can achieve smaller household load-prediction errors while protect-
ing user privacy. In FL, users train load data locally and only upload the trained model
parameters to the server. Despite maintaining local data, curious servers or attackers may
still infer private information from a shared model or gradient parameters [14], highlighting
the need for stronger privacy mechanisms. Differential privacy (DP) [15] is a widely used
privacy protection technique. Ref. [16] proposed a differentially private stochastic gradi-
ent descent algorithm to train neural networks within a moderate privacy budget, while
Ref. [17] introduced a differentially private federated learning algorithm and analyzed its
performance. Implementing DP requires gradient clipping, but the fixed-threshold clipping
method has significant limitations [18,19]. If the clipping threshold is too small, clipped
gradients may become overly distorted, losing valuable information from local updates.
Conversely, a threshold set too large can introduce excessive random noise, negatively
affecting the algorithm’s performance. Therefore, both excessively high and excessively
low clipping thresholds can reduce model accuracy and practicality. In addition to data
privacy issues, other network security issues, such as data poisoning and evasion attacks,
are also receiving increasing attention (see [20,21] for detailed discussions).

Moreover, data distribution inconsistency among clients, known as non-IID (Non-
Independently and Identically Distributed) data, can introduce significant bias during
model training, resulting in client drift and slower convergence [22]. This inconsistency
poses challenges for achieving optimal model performance with a single global model.
To tackle this issue, Ref. [23] introduced the clustered federated learning (CFL) frame-
work, which uses clustering algorithms to group clients with similar data distributions,
allowing for the training of clustered personalized models to improve performance and
specialization. Ref. [24] proposed an adaptive clustering federated learning algorithm that
accelerates similarity assessment. Clients are assigned to different community clusters
based on their data distribution similarities, enabling those within the same cluster to share
a federated model. This method effectively reduces the negative impact of non-IID data on
federated learning models. However, existing clustered federated learning algorithms have
limitations. Classic clustering methods like K-Means [25], the iterative federated clustering
algorithm (IFCA) [26], and CFL often require significant computational resources, which
can hinder their practicality.

To address the challenges of high computational complexity, performance limitations,
and privacy concerns in traditional clustered federated learning, this paper proposes a load-
forecasting framework specifically designed for residential energy users. It introduces an
innovative federated clustering method and explores a personalized adaptive differentially
private clustered federated learning algorithm. The framework selects weather and time
factors as key load-related variables, constructs a user dataset, and establishes a load-
forecasting model. Case studies demonstrate that the proposed algorithm surpasses existing
mainstream federated algorithms in predictive performance. The key contributions of this
paper are as follows:

(1) A federated learning load-forecasting framework tailored for residential energy users
with heterogeneous data is proposed.

(2) A method for calculating the similarity of load patterns while ensuring privacy is
introduced. This involves constructing a complex network and developing a novel
federated clustering method based on the Louvain algorithm, which offers lower
computational costs and does not require pre-specifying the number of clusters (K).
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(3) An adaptive gradient-clipping differentially private clustered federated averaging al-
gorithm, called pADP-FedAvg, is proposed, along with a differential privacy analysis.

(4) Weather and time factors are identified as key load-related variables, a user dataset
is constructed, and a federated learning load-forecasting LSTM model is established.
The effectiveness and advantages of the proposed methods are validated through
case studies.

2. Related Technology
2.1. Federated Learning Model

The standard workflow for federated learning is as follows: A central server initializes
a global model and distributes it to each client. Clients then perform multiple rounds
of training on the model using their local data, generating locally updated models that
are subsequently transmitted back to the central server. The server aggregates the local
models it receives to form an updated global model, which is then broadcast to all clients.
By repeating this process, the global model is progressively refined. Classical federated
learning utilizes a star topology, as depicted in Figure 1, comprising a central server and
multiple clients. In this setup, θk

i denotes the model parameters of the i-th client during the
k-th communication round, while θk+1 represents the aggregated global model parameters
and the client model parameters during the (k + 1)-th communication round.

Server

...

Client 1 Client 2 Client n

Server

...

Client 1 Client 2 Client n

Figure 1. Star topology.

The local loss function of the local client i is

min
θ

Ji(θ) =
1
|Di|

|Di |

∑
j=1

F(θ, ξ j) (1)

where θ represents the model parameters, ξ j ∈ Di is a data sample, Di is the client’s dataset,
and F is the loss function. During the model training process, it is necessary to minimize
the global loss function J(θ), as defined in Equation (2):

min
θ

J(θ) =
|s|

∑
i=1

|Di|
∑
|s|
i=1 |Di|

Ji(θ) (2)

where S represents the set of clients selected to participate in the training. The client updates
during the training process are provided by Equation (3):

∆θk+1
i = SGD(θk, Di, ηl)− θk (3)
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where ηl denotes the learning rate for the local model and SGD refers to the stochastic
gradient descent method. Equation (4) illustrates a single update applied by the server to
the global model:

θk+1 = θk +
|S|

∑
i=1

|Di|
∑
|S|
i=1 |Di|

∆θk
i (4)

Without loss of generality, we assume that the number of clients is n. The local dataset
of client i ∈ [n], denoted as Di = {ξ i

1, . . . , ξ i
q}, consists of q data points.

2.2. Differential Privacy

Differential privacy protects data by adding noise that follows a certain distribution,
thus providing privacy guarantees. It rigorously defines the strength of privacy protection.
If two datasets D and D′ differ by only one record, they are referred to as neighboring
datasets. Differential privacy ensures that the results of the same query operation on any
two neighboring datasets are nearly indistinguishable. Client-level differential privacy
FL integrates privacy protection mechanisms into FL, ensuring that the learning model
does not reveal whether a specific client participated in the training. This means that the
entire dataset of the client is protected. The formal definition of differential privacy is
shown below.

Definition 1 (Differential Privacy [15]). A randomized mechanism M, where Dom(M)

denotes the domain and Range(M) denotes the range. If for any two neighboring datasets
D, D′ ⊆ Dom(M) and any subset O ⊆ Range(M), the following holds:

Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ, (5)

then M is said to satisfy (ϵ, δ)-DP, where the parameter ϵ represents the privacy budget.

Definition 2 (l2 Sensitivity [15]). For a query function f : D → Rd on a given dataset, where D
and D′ are two neighboring datasets, the l2 sensitivity of f is defined as

∆( f ) = max
D,D′
∥ f (D)− f (D′)∥2. (6)

Zero-Concentrated Differential Privacy (zCDP) is a new relaxed form of differential privacy.
Compared to the standard (ϵ, δ)-DP, it offers a clearer and more precise analysis of the privacy loss
over multiple iterative computations. The definition of zCDP is shown below.

Definition 3 (zCDP [27]). For any two neighboring datasets D and D′, and for any α > 1,
a randomized mechanism M satisfies ρ-zCDP if and only if

Dα

(
M(D)

∥∥∥M
(

D′
))

=
1

α− 1
log

(
E
[
e(α−1)L(O)

])
≤ ρ (7)

where Dα

(
M(D)

∥∥∥M(D′)
)

denotes the α-Renyi divergence between M(D) and M(D′). L(O)

represents the privacy loss incurred by M between neighboring datasets D and D′ when the outcome
is O, that is,

L(O)(
M(D)

∥∥∥M(D′)
) = log

Pr(M(D) = O)

Pr(M(D′) = O)
(8)

The following propositions hold for zCDP:
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Lemma 1 ([27]). The Gaussian mechanism, which returns f (D) + N(0, ∆2( f )σ2 I), satisfies
(1/2σ2)-zCDP.

Lemma 2 ([27]). Suppose there are k mechanisms M1, . . . , Mk, and each Mi (for i = 1, . . . , k)
satisfies ρi-zCDP. Then, the composition of these mechanisms satisfies

(
∑k

i=1 ρi

)
-zCDP.

Lemma 3 ([28]). Let M be composed of adaptive randomized mechanisms M1, . . . , ME, and each
Mi (for i = 1, . . . , E) satisfies ρi-zCDP. When the dataset D is randomly partitioned into
D1, . . . , DE, then M(D) = (M1(D1), M2(D2), . . . , ME(DE)) satisfies maxi ρi-zCDP.

Lemma 4 ([27]). If M satisfies ρ-zCDP, then for any δ > 0, M satisfies
(

ρ + 2
√

ρ log(1/δ), δ
)
−DP.

3. Problem Description
This paper addresses the collaborative challenges and privacy protection issues faced

by multiple data collectors during the process of power load forecasting. In the power grid,
each user independently holds their own power load data, and due to privacy concerns, it
is difficult to directly share their original data. Federated learning is a reasonable choice to
solve this problem. In the k-th round of federated learning, each client i performs a local
model update:

∆θk+1
i = SGD(θk, Di, ηl)− θk, i = 1, 2, . . . , n (9)

The global model is updated as

∆θk+1 =
n

∑
i=1

|Di|
|D| ∆θk+1

i = κ1∆θk+1
1 + κ2∆θk+1

2 + . . . + κn∆θk+1
n (10)

where D = D1 ∪ D2 ∪ . . . ∪ Dn, and κi =
|Di |
|D| . When federated training reaches the stable

optimal solution θ∗, the global model update approaches zero, i.e., ∆θ = 0. At this point,
two situations may occur:

(1) ∆θ1 = ∆θ2 = . . . = ∆θn = 0, indicating that all clients have consistent data distribu-
tions and the optimal solution is achieved simultaneously.

(2) The local model updates ∆θi are not all zero, which is caused by inconsistent data
distributions during the training process. This scenario more accurately reflects
practical applications of federated learning. In this case, the local model updates
may not guide the global model toward optimization, resulting in generally lower
performance and accuracy for the global model.

Data quality is a critical foundation for load-forecasting modeling in power systems.
Existing methods often assume that user load data are independently and identically
distributed. In reality, while the power consumption data of different users are independent,
the assumption of identical distribution does not hold true. Moreover, although the FL
model keeps the training data locally, it requires uploading model parameter updates.
Attackers can infer users’ sensitive information from these uploaded model parameters,
making it challenging to effectively ensure data privacy.

4. Research Motivation
Due to the non-uniformity of user load data, a single global model is insufficient to

meet personalized user requirements. This paper considers using clustering algorithms
to aggregate clients with similar data distributions, group electricity users into different
clusters, and learn personalized models for each cluster. Providing suitable differentiated
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models for each user can effectively prevent client drift, thereby enhancing prediction
accuracy and model specialization.

Federated clustering can be divided into one-time clustering and iterative clustering
based on timing. Ref. [25] adopted a one-time clustering method, which requires specifying
the number of clusters K in advance. IFCA uses iterative clustering without the need
to predefine K; however, it employs a centralized clustering algorithm, resulting in a
significant increase in computational overhead at the central server. CFL also adopts
iterative clustering, requiring substantial computational resources to confirm the cluster
identities of clients.

To address the issues present in the aforementioned federated clustering methods,
this paper constructs a complex network and considers the modularity function. Based
on the classical Louvain algorithm for community detection in complex networks, we
propose a new federated clustering method that can effectively protect user data privacy,
does not require pre-specifying the number of clusters K, and achieves a well-performing
differentially private federated clustering model with lower computational cost.

5. System Architecture and Design Scheme
5.1. System Architecture

To address the inconsistency of user load data and privacy protection issues, this paper
proposes a differential privacy clustering federated learning method based on the Louvain
algorithm for heterogeneous data. The Louvain algorithm is a community detection method
for complex networks. The system architecture, illustrated in Figure 2, is divided into
three modules.

Module One involves all clients conducting differential privacy federated learning
until convergence. During this phase, the server calculates the similarity of the local update
vectors from the clients for the current round. Module Two constructs a complex network
and employs the Louvain algorithm for community clustering. Module Three focuses on
personalized adaptive differential privacy clustering for federated learning load forecasting.

5.2. Similarity Calculation

Since user load data are not exchanged, federated learning cannot directly cluster the
data at the nodes; instead, it clusters the model parameters of the clients. Similar clients are
identified by analyzing their model parameters. To evaluate the similarity of the clients’
model parameters while ensuring privacy, all clients first perform differential privacy
federated learning until convergence. Subsequently, the server calculates the similarity
of the local update vectors from the clients for the current round. The specific steps are
as follows:

Step 1 Clients use the differential privacy federated averaging (DP-FedAvg) algorithm
[29,30] to train until convergence.

Step 2 Equation (11) is used to calculate the cosine similarity between any two clients’ local
updates. The cosine similarity evaluates the similarity of two vectors by calculating
the cosine of the angle between them. The closer the value is to 1, the more similar
the two vectors are:

eij = eji =
⟨∆θi, ∆θj⟩
∥∆θi∥

∥∥∆θj
∥∥ (11)

5.3. Complex Network Construction

As an abstract model for understanding complex systems, complex networks are a
powerful tool for solving clustering problems. Each client is regarded as a network node,
and the network edge set and edge weights between nodes are constructed based on the
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learned similarity between client parameters, establishing an undirected weighted complex
network G = (V, E, A), where V is the set of network nodes, E is the set of edges, and A is
the adjacency matrix. When eij < 0, the similarity of clients i and j is very small, (i, j) /∈ E;
when eij > 0, (i, j) ∈ E . The adjacency matrix is specifically defined as follows:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 (12)

where, when A ̸= B, aij =

{
eij, eij ≥ 0
0, eij < 0

, and when i = j, aij = 0, that is, self-loops are not

considered. A is a symmetric matrix.

Figure 2. The framework for clustered federated learning.
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5.4. Louvain Algorithm

The Louvain algorithm is a community detection method for complex networks based
on modularity maximization [31]. It has an approximate linear time complexity and is
regarded as one of the best-performing clustering algorithms. The modularity function Q
is defined by the following equation:

Q =
1

2τ ∑
i,j

[
aij −

kik j

2τ

]
δ(ci, cj) =

1
2τ

∑
i,j

aij −
∑
i

ki ∑
j

k j

2τ

 δ(ci, cj) (13)

where ki = ∑
j

aij is the sum of the weights of all edges connected to node i. τ = 1
2 ∑

i,j
aij,

ci is the cluster containing node i. When ci = cj and ci = cj , δ(ci, cj) = 1; otherwise,
δ(ci, cj) = 0. The value of Q reflects the quality of community clustering. The closer it is to
1, the more distinct the clustering structure.

The basic idea of the algorithm is to first treat each node in the network as a cluster.
Then, node i is moved into the cluster c of its neighboring node j, and the modularity
increment ∆Q, expressed by Equation (14), is calculated to determine the movement
method that has the greatest positive impact on modularity:

∆Q =

[
∑in + ki,in

2τ
−

(
∑tot + ki

2τ

)2
]
−

[
∑in
2τ
−

(
∑tot
2τ

)2
−

(
ki
2τ

)2
]

(14)

where ∑in is the sum of the weights of the internal edges within cluster c, ki,in represents the
sum of the weights of the edges connecting node i to the nodes within cluster c, and ∑tot is
the sum of the weights of all edges connecting to the nodes within cluster c. The similarity
measure is based on the distribution of load data that groups users, which manifests as
community clustering at the level of the complex network.

5.5. Adaptive Differential Privacy Personalized Clustering Federated Learning Algorithm

In the implementation of DP, gradient clipping is essential. The fixed-threshold
clipping method has notable drawbacks: setting the clipping threshold too high or too low
can lead to decreased model accuracy and practicality. This paper proposes an adaptive
gradient-clipping method, where the clipping threshold is defined by Equation (15):

Ct+1
i =

∥∥∥g(yt,L−1
i )

∥∥∥
2
×min(1, Ct

i /
∥∥∥g(yt,L−1

i )
∥∥∥

2
) + N(0, (Ct

i σ)
2
) (15)

where Ct
i is the clipping threshold for client i during the t-th round of training, g(yt,L−1

i ) is
the gradient after the L-th local iteration in the t-th round of training for client i, and σ is
the noise parameter. The idea behind this method is to use the clipped gradient from the
t-th round to estimate the clipped gradient for the (t + 1)-th round, with Gaussian noise
added to ensure privacy protection.

Building on adaptive gradient clipping, this paper proposes a personalized federated
averaging algorithm, pADP-FedAvg. First, the server initializes a global model and dis-
tributes it to each client. Next, clients sample mini-batch local data to compute gradients,
apply adaptive gradient clipping, and incorporate DP to update the local model. After L
local iterations, the local updates are sent back to the central server. The server then ag-
gregates the received local models to generate a new global model, which is broadcast to
all clients. By repeating these steps, the global model is gradually optimized. The specific
process is summarized in Algorithm 1 below.
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Algorithm 1 pADP-FedAvg algorithm.

Input: Number of communication rounds T; Local iteration period L; Initial value of the
personalized model y0; Local update step size η; Noise parameter σ; Initial value of the
adaptive clipping threshold {C0

i }
n
i=1; Number of clients selected in each round r

Output: Personalized model yT

Server executes:
1: initialize y0

2: for each round t = 0, . . . , T − 1 do
3: Sample a set of r clients at random without replacement, denoted by Wt

4: Broadcast yt to all clients in Wt

5: for each client i ∈Wt in parallel do
6: yt

i ←ClientUpdate(i, yt)
7: end for
8: yt+1 = (1/r)∑i∈Wt yt

i
9: end for
10: Return yT

ClientUpdate(i, yt):
11: yt,0

i ← yt

12: for l = 0, . . . , L− 1 do
13: Sample a mini-batch Xi ⊆ Di of size λ and compute gradient

g(yt,l
i )← (1/λ) ∑

ξi∈Xi

∇F(yt,l
i , ξi)

14: Adaptive gradient clipping:
15: g̃(yt,l

i )← g(yt,l
i )×min(1, Ct

i /
∥∥∥g(yt,l

i )
∥∥∥

2
)

16: Add DP noise to gradient:
17: ḡ(yt,l

i )← g̃(yt,l
i ) + N(0, (Ct

i σ)2)

18: yt,l+1
i = yt,l

i − ηl ḡ(y
t,l
i )

19: end for
20: Computes clipping threshold Ct+1

i by Equation (15)
21: upload yt,L

i to server

5.6. Privacy Analysis

The introduction of differential privacy aims to address differential attacks and prevent
honest but curious servers or participants from inferring and stealing sensitive private
information of clients based on shared data.

Theorem 1. In Algorithm 1, for the local dataset Di of client i participating in training, a small
batch sample of size λ is randomly selected without replacement. Assuming that client i participates
in training and uploads updates Ti times during T rounds of learning, then for client i, Algorithm 1
satisfies the following condition (εi, δ)-DP, where

εi =
2TiL

qrλσ2 + 2

√
2TiL

qrλσ2 log
1
δ

(16)

Proof. For client i, assuming that two adjacent datasets Xi and Xi
′ differ only in the j-th

data point, i.e., ξ j ̸= ξ ′ j, then

∥∥∥g̃(yt,l
i )(Xi)− g̃(yt,l

i )(X′i)
∥∥∥

2
=

1
λ

∥∥∥g̃(yt,l
i )(ξ j)− g̃(yt,l

i )(ξ ′j)
∥∥∥ ≤ 2Ct

i
λ

(17)
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Therefore, ∆2(g̃(yt,l
i )) ≤ 2Ct

i
λ . Noting that, in the absence of added noise,

yt,L
i = yt,L−1

i − ηl g̃(y
t,L−1
i )

= yt,L−2
i − ηl g̃(y

t,L−2
i )− ηl g̃(y

t,L−1
i )

= · · ·

= yt,0
i − ηl g̃(y

t,0
i )− ηl g̃(y

t,1
i )− · · · − ηl g̃(y

t,L−1
i )

(18)

By the definition of sensitivity and Equations (17) and (18), we have

∆(yt,K
i ) = ηl

∥∥∥g̃(yt,0
i )(Xt,0

i )− g̃(yt,0
i )(Xt,0′

i ) + g̃(y1
i )(Xt,1

i )− g̃(y1
i )(Xt,1′

i ) + · · ·

+ g̃(yt,L−1
i )(Xt,L−1

i )− g̃(yt,L−1
i )(Xt,L−1′

i )
∥∥∥

≤
2ηl LCt

i
λ

(19)

From Equation (17) and Lemma 1, it is known that in Algorithm 1, each participating client
satisfies 2

λ2σ2 -zCDP during a single local iteration. During one round of local iteration,
the total number of accesses to the local dataset by the participating client is Lλ

q . According

to Lemma 2 and Lemma 3, the participating client satisfies 2L
qλσ2 -zCDP during one round of

local iteration. Combining Equation (19) and Lemma 1, Algorithm 1 satisfies 2L
qrλσ2 -zCDP in

the t-th round of training. If client i participates in training and uploads updates Ti times
during T rounds of learning, then client i achieves 2Ti L

qrλσ2 -zCDP throughout the learning
process. By Lemma 4, the theorem is proved.

6. Electricity Load-Forecasting Model
6.1. Load Influencing Factors

Electric load is influenced by various factors, including weather, location, time, elec-
tricity prices, user consumption habits, and unexpected events. The load curve can be
decomposed into regular components that change periodically, uncertain components that
change non-periodically, and noise components from unexplainable physical factors [32].
Key weather factors, such as temperature, humidity, and atmospheric pressure, significantly
impact short-term load variations.

6.2. Construction of User Dataset

In this paper, weather and time factors are selected as correlated influences on load.
The input data feature types include weather, load, and time. Weather factors, such as
temperature, humidity, and atmospheric pressure, are used to capture the impact of weather
on load. Time factors, including year, month, day, and hour, reflect the periodicity of the
load. The feature selection and transformation process for the dataset is detailed in Table 1.

6.3. Federated Learning Model Based on LSTM

The LSTM (Long Short-Term Memory) network excels at handling time-series prob-
lems, and the electricity load of each user is inherently a type of time series. Figure 3
shows the internal unit structure of LSTM, which consists of input gates, forget gates,
and output gates.
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Table 1. Feature selection and feature transformation of datasets.

Feature Type Feature Name Data Type Unit/Range Transformation
Method

Transformed
Feature

Weather
Temperature Continuous °F Normalization temperature

Humidity Continuous % Normalization humidity

Pressure Continuous kPa Normalization pressure

Load Load Continuous kW Normalization load

Time

Year Discrete 2016–2018 One-hot
encoding

oh-2016, oh-2017,
oh-2018

Month Discrete 1–12 sin/cos Cyclic
encoding

month-sin,
month-cos

Day Discrete 1–30 sin/cos Cyclic
encoding day-sin, day-cos

Hour Discrete 0–23 sin/cos Cyclic
encoding

hour-sin,
hour-cos

× +

× ×

tanh

σ σ tanh σ 

ht

Xt

Ct-1

ht-1

Ct

ht

Ot
ft it

Ct

× +

× ×

tanh

σ σ tanh σ 

ht

Xt

Ct-1

ht-1

Ct

ht

Ot
ft it

Ct

Figure 3. Internal structure of LSTM.

In Figure 3, Xt is the input, ht−1 and ht are the outputs, and Ct−1 and Ct are the storage
cell states. The calculation formulas for these variables are as follows:

ft = σ
(

W f Xt + U f ht−1 + b f

)
(20)

it = σ(WiXt + Uiht−1 + bi) (21)

ot = σ(WoXt + Uoht−1 + bo) (22)

C̃t = tanh(WcXt + Ucht−1 + bc) (23)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (24)

ht = ot ⊙ tanh(Ct) (25)

where σ is the sigmoid function and ft, it, and ot are the outputs of the forget gate, input
gate, and output gate, respectively, Wc, Uc, Wo, Uo, Wi, Ui, W f , and U f are the correspond-
ing weights, and bc, bo, bi, and b f are the bias terms. This paper adopts the framework of



Algorithms 2025, 18, 32 12 of 18

federated learning, using LSTM as the load-forecasting model, leveraging the three gates
mentioned above to utilize long-term user historical data for load forecasting. Each par-
ticipating user acts as an independent client, and the network topology is illustrated
in Figure 1.

6.4. Clustered Federated Learning Load-Forecasting Process Based on Louvain Algorithm

The entire process of personalized adaptive differential privacy clustering federated
learning for electricity load forecasting using the Louvain algorithm consists of the follow-
ing five steps:

Step 1 All clients participate in training with the classical differential privacy federated
averaging algorithm until convergence.

Step 2 The central server calculates the cosine similarity based on the local update vectors
at the convergence of the model from local clients.

Step 3 Each client serves as a network node, constructing a network edge set and edge
weights between nodes based on the similarity of learned client parameters, form-
ing an undirected weighted complex network.

Step 4 Community clustering is performed using the Louvain algorithm.
Step 5 The pADP-FedAvg algorithm is utilized for personalized adaptive differential

privacy clustering federated learning for electricity load forecasting.

7. Analysis of Arithmetic Examples
This section evaluates the effectiveness of the proposed scheme through arithmetic

examples. The experimental environment is as follows: the CPU is an Intel Core i7-12700K,
the GPU is an NVIDIA RTX 3080 Ti with 12 GB of memory, the RAM is 64 GB, the operating
system is Ubuntu 21.04, and the software versions include PyTorch 2.0.0, CUDA 11.8,
and Python 3.8.16. The experiments are conducted in a single-computer deployment mode.
The parameter settings for the LSTM model used for load forecasting are detailed in Table 2.

Table 2. Model parameters.

Parameter Value

Number of epochs of training on clients 8

Total communication rounds 60

LSTM hidden layers 2

Model structure

LSTM layers with 256 hidden states
LSTM layers with 128 hidden states

Fully connected layers with 64 neurons
Fully connected layers with 32 neurons

Input feature dimensions 27

Batch size 128

Learning rate η 0.0015

Dropout probability 0.2

Output feature dimensions 15

Privacy budget ϵ 0.4, 0.6, 0.8

Loss MSE

7.1. Data Sources

The dataset used is HUE [33], which contains hourly energy use data and meteo-
rological data for 22 homes in British Columbia over the past three years, with a time
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granularity of 24 points per day. The algorithm selects data from 1 June 2016 to 29 January
2018, specifically for houses with IDs 3–14 and 18–20, totaling 15 users. These users are
numbered in descending order by their ID numbers, designated as user 1, 2, . . . , 15. For
each responding user, 80% of the dataset is used for training, 10% is used for testing,
and 10% is used for validation.

7.2. Data Pre-Processing

After selecting the appropriate data, the data need to be pre-processed. For missing
data, this paper utilizes averaging or interpolation methods as follows:

γi =


γi−1+γi+1

2 , γi ∈ Null, γi−1, γi+1 /∈ Null;

0, γi ∈ Null, γi−1 or γi+1 ∈ Null
(26)

where γi is the value of electricity load at a certain time period. In addition, in order to
accelerate the convergence speed during the model training process and improve training
efficiency, the data of continuous values are normalized:

γnom =
γ− γmin

γmax − γmin
(27)

where γ is the original data, γnom is the normalized data, and γmax and γmin are the
maximum and minimum values, respectively.

7.3. Evaluation Metrics

To evaluate the accuracy of the algorithm, three metrics are employed: the mean-square
error (MSE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE).

The MSE is calculated as follows:

MSE =
∑N

i=1(ŷi − yi)
2

N
(28)

The RMSE is calculated as follows:

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(29)

The MAPE is calculated as follows:

MAPE =
1
N

N

∑
i=1

| ŷi − yi |
yi

× 100% (30)

where N is the number of test samples and ŷi and yi are the actual and predicted readings
in kWh, respectively.

7.4. Analysis of Simulation Results

After calculating the similarity, the Louvain algorithm is applied to classify the associ-
ations in the weighted network, and the results are displayed in Figure 4.



Algorithms 2025, 18, 32 14 of 18

1 8 2 11 10 3 6 5 9 7 4 14 15 13 12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4. The community division results of the Louvain algorithm.

During the operation, the Q-values are as follows: −0.0832, 0.1569, −0.0275, 0.3124,
0.2017, 0.4753, 0.3695, 0.5936, 0.4821, 0.6427, 0.5339, 0.7052, 0.6185, 0.7514, 0.6793, 0.7836,
0.7253, 0.7453, 0.7292, and 0.7217. After reaching a peak value of 0.7836, the Q-value begins
to decline. At this point, the optimal division results in one association clustering for users
1, 2, 8, 10, and 11, and another for users 3, 4, 5, 6, 7, 9, 12, 13, 14, and 15. Compared to
commonly used clustering algorithms, such as K-Means, CFL, and IFCA, our proposed
method has lower computational costs and does not require pre-specifying the number
of clusters.

The comparison results of the DP-FedAvg and pADP-FedAvg algorithms across the
three evaluation metrics—MSE, RMSE, and MAPE—are presented in Table 3. With a privacy
budget of ϵ = 0.6, it is clear that the pADP-FedAvg algorithm significantly enhances the
accuracy of the classical DP-FedAvg algorithm and demonstrates superior performance.
Due to the introduction of random noise, the DP noise degrades model performance.
Compared with a traditional DP strategy, this suggests that our approach significantly
mitigates the negative effects of DP on the model.

Table 3. Comparison of algorithm performance.

Algorithm MSE RMSE MAPE

DP-FedAvg 0.278 0.527 33.5

pADP-FedAvg 0.205 0.452 29.3

The model performance comparison, as shown in Table 4, evaluates three models
under different privacy budgets: the traditional global model, personalized cluster model
1, and personalized cluster model 2. The results indicate that the traditional global model
exhibits the lowest accuracy, while the personalized cluster models demonstrate high
performance at the same privacy budget. As the privacy budget ϵ increases, the loss metrics
(MSE, RMSE, and MAPE) decrease, leading to higher model accuracy; however, this also
results in reduced privacy protection. Conversely, a smaller privacy budget ϵ provides
greater privacy protection but results in lower prediction accuracy.
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Table 4. Comparison of model performance.

Model Evaluation
Metrics ϵ = 0.4 ϵ = 0.6 ϵ = 0.8

Global
MSE 0.251 0.205 0.192

RMSE 0.501 0.452 0.438
MAPE 35.5 29.3 19.7

Cluster 1
MSE 0.042 0.017 0.009

RMSE 0.205 0.130 0.095
MAPE 12.2 6.2 2.9

Cluster 2
MSE 0.031 0.021 0.015

RMSE 0.176 0.145 0.122
MAPE 15.1 8.5 3.3

Figure 5 illustrates a comparison of the prediction curves under different privacy-
preserving budgets. The experimental results indicate that both models, cluster 1 and
cluster 2, exhibit strong prediction performance. When the privacy budget is set higher,
their prediction curves align more closely with the true value curves, although this comes
at the expense of privacy protection. These findings highlight the trade-off between the
privacy-preserving budget and prediction accuracy. In practical applications, it is essential
to balance privacy risks and model performance based on specific scenarios to determine
the appropriate privacy budget settings. We know that the smaller the privacy budget
setting in DP, the better the privacy protection, and the worse the prediction accuracy.
Through vertical comparison, under the same privacy budget, the clustered federated load
prediction achieves better prediction performance than the global model, which means
that our proposed system can achieve a better trade-off between privacy protection and
prediction performance.
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3
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W
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Figure 5. Cont.
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Figure 5. Comparison of forecasting results. (a) Cluster 1. (b) Cluster 2.

8. Conclusions
Accurate forecasting of residential electricity loads is crucial for integrating demand-

side resources and fulfilling demand-side response requirements. By addressing the data
heterogeneity and security issues in load forecasting for smart grids, this paper presents a
load-forecasting framework for residential energy users that enables collaborative training
of personalized forecasting models without the need to exchange load data. Weather and
time factors are identified as key influences on user loads, and the analysis of arithmetic
examples demonstrates that the proposed algorithm outperforms current mainstream
federated learning algorithms in prediction performance. This approach enhances load-
prediction accuracy while ensuring the privacy and security of user data, which is essential
for smart grid planning, operation, control, and dispatch. Future research may focus on
other cyber security issues, such as data poisoning and evasion attacks, the influence of
unexpected events on power load forecasting, further optimizing the federated learning
algorithm, exploring additional application scenarios, and advancing the development
of smart grids. The trade-off between model complexity and interpretability is attracting
increasing attention. This is critical for the broader adoption of predictive models in
real-world settings. While complex models like deep learning algorithms can provide
high accuracy, their “black-box” nature makes it difficult to understand how they make
predictions. This lack of interpretability can be a significant barrier in practical settings,
where understanding the rationale behind a decision is crucial. Therefore, in the future,
we will focus on studying the interpretability of the models to enhance user trust in smart
grid systems.
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