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Abstract: Industrial application data acquisition systems can be sources of vast amounts of
data. The seismic surveys conducted by oil and gas companies result in enormous datasets,
often exceeding terabytes of data. The storage and communication demands these data
require can only be achieved through compression. Careful consideration must be given
to minimize the reconstruction error of compressed data caused by lossy compression.
This paper investigates the combination of principal component analysis (PCA), discrete
wavelet transform (DWT), thresholding, quantization, and entropy encoding to compress
such datasets. The proposed method is a lossy compression algorithm tuned by evaluating
the reconstruction error in frequency ranges of interest, namely 0–20 Hz and 15–65 Hz.
The PCA compression and decompression acts as a noise filter while the DWT drives the
compression. The proposed method can be tuned through threshold and quantization
percentages and the number of principal components to achieve compression rates of up to
31:1 with reconstruction residues energy of less than 4% in the frequency ranges of 0–20 Hz,
15–65 Hz, and 60–105 Hz.

Keywords: compression algorithms; principal component analysis; discrete wavelet transform

1. Introduction
Decision making in industrial applications relies heavily on datasets and data acqui-

sition systems. Statistical analysis for complex systems requires representative datasets
and high data volume. Seismic data analysis [1] and data-driven prognostics [2,3], for
example, are applications with an increased need for high-frequency data sampling (i.e.,
vibration, acoustics) that increase storage demands. In specific application scenarios, such
as seismic surveys conducted by oil and gas companies, seismic data can amount to tens
of terabytes [4]. Consequently, storing and transferring such vast amounts of data pose
significant cost and technical challenges [5]. Data in analytics can contain less relevant
components depending on the application. In these cases, pruning the dataset can be con-
sidered to lower storage, that is, filtering less relevant data. While it is possible to automate
such a process, it is challenging to balance meaningful storage reduction and maintain a
relevant dataset. Therefore, these datasets tend to be compressed for storage using some
form of classical lossless compression, even though lossless compression provides little
benefit in reducing storage space.

The seismic signal can be expressed as a linear combination of wavelets with varying
bandwidths and time lags, contingent upon subsurface interactions with the source. The
use of wavelet decomposition, extensively explored and recognized for its compression
applications [6], and principal component analysis (PCA), a widely used method machine
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learning (ML) in multivariate analysis for dimensionality reduction, have both been studied.
The utilization of these techniques in seismic data compression has been documented [7].
Both algorithms aim to generate sparse data representations using as few coefficients as
possible for effective compression. This involves transforming and discarding the least
representative data and efficiently encoding the remaining information. In this work, we
propose the usage of PCA as a filter to reduce the noise associated with seismic data,
allowing discrete wavelet transform (DWT) to achieve higher compression rates. The main
contributions of this work are as follows:

• The modeling of a compression algorithm that combines PCA and DWT while em-
ploying thresholding, quantization, and entropy encoding strategies to increase com-
pression performance;

• The analysis of a compression case study on seismic data from the Jubarte permanent
reservoir monitoring.

The remainder of this work is organized as follows: Section 2 presents the related
works found in literature regarding the applications of principal component analysis (PCA),
DWT, and their combination for data compression applications. Section 3 discusses the
fundamentals of data compression using PCA, DWT, quantization, and thresholding,
and explains the proposed data compression strategy. Section 4 presents the case study
considered to evaluate the performance of the proposed compression strategy when applied
to seismic data acquired during the monitoring process of an oil reservoir, as well as the
results and discussion. Finally, Section 5 presents the concluding remarks of this work.

2. Related Work
Encoding through transformation represents a highly effective approach to data com-

pression that is widely utilized in various compression tools like JPEG, JPEG-2000, and
HEVC [8–10]. The encoding strategies differ based on the type of transform utilized. Com-
monly employed transforms in data compression include the discrete cosine transform
(DCT) [11,12], the discrete wavelet transform (DWT) [6], and the family of lapped trans-
forms [13,14]. Moreover, in seismic data compression, domain-specific transforms such as
the seislet transform [15], the dreamlet transform [16], and the urvelet transform [17] still
play significant roles; however, they are also very costly operations.

Dimensionality reduction-based compression techniques involve converting data from
an N-dimensional space to an M-dimensional space, where M < N. This transformation
exploits redundancy within the original N-dimensional representation. By reducing di-
mensionality, the method lowers the number of bits needed to encode the initial data while
retaining a substantial portion of its information. Consequently, it falls under the category
of lossy compression schemes.

Although principal component analysis (PCA) is limited to linear transformations,
when applied to compression, it achieves reduced storage demands with a lower computa-
tional burden compared to intensive training procedures, such as machine learning-based
algorithms. In seismic data compression, PCA has been effectively utilized alongside
specific domain-specific enhancements. These include incorporating a pre-processing stage
where signals are aligned to optimize cross-correlation [7] and implementing distributed
approaches for real-time compression during the acquisition phase [18].

Nuha et al. [7] explore PCA as a dimensionality reduction solution for seismic data.
Their results point to a compression ratio of 12:1 while preserving 99% of the signal energy
with 0.8% reconstruction error. Most of the compression error prevails from aligning
traces with reference data, which allows for reducing the number of principal components.
Compression to PCA comprehends finding a pair of eigenvectors and eigenvalues and
selecting the highest eigenvalues to promote a projection of the values into the vector. Data
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decompression can be obtained by projecting the projection coefficients back to the original
dimension and adding the average vector. Aligning seismic traces, for instance, shifting
traces over time such that patterns are in the same time index (e.g., reflections), promotes a
higher uniformity that can improve the compression ratio. In this sense, the authors apply a
circular time shift to move patterns inside data (i.e., the trace length is unchanged). Pattern
alignment is promoted by maximum amplitude and cross-correlation techniques. Pattern
alignment is also an interesting technique that can be applied to other approaches, such as
autoencoders, and when searching for compression over time or space. Nevertheless, data
alignment based on linear events may lead to the loss of alignment of hyperbolic events,
possibly affecting further analysis.

Principal component analysis (PCA) can be enhanced through various combinations
with transform encoding techniques. In the literature, PCA has been integrated with the
discrete wavelet transform (DWT) as a preliminary filter before transform encoding [19].
Additionally, the DWT has been utilized as a preprocessing stage for PCA, leveraging its
ability to decompose the original signal into smaller-dimensional signals to enhance the
computational efficiency of PCA. Similarly, PCA has served as a preprocessing step in
an image compression workflow, functioning as a pre-filter before employing DCT-based
transform encoding, along with quantization and thresholding. Conversely, the DCT has
been employed as a preprocessing step for PCA, resulting in loadings that may offer more
meaningful insights for operations on compressed data, such as classification purposes [20].

3. Proposed Method
This work proposes the combination of PCA and DWT as a compression algorithm

for high-frequency sampled data. This section briefly describes the fundamentals of both
algorithms and how their combination leads to a better compression performance.

The combination of the PCA and DWT algorithms, with the support of quantiza-
tion, entropy encoding, and thresholding, is illustrated in Figure 1 and in pseudo-code in
Algorithm 1. The algorithm takes as parameters the principal components count (pc), the
energy threshold (et), the quantization level (quant), and the time series to be compressed
(data). The first three steps of compression act as a noise filter through PCA and quan-
tization. PCA is a dimensionality reduction operation where the data is represented in
principal components. We utilize a truncated form of the PCA, explained in more detail
below, that can approximate the original signal even with a reduced number of principal
components. In line 1, the number of principal components (pc) determines how many are
kept for later reconstruction. The thresholding and quantization remove less representative
data from the sparse representation. In line 2, the quantization and thresholding opera-
tion verifies each component of the PCA output and changes them to zero according to
the specified threshold. In line 3, the PCA decompression returns the signal to the time
domain. The DWT, in line 4, performs the wavelet decomposition of the time series and
discards wavelets with the least representative wavelet coefficients. The last step, in line 5,
is entropy encoding that optimizes the binary representation of the compressed data. The
more straightforward decompression steps are shown in Algorithm 2. In line 1, entropy
decoding decompresses the wavelet coefficients and, in line 2, the DWT decompression
(also named inverse DWT) reconstructs the time series from the wavelet coefficients. The
following sections describe the components of the algorithm in more detail.
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Figure 1. PCA + DWT compression and decompression workflow.

Algorithm 1 PCA + DWT compression algorithm.

Input: pc, et, quant, data
Output: compressed_data

1: temp = PCA_compress(pc, data)
2: temp = Quantization(quant, temp)
3: temp = PCA_decompress(temp)
4: temp = DWT_compress(et, temp)
5: compressed_data = Entropy_encoding(temp)
6: return compressed_data

Algorithm 2 PCA + DWT decompression algorithm.

Input: compressed_data
Output: decompressed_data

1: temp = Entropy_decoding(compressed_data)
2: temp = DWT_decompress(temp)
3: return temp

3.1. Principal Component Analysis

The application of PCA is a machine learning (ML) algorithm that aims to identify a
basis for an N-dimensional vector space where the elements are uncorrelated and arranged
based on their ability to explain the variance within the data [21]. By discarding components
that contribute less to explaining the dataset’s variance, PCA facilitates data compression
through dimensionality reduction while preserving the most pertinent information. The
original vector T is decomposed into a matrix of principal components X and a weights
matrix W, as shown in Equation (1). This maps the dataset vector x from the original
space p to a new space p̂, where W is a p-by-p matrix of weights whose columns are the
eigenvectors of Equation (2). The compression happens as only the first L eigenvectors are
kept, producing the truncated transformation shown in Equation (3); the matrix TL has n
rows but only L columns [22].

T = XW (1)

XTX (2)

TL = XWL (3)

The specific decomposition used in this paper is the singular value decomposition
(SVD) in Equation (4), where Σ is an n-by-p rectangular diagonal matrix of positive number
σ(k) called the singular values of X; U is an n-by-n matrix, the columns of which are
orthogonal unit vectors of length n called the left singular vectors of X; and W is a p-by-p
matrix whose columns are orthogonal unit vectors of length p and called the right singular
vectors of X. We can then obtain a truncated n × L matrix TL through Equation (5) [23].

X = UΣWT (4)

TL = ULΣL = XWL (5)
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3.2. Discrete Wavelet Transform

The DWT is a process that quantifies how much energy is contained in specific fre-
quency bands at particular times within a signal. The wavelet is a complex bounded signal,
i.e., it integrates to zero and declines to zero amplitude at some distance. The decom-
position of the signal creates a collection of daughter wavelets. The daughter wavelets
are compressed or expanded versions of the mother wavelet, and each daughter wavelet
extends across a different section of the original signal. Daughter wavelets are organized in
hierarchies where wavelets in level ni have half as many wavelets, with half the frequency
and twice the length of the wavelets in level ni−1. The number of levels increases until
there are as many wavelets as samples in the original signal. Each daughter wavelet in this
collection is associated with a coefficient that relates it to the decomposed signal.

DWT compression happens as the discretized signal is represented only with the
coefficients of the daughter wavelets. The less representative coefficients, i.e., coefficients
of wavelets that show a lower relation to the original signal, are filtered, thus resulting in
a signal with a sparse representation. Filtering the coefficients can be achieved through
various methods; we utilize thresholding and quantization in this paper.

3.3. Thresholding

In data compression, thresholding is a process where samples of a digital discrete time
signal with an absolute value lower than a specified threshold are set to zero. This threshold
might align with the lowest absolute quantization level, particularly when quantization
is also applied. In the compression method introduced in this work, the threshold is
determined as a percentage of the maximum absolute value found among the signal
samples. This threshold is then applied to both the loadings and transform coefficients
obtained from the PCA procedure. Different thresholds are applied to each due to the
anticipated substantial differences in the numerical value ranges of the elements within
each matrix.

3.4. Quantization

In digital signal processing, quantization is mapping the co-domain of a signal into
another set, the quantized co-domain, with fewer elements. While there are many methods
of calculating quantization, this work employs uniform quantization. The distance between
two quantization levels, the inter-level distance, is parametrized as a percentage of the
sample standard deviation of the signal’s constituent samples. As part of the proposed
compression algorithm comprises the loadings and transform coefficient matrices resulting
from PCA, quantization is applied to both matrices with individual inter-level distances.

3.5. Entropy Encoding

Entropy encoding is the final step in the proposed compression algorithm. Entropy
encoding is a lossless compression scheme that minimizes the amount of bits necessary
to represent data. The chosen implementation is the Deflate algorithm, used in many
well-known file formats, such as PNG and zip, and libraries, such as gzip and zlib [24]. The
Deflate algorithm uses a combination of LZ77 and Huffman coding [25]. The LZ77 algo-
rithm builds a dictionary and replaces repeated bit strings by references to the dictionary.
Huffman coding is used to represent the most frequent symbols with the least amount
of bits.

4. Case Study
A case study was performed to assess the compression efficacy of the proposed

approach using a dataset of active seismic data acquired during an oil and gas reservoir
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monitoring survey employing ocean bottom nodes (OBNs). The following sections will
offer an overview of the dataset employed for evaluation, the experiments conducted,
the performance evaluation metrics employed, and the findings from the experiments,
accompanied by a discussion of the results.

4.1. Dataset Description

The dataset utilized comprises raw seismic traces structured within a SEG-Y file.
These traces encompass pressure measurements acquired via hydrophones mounted on
permanent reservoir monitoring (PRM), strategically positioned across an irregular grid
on the seafloor during an oil and gas reservoir monitoring survey. The Jubarte PRM
(permanent reservoir monitoring) records 441 shot lines, spaced 25 m apart, with a shot
interval of 25 m [26]. The files used for analysis come from 171 OBNs, each containing
5120 samples acquired at a 500 Hz sampling rate. The proposed strategy was applied to a
single batch of 2000 traces while varying parameters of the compression algorithms.

4.2. Experiments

To evaluate the performance of the proposed method, we performed multiple com-
pressions using the individual algorithms and the proposed combination. The three con-
figurations were PCA configured through principal components and quantization, DWT
configured through energy threshold and quantization, and PCA with DWT configured
with all three. All configurations were iterated with principal components ranging from 5 to
50 in increments of 5 and quantization and energy threshold ranging from 0 to 10%. We also
compared the algorithms with the ZFP compressor [27,28], which has been used in large
dataset compression applications, and the SZ3 compressor [29–31] for scientific datasets.

4.3. Compression Performance Metrics

The performance of the compression algorithms was evaluated by the compression
rate (CR), normalized residue energy (NRE), and normalized filtered residue energy (NFRE)
metrics. The CR is defined as the ratio between the number of bytes that compose the input
signal and the number of bytes that compose the output signal, defined in Equation (6),
in which P is the number of bytes of the input signal and R is the number of bytes in the
output signal.

CR =
P
R

(6)

The NRE is the ratio between the energy of the residue, the difference between the
original signal and the decompressed signal, and the energy of the original signal, as
defined in Equation (7), in which xi is the ith sample of the original signal and x̂i is the ith
sample of the reconstructed signal.

NRE =
∑N

i=0(xi − x̂i)
2

∑N
i=0 x2

i
(7)

By computing the NRE after filtering the original and decompressed signals to extract
only their contents in a specific frequency band, the NFRE in said frequency band is obtained.

4.4. Results and Discussion

The evaluation of the compression algorithms shows that not all configurations lead
to better performance. Figure 2 shows the configurations where the combination of PCA
filtering with the DWT compression improved on both individual compressions. The lines
drawn indicate the combination of PCA and DWT configurations directly translating into a
PCA + DWT configuration. The increase in compression rate shown also exhibits an increase
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in the NRE, which leads to a trade-off between lower data storage and maintaining data
accuracy. PCA filtering with 5 and 10 components appear in the configurations with higher
compression rates. This means that the filtering is more aggressive than PCA with a higher
count of principal components. Higher principal component configurations also achieved
high compression when combined with DWT but with a decrease in compression rate.
This leads us to conclude that the filtering in these cases hindered the DWT decomposition
instead of contributing to it.

Figure 2. NRExCR relation of PCA + DWT combinations that achieved higher CR.

Figures 3 and 4 show the NFRE for the frequency ranges of 0–20 Hz and 15–65 Hz,
respectively. Seismic survey data analysis puts greater emphasis on low frequency signal
where the seismic response to the surveying process is more dominant. Therefore, we con-
sider the NRE at the ranges of 0–20 Hz and 15–65 Hz. Figures 2–4 also show the comparison
of the compression algorithm with the ZFP compression algorithm. ZFP has configurations
for fixed-precision, fixed-rate, and fixed-tolerance, which were all individually varied. The
figures show that, independent of the frequency range, ZFP can maintain a lower NRE,
but at the cost of much lower compression rates than the proposed algorithm. The same
can be observed for the SZ3 compressor, although it obtained negligible NRE values in the
10−11 range.

Figure 3. NFRExCR relation of PCA + DWT combinations that achieved higher CR in the 0–20 Hz range.
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Figure 4. NFRExCR relation of PCA + DWT combinations that achieved higher CR in the 15–65 Hz range.

Table 1 shows the configurations with the best performance in each metric, and Table 2
shows the metrics achieved by each configuration. The tables are separated for readability.
The last line of the table shows the configuration with the smallest NRE in the 15–65 Hz
range. While the combination did not achieve an NRE lower than 2%, which can be a good
discernment metric for seismic survey data, we can further analyze the compression quality
by visualizing the data.

Table 1. Best performing configurations of the PCA + DWT compressor.

Name Configuration

Configuration 1 5 Principal Components, Energy Threshold = 10%, Quantization = 8%
Configuration 2 5 Principal Components, Energy Threshold = 0%, Quantization = 10%
Configuration 3 10 Principal Components, Energy Threshold = 10%, Quantization = 6%
Configuration 4 10 Principal Components, Energy Threshold = 0%, Quantization = 6%

Table 2. Best performing configurations of the PCA + DWT compressor results.

Configuration Compression Rate NRE NRE (0–20 Hz) NRE (15–65 Hz) NRE (60–105 Hz) NRE (100–250 Hz)

Configuration 1 34.5865 8.25e-2 2.06e-2 3.75e-2 2.19e-2 1.02e-2
Configuration 2 33.8814 7.80e-2 2.16e-2 3.31e-2 1.84e-2 1.22e-2
Configuration 3 31.8692 7.16e-2 1.89e-2 3.21e-2 1.86e-2 8.4e-3
Configuration 4 23.1024 5.06e-2 1.38e-2 2.15e-2 1.18e-2 8.2e-3

Figures 5–7 help us visualize the effects of decompression. The rows show the original
dataset, the decompressed dataset, and the difference between the original and decom-
pressed; the first column shows the traces in the time domain and the second column shows
the traces in the frequency domain. Figure 5 shows the results for the configuration with
the highest compression rate for the compression algorithm, Figure 6 shows the result for
the DWT configuration with the highest compression rate, and Figure 7 shows the results
for a configuration of the algorithm that has a more balanced compression rate and NRE.
In Figures 5 and 6, we can see that the compression was very aggressive, in the sense that
NRE was relatively high (6 to 8 % NRE). This causes visual artifacts to disappear in the
decompressed data that can clearly be seen in the original data. As a result, the difference
shows a visual pattern that is similar to the original data, which could mean that some
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relevant data have been lost. However, in the frequency domain, it is harder to identify a
pattern, and the difference has an appearance closer to noise.

Figure 5. Reconstruction difference of PCA + DWT + LZW + quantization, five principal components
energy threshold = 10% quantization = 8%.

Figure 6. DWT + LZW + quantization, energy threshold = 10% quantization = 8%.

We can compare further with another configuration of the PCA and DWT compres-
sion algorithm shown in Figure 7. The 40 principal components energy threshold = 0%
quantization = 2% configuration achieved 10.07:1 compression with an NRE of 0.016. This
compression is much less aggressive and appears much closer to the original data in the
decompressed plot. Also important to note, the difference plot shows no visual artifacts
from the original dataset. We can see in the relative difference that the noise presents a
random spectral behavior that does not reproduce the patterns in the original signals. The
randomness means that the noise is uncorrelated from the input signal. Therefore, the
compressed signals are conserving the signal of interest.
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Figure 7. Reconstruction difference of PCA + DWT + LZW + quantization, 40 principal components
energy threshold = 0% quantization = 2%.

5. Conclusions
This work presented a compression algorithm combining principal component analy-

sis (PCA) and discrete wavelet transform (DWT) for improved data compression. The main
algorithms are supported by thresholding, quantization, and entropy encoding strategies
that prune less representative data from the dataset. We discussed the fundamentals of
data compression based on the involved algorithms and the proposed algorithm combining
them. The proposed method was then evaluated on a dataset of seismic data collected
during an oil and gas survey leading to compression ratios of up to 31:1 while preserving
relevant characteristics of data in frequencies of interest in the ranges of 0–20 Hz, 15–65 Hz,
and 60–105 Hz, even though the compression leads to high reconstruction errors in total.

Unfortunately, not all configurations of the algorithm produce better compression
ratios than their individual counterparts, meaning that the algorithm must be tuned for
the specific dataset being compressed. However, this also means that the user can adjust
how much reconstruction error the compression can tolerate. In essence, the compression
strategy outlined in this study streamlines the management of the extensive data volumes
generated by seismic reservoir monitoring surveys carried out by oil and gas companies.
However, further work is required to demonstrate that the information loss from aggressive
compression does not significantly interfere with downstream data processing to extract
pertinent insights from the seismic data acquired during such surveys.
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