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Abstract: In order to solve the problem of the large‑scale integration of new energy into
power grid output fluctuations, this paper proposes a new energy microgrid optimization
scheduling algorithm based on a two‑stage robust optimization and improved grey cor‑
relation theory. This article simulates the fluctuation of the outputs of wind turbines and
distributed photovoltaic power plants by changing their robustness indicators, generates
economic operating cost data for microgrids in multiple scenarios, and uses an improved
grey correlation theory algorithm to analyze the correlation between new energy and vari‑
ous scheduling costs. Subsequently, a weighted analysis is performed on each correlation
degree to obtain the correlation degree between new energy and total scheduling operat‑
ing costs. The experimental results show that the improved grey correlation theory op‑
timization scheduling algorithm for new energy microgrids proposed obtains weighted
correlation degrees of 0.730 and 0.798 for photovoltaic power stations and wind turbines,
respectively, which are 3.1% and 4.6% higher than traditional grey correlation theory. In
addition, the equipmentmaintenance costs of thismethod are 0.413 and 0.527, respectively,
which are 25.1% and 5.4% lower compared to the traditional method, respectively, indicat‑
ing that the method effectively improves the accuracy of quantitative analysis.

Keywords: new energy; microgrid system; robust optimization; grey correlation theory;
optimize scheduling algorithm

1. Introduction
Renewable energy sources such as solar and wind power are characterized by their

clean and sustainable nature, making them key tools for reducing carbon emissions and
achieving sustainable green development. Traditional energy dispatch methods often rely
on fossil fuels, and their strategies typically struggle to balance economic and environmen‑
tal benefits. These conventional methods are no longer sufficient to meet the requirements
for optimizing renewable energy dispatch. Therefore, studying joint optimization dispatch
methods for renewable energy under “dual carbon” goals not only helps improve energy
utilization efficiency and reduce carbon emissions, but also provides strong support for
the sustainable development of the energy industry [1,2].

The uncertainty and volatility of their output cannot be ignored in terms of their im‑
pact on microgrid scheduling. Therefore, the impact of new energy on microgrid schedul‑
ing is not only reflected in the start stop of thermal power units, but also in the early plan‑
ning of supporting facilities such as energy storage devices. Therefore, a method is needed
to comprehensively quantify the impact of the volatility of new energy outputs on the total
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cost of microgrid scheduling and operation, identify key new energy sources that affect mi‑
crogrid planning, and determine the capacity ofwind and photovoltaic units to be invested
in order to promote the goal of renewable energy integration [3,4].

Qiu [5] proposes an evaluation system for the capacity of the power grid to accept
wind power, but does not quantitatively analyze the various influencing factors; Ye [6]
proposes a schedulable potential evaluation algorithm that considers the different needs
of dispatchers and users, achieving potential assessments on both the dispatch and user
sides of electric vehicles; and Xu [7] constructs an evaluation index system for the static
and characteristic indicators of users, achieving a comprehensive quantitative analysis of
the regulatory potential of typical users. In view of the above issues, this article defines the
indicator of “scheduling potential” to comprehensively represent the degree of correlation
between the volatility of new energy outputs and the total cost of scheduling operations.
The greater the correlation between a certain new energy and the total operating cost of
scheduling, the greater the impact of fluctuations in the output of new energy on the total
operating costs, indicating that the scheduling potential of the new energy is greater.

Considering uncertain factors such as the output of new energy in microgrids [8], the
existing literature mainly describes the uncertainty of new energy outputs as stochastic
optimization [9], robust optimization [10], and distributed robust optimization. At the
same time, in order to comprehensively analyze the scheduling potential of new energy,
this article needs to construct multiple scenarios to simulate the output of new energy
under different levels of fluctuation, which makes the model difficult to solve. To solve
the above problems, the literature uses Bender’s decomposition algorithm to solve the
model [11]. The literature proposes more efficient column and constraint generation algo‑
rithms [12]. The Bender’s decomposition algorithm belongs to the row constraint genera‑
tion algorithm, which constructs the main problem using a dual form of sub‑problems and
has a higher computational complexity compared to the column constraint generation al‑
gorithm. Therefore, current decompositionmethods tend to favour column and constraint
generation algorithms.

The methods for quantitatively analyzing the load that affects power grid planning
in the existing algorithm mainly include grey relational analysis [13], wavelet analy‑
sis [14], and variable correlation testing. To obtain more intuitive results for a comprehen‑
sive analysis index system, it is usually necessary to perform a comprehensive weighted
analysis on the various data generated using the analysis [15–17]. The comprehensive
weighted analysis algorithms mainly include Analytic Hierarchy Process [18], Entropy
Weight Method [19], and the Delphi Method [20]. Among them, the Analytic Hierarchy
Process and Delphi Method have strong subjectivity in setting indicator weights, while the
EntropyWeightMethod analyzes data dispersion and sets indicatorweights objectively. In
addition to the weighted analysis method by establishing an evaluation index systemmen‑
tioned above, some of the literature also uses non‑weighted analysis methods such as data
envelopment analysis [21] and the TOPSIS method [22]. Wang [23] proposed a cost min‑
imization problem to intelligently schedule energy production for microgrids equipped
with unstable renewable energy sources and combined heat and power (CHP) generators.
Hosseini [24] proposes a novel robust framework for the day‑ahead energy scheduling of
a residential microgrid comprising interconnected smart users. The above methods have
significantly improved results; however, they do not utilize correlation analysis algorithms
with weighting, making it difficult to find the optimal solutions for the weakly correlated
initial investment cost, environmental management cost, and the total operating cost of
the microgrid. The non‑weighted analysis method can directly analyze the data methods
of the indicator system, but the modelling and calculation are relatively complex and can
only achieve qualitative evaluation.
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Based on the above analysis, this paper proposes the new energy scheduling potential
evaluation method based on grey correlation theory. This method can more accurately
analyze the correlation between initial investment costs, environmental governance costs,
and the total operating costs of microgrids, thereby effectively reducing the cost of the
integrated construction of renewable energy. The specific contributions are as follows:

(1) In order to obtain the economic operation indicators of a microgrid under different
levels of fluctuation, this paper establishes a two‑stage robust optimization model
for the collaborative optimization of renewable energy, energy storage devices, and
micro‑gas turbine units, with the objective of minimizing the microgrid scheduling
and operation costs. The constraints are linearized using the big‑M method, and the
column and constraint generation algorithm is adopted to solve themodel. Addition‑
ally, the robustness indicators of wind turbines and distributed photovoltaic power
stations are adjusted to simulate the fluctuation of renewable energy output.

(2) In order to identify the key renewable energy sources that influence microgrid plan‑
ning, this paper proposes an improved grey relational analysis method combined
with the entropy weight method to analyze multi‑scenario data. This approach de‑
termines the correlation between renewable energy sources and various operating
costs, as well as the total operating costs of the microgrid. By ranking these correla‑
tion values, a quantitative analysis of the impact of renewable energy sources on grid
scheduling is achieved.

2. A Two‑Stage Robust Optimization Model
2.1. Mathematical Model of Microgrid System
2.1.1. New Energy and Load Uncertainty Model

In the robust optimization model of this article, the uncertain parameters are the out‑
put of wind turbines and distributed photovoltaic power plants, as well as the demand
for loads. In this article, R represents the range of uncertain parameters as a bounded
closed box type uncertain set. At the same time, to effectively improve the conservatism
of the robust optimization, this paper introduces robustness indicators, Γwt, Γpv, and Γload
measures, to characterize the volatility of uncertain variables [25]. Uncertain set U is rep‑
resented by Equations (1)–(3):

Pwt,t = P0
wt,t + rwt,t·∆Pmax

wt,t

−1 ≤ rwt,t ≤ 1
rwt,t·∆Pmax

wt,t
Pwt,t

≤ Γwt

(1)


Ppv,t = P0

pv,t + rpv,t·∆Pmax
pv,t

−1 ≤ rpv,t ≤ 1
rpv,t·∆Pmax

pv,t

Ppv,t
≤ Γpv

(2)


Pload,t = P0

load,t + rload,t·∆Pmax
load,t

−1 ≤ rload,t ≤ 1
rload,t·∆Pmax

load,t

Pload,t
≤ Γload

(3)

where P0
wt,t, P0

pv,t, and P0
load,t are the predicted output values and load demand values of

wind turbines and distributed photovoltaic power plants during time period t. Pwt,t, Ppv,t,
and Pload,t are the actual output value and the load demand value of the wind turbine and



Algorithms 2025, 18, 36 4 of 21

the distributed photovoltaic power station in the t period. ∆Pmax
wt,t , ∆Pmax

pv,t , and ∆Pmax
load,t are

the maximum fluctuation of the wind turbine, distributed photovoltaic power station, and
load in the t period. rwt,t, rpv,t , and rload,t are the auxiliary variables characterizing the
upper and lower limits of the fluctuations of the uncertain variables.

At the same time, to ensure the stable operation of the system, constraints are imposed
on the fluctuation range of uncertain variables [26], as shown below:

P0
wt,t − ∆Pmax

wt,t ≤ Pwt,t ≤ P0
wt,t + ∆Pmax

wt,t

P0
pv,t − ∆Pmax

pv,t ≤ Ppv,t ≤ P0
pv,t + ∆Pmax

pv,t

P0
load,t − ∆Pmax

load,t ≤ Pload,t ≤ P0
load,t + ∆Pmax

load,t

(4)

2.1.2. Energy Storage Device

The energy storage device in this article selects the battery as the research object and
assumes that it is only in a charging or discharging state during operation [27]. The state
of charge model of the battery is as follows:

SOCt = SOCt−1 +

[
χbat,t·Pch

bat,t·ηch
EEN

−
(1 − χbat,t)Pdis

bat,t
EEN·ηdis

]
∆t × 100%

(5)

where SOCt and SOCt−1 represent the state of charge of the battery during time periods t
and (t − 1), respectively; Pch

bat,t and Pdis
bat,t represent the charging and discharging power of

the battery during time period t. ηch and ηdis are, respectively, the charging and discharg‑
ing efficiency of energy storage devices. EEN rated battery capacity. χbat,t is a 0–1 integer
variable, and χbat,t= 1 represents that the battery is in a charged state during time period t.

The depth of discharge during each charge and discharge cycle of a battery is a key
factor affecting its service life. Ignoring this factor will inevitably lead to optimistic opti‑
mization results. The relationship between battery discharge depth and equipment life is
shown in the Formula (6). Firstly, the cyclic discharge depth is determined by a rainflow
counting method, and then its cyclic life can be fitted by power function. However, this
formula has a high degree of nonlinearity and is difficult to solve in the model.

Nlife = N0(Dcyc
dod)

−kP (6)

where Nlife is the number of cycles when the battery reaches its upper limit of life. Dcyc
dod

is the discharge depth of the battery. N0 is the number of cycles required for the battery
to reach its maximum lifespan when operating at 100% discharge depth. The kp fitting
coefficients of the power function are kp and N0, and both are the factory parameters of
each battery.

To solve the above problems, this article simplifies them into a lifetime model based
on the equivalent full cycle number of discharge depth. Firstly, the number of charge
and discharge cycles at different discharge depths is converted to the equivalent full cycle
number at 100% discharge depth, and it is assumed that the battery undergoes charge and
discharge cycles at time t, with a cycle discharge depth equal to the discharge depth of
the battery at time t − 1. The expressions for the equivalent full cycle number and daily
equivalent cycle number of a single battery are as follows [28]:

Ddod,t−1 = 1 − SOCt−1 (7)

Dcyc
dod,t = Ddod,t−1·χsoc,t (8)
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χbat,t = max{χsoc,t − χsoc,t−1, 0} (9)

neq,t = (Dcyc
dod,t)

kP (10)

Neq =
T

∑
t=1

neq,t (11)

where Ddod,t−1 is the discharge depth during the t − 1 period. Dcyc
dod,t−1 is the depth of

cyclic discharge for time period t. When χSOC,t is a 0–1 integer variable with a value of 1,
this indicates the occurrence of a charge discharge cycle during time period t. χbat,t is a 0–1
integer variable is used as the number of cycles for the battery. When its value is 1, this
indicates that the battery has undergone one charge discharge cycle—that is, the battery
has transitioned from a discharged state to a charged state. neq,t is the equivalent number
of full cycles of the battery during time period t, and Neq is the daily equivalent full cycle
count of the battery.

2.2. Objective Function

The objective function of the model is to minimize the total cost of the microgrid,
which is solved in two stages in this paper. The first‑stage objective function is tominimize
the initial investment cost in the microgrid, and the second‑stage objective function is to
minimize the scheduling and operation cost in the microgrid.

minF = Cinv + Copen (12)

where Cinv represents the total initial investment cost of the microgrid. Copen is the opera‑
tion and maintenance costs of the microgrid equipment.

(1) Initial investment cost.
The initial investment cost in the first‑stage objective function is the equipment invest‑

ment cost forwind turbines, distributed photovoltaic power plants, energy storage devices,
and micro‑gas turbine units, as follows [29]:

Cinv = Emax
bat cbatFCRE(rbat, Ybat)+

3
∑

i=1
Pmax

i ciFCRE(ri, Yi)
(13)

F(ri, Yi) =
ri(1 + ri)

Yi

(1 + ri)
Yi − 1

(14)

where Emax
bat is the maximum battery capacity of the energy storage device. Pmax

i and ci

are the maximum technical output and investment cost per unit power of the i‑th type of
power equipment, respectively. FCRE(ri, Yi) is the annual capital recovery rate. ri and Yi

are the discount rate and discount years of the i‑th type of power equipment, where the
discount years of the energy storage device are the float life.

(2) Operation and maintenance expenses [30].

Copen = Copen
G + Cgrid + Cop (15)

Copen
G =

T

∑
t=1

cfuel,t·PG,t +
T

∑
t=1

N

∑
n=1

kn,t·cn,t·PG,t (16)

Cgrid =
T

∑
t=1

(cbuy,tP
buy
M,t ∆t − csell,tPsell

M,t ∆t) (17)
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Cop =
4

∑
i=1

Ci
op·Pi,t (18)

where Copen
G , Cgrid, and Cop, respectively, represent the operating costs of the micro‑gas

turbine, the cost of purchasing and selling electricity for the micro electric vehicle, and the
maintenance cost of the equipment. Fuel cost is cfuel,t for time period t. Real‑time output of
micro‑gas turbines is PG,t for time period t. kn,t and cn,t are the emissions of the nth pollu‑
tant and the treatment unit price of the micro‑gas turbine during time period t. cbuy,t and
csell,t, respectively, represent the unit price of electricity purchased and sold during time
period t. Pbuy

M,t and Psell
M,t are the power of the microgrid selling electricity to the distribution

network during time t. Pi,t and Ci
op are the maintenance cost unit price and output during

time period t for energy storage devices, wind turbines, distributed photovoltaic power
plants, and micro combustion units, respectively.

2.3. Constraints
2.3.1. Power Balance Constraint [31]

Pwt,t + Ppv,t + Pdis
bat,t + Pbuy

M,t + PG,t = Pload,t + Psell
M,t + Pch

bat,t (19)

2.3.2. Constraints on Micro Combustion Units

In hourly scheduling, the response speed of micro‑gas turbines is relatively fast, so
their climbing constraints can be ignored. This article only considers their output con‑
straints, as follows:

Pmax
G ≤ PG,t ≤ Pmin

G (20)

In the formula, Pmin
G is the minimum technical output of the micro‑gas turbine.

2.3.3. Constraints on Energy Storage Devices

The energy storage device has constraints on the upper and lower limits of charging
and discharging power and the upper and lower limits of the state of charge, and its max‑
imum value is proportional to the maximum capacity of the battery [32]:

0 ≤ Pch
bat,t ≤ χbatεchEmax

bat (21)

0 ≤ Pdis
bat,t ≤ (1 − χbat)εdisEmax

bat (22)

where εch and εdis represent the ratio of the maximum charging and discharging power of
energy storage to the maximum capacity of the battery.

State of charge constraint:

SOCmin ≤ SOCt ≤ SOCmax (23)

SOCbeg = SOCend (24)

where SOCmin and SOCmax are the lower and upper limits of the battery’s state of charge,
respectively, and to prevent excessive discharge depth from prolonging the battery’s life,
it is specified that they SOC should not be less than 20%. SOCbeg and SOCend are the state
of charge of the battery during the scheduling cycle T is the same from beginning to end.

2.3.4. Power Exchange Constraints

0 ≤ Pbuy
M,t ≤ χM,t·P

buy,max
M (25)
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0 ≤ Psell
M,t ≤ (1 − χM,t)·Psell,max

M (26)

where Pbuy,max
M and Psell,max

M , respectively, represent the upper limit of the power sold by
microgrids to online distributors. When χM,t is a 0–1 integer variable with a value of 1, this
indicates that the microgrid purchases electricity from the distribution network during
time period t.

3. Comprehensive Evaluation Index System
3.1. Traditional Grey Relational Analysis Theory

(1) Form an analysis matrix [33].
A sequence of indicators consisting of a new energy robustness index Y = (Y1, Y2, . . . ,

Ya) and b microgrid scheduling operation costs X = (X1, X2, . . . ,Xb). The indicator se‑
quences Y and X together form the analysis matrix.

(Ya, X1, · · · , Xb) =


ya(1) x1(1) · · · xb(1)
ya(2) x1(2) · · · xb(2)
...

...
. . .

...
ya(n) x1(n) · · · xb(n)

 (27)

where n is an integer representing the number of economic cost data sets generated after
changing the robustness coefficient.

(2) Generate initial value matrix.
Before conducting correlation analysis, it is necessary to normalize or initialize the

data of the analysis matrix to obtain the initial value matrix.

(
Y′

a, X′
1, · · · , X′

b
)
=


y′a(1) x′1(1) · · · x′b(1)
y′a(2) x′1(2) · · · x′b(2)

...
...

. . .
...

y′a(n) x′1(n) · · · x′b(n)

 (28)

(3) Generate a difference matrix.
Perform a difference operation on the elements in the initial valuematrix according to

Formula (29), calculate the difference ∆ab between the robustness index of group a and the
economic characteristic index of group b in the nth row, and obtain the difference matrix
∆ as follows:

∆ab =
∣∣y′a(n)− x′b(n)

∣∣ (29)

∆ =


∆a1(1) ∆a2(1) · · · ∆ab(1)
∆a1(2) ∆a2(2) · · · ∆ab(2)

...
...

. . .
...

∆a1(n) ∆a2(n) · · · ∆ab(n)

 (30)

And calculate the maximum ∆max and minimum values ∆min of the difference matrix
using the following formula:

∆max = max(max∆) (31)

∆min = min(min∆) (32)

(4) Calculation of Grey Correlation Coefficient.
Calculate the correlation coefficient between the robustness index of group a and the

economic characteristic index of group b in the nth row λab(n) and form a correlation coef‑
ficient matrix as follows:
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λab(n) =
∆min + ρ∆max

∆ab(n) + ρ∆max
(33)

In the formula, ρ is a number with a resolution coefficient between 0 and 1, usually
taken as 0.5.

By taking the mean of each column in the correlation coefficient matrix, the grey cor‑
relation between the robustness index of group a and the economic characteristic index of
group b can be obtained, as shown below:

rab =
1
n

n

∑
i=1

λab(i) (34)

3.2. Improvement of Resolution Coefficient

The key to grey relational theory is Formula (29), whose calculation results reflect the
“closeness” between data. The smaller the calculation result, the stronger the correlation
between the data, and the higher the correlation coefficient in Equation (33). The traditional
grey relational theory has a resolution coefficient of 0.5 in Equation (33), which results in
the “individuality” of the elements being averaged and reduces the accuracy of the model.
Therefore, this article maps the idea of triangular fuzzy theory to the dynamic selection of
resolution coefficients.

Due to the resolution coefficient being between (0, 1), the two endpoint values are
taken as 0.99 and 0.01, as shown below [34]:

ρ =


0.99 , ∆ab(n) = 0

1 − ∆ab(n)
∆max

, 0 < ∆ab(n) < ∆max

0.01 , ∆ab(n) = ∆max

(35)

3.3. Entropy Weight Method

The entropy weight method can utilize the information reflected by sufficient objec‑
tive data for weighting. The higher the degree of data dispersion, the greater the weight
of this indicator. The characteristics of entropy weight method can highlight the impact of
the volatility of new energy output on various scheduling costs of microgrids. Under the
same degree of fluctuation, if the operating cost of a certain scheduling is more discrete,
it can highlight the impact of new energy on a certain cost and thus evaluate the schedul‑
ing potential of new energy on individual costs. The specific solution process is shown in
Figure 1.

(1) Matrix preprocessing.
Form an initial matrix of the indicator sequence X = (X1, X2, . . . ,Xb) consisting of the

operating costs of b microgrids and use the range method for dimensionless processing
based on the characteristics of the indicators, where the negative indicators are represented
by Equation (36) and the positive indicators are represented by Equation (37).

δ f
δx

=
[ f (t)− f (t − 1)]
[X(t)− X(t − 1)]

(36)

x′′
b(n) =

xb(n)− xmin
xmax − xmin

(37)

where xmax and xmin are the maximum and minimum values of the Xb sequence.
Form a matrix with Formulas (36) and (37) and the dimensionless sample, record it as
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X′′ =
(
X′′

1 , X′′
2 , . . . ,X′′

b
)
, and calculate the proportion of the b‑th scheduling cost in the total

cost using Formula (38).

x′′′
b(n) =

x′′
b(n)

n
∑

j=1
x′′

b(n)
(38)Algorithms 2025, 18, x FOR PEER REVIEW 10 of 23 
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(2) Calculation of entropy value and entropy weight.
The entropy value calculation for indicator b is as follows:

Tb =

n
∑

j=1
x′′′

b(n)· ln x′′′
b(n)

ln n
(39)

The entropy weight calculation for indicator b is as follows:

Hb =
1 − Tb

b
∑

j=1
(1 − Tb)

(40)

Considering the varying degrees of importance of each indicator, this article ap‑
plies weighted processing to the grey correlation degree calculated by Formula (34).
Therefore, the final weighted comprehensive correlation degree is the product of
Formulas (34) and (40).
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4. Model Solving
4.1. Model Linearization

(1) Equation (9) is determined by the max function, and the equivalent linear form of
the number of loop counts is as follows [35]:

χsoc,t − χsoc,t−1 ≤ χbat,t (41)

χbat,t ≤ χsoc,t (42)

χbat,t ≤ 1 − χsoc,t−1 (43)

(2) Based on the life model of discharge depth, the Formula (8) defines the discharge
depth of the battery at any time and also needs to define the segmentation of the discharge
depth at any time, as shown below:

Ddod,t =
N

∑
n=1

Ddod,n,t (44)

Dmin
dod,ngn,t ≤ Ddod,n ≤ Dmax

dod,ngn,t (45)

M

∑
m=1

gm,t = 1 (46)

where Ddod,n,t, Dmin
dod,n, and Dmax

dod,n, respectively, represent the segment, minimum value,
and maximum value of the battery discharge depth during time period t. gm,t is a
0–1 integer variable with a value of 1 that represents the state of charge of the battery in
the m‑th segment during time t.

4.2. Two‑Stage Robust Optimization

This article constructs a two‑stage robust optimization model and uses column and
constraint generation algorithms to solve the optimal economic dispatch scheme under the
worst‑case scenario. The sub‑problems are used to find the worst‑case scenario, while the
main problem continuously introduces the variables and constraints generated by the sub‑
problems, thereby narrowing the upper and lower bounds of the objective function to the
vicinity of the optimal solution. Describe the original problem in the following form [36]:

min
x

cT
1 x+max

u
min

y z
(cT

2 y+ cT
3 z)

s.t. Az+ Bx ≥ d
Ey+ Fu = 0
Gz+Hy ≥ h
Iz ≥ k
x,y,u≥0,z ∈ {0, 1}

(47)

In the formula, x, y, and z are optimization variables and u is an uncertain variable.
The specific variables represented are shown in the Formula (48). A, B, E, F, G, H, I, d,
h, and k are constant coefficient matrices corresponding to the constraints [37], where the
first constraint represents Equations (21) and (22) in the original problem. The second
constraint represents Equation (19) in the original problem. The third constraint repre‑
sents Equations (20) and (23)–(26) in the original problem. The fourth constraint represents
Equations (44)–(46) in the original problem.
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x =
[
Emax
bat , Pmax

WT , Pmax
PV , Pmax

load
]T

y =
[

Pdis
EOC,t, Pch

EOC,t, Pbuy,t, Psell,t, PG,t,
]T

z = [χbat,t, χsoc,t, χM,t, g1,t, · · · , gm,t]
T

u =
[
Pwt,t, Ppv,t, Pload,t

]T

(48)

4.2.1. Main Problem

For each sub‑problem in the model that finds the worst‑case scenario, new variables
are established in the main problem and the main problem is solved. The simplified form
of the main problem is as follows:

min
x

cT
1 x+ α

s.t. α ≥ cT
2 y+ cT

3 z
Azl + Bx ≥ d
Eyl + Ful = 0
Gzl +Hyl ≥ h
Izl ≥ k
x,y,u≥0,z ∈ {0, 1}
∀l ∈ k

(49)

where α is the auxiliary variable of the sub‑problem. k is the total number of iterations of
the model. yl and zl are the solution to the sub‑problem after l iterations. The ul is to find
the worst‑case scenario in the uncertain set after one iteration.

4.2.2. Sub‑Problems

The sub‑problem is used to find the worst‑case scenario and return the scenario to the
main problem. The simplified form of the sub‑problem is as follows:

max
u

min
y z

(cT
2 y + cT

3 z)

s.t. Eyl + Ful = 0
Gzl +Hyl ≥ h
Izl ≥ k
yl ,ul ≥ 0,zl ∈ {0, 1}
∀l ∈ k

(50)

Solving the max–min bilayer problem in the above equation, the inner min problem
is transformed into the max form according to the dual theory, and it is solved uniformly
with the outer max problem [38].

4.3. Solution Process

(1) Set the iteration number l = 0, give a set of uncertain variables u as the initial worst‑
case scenario, and set the upper bound UB = +∞ and lower bound of the collaborative
optimization model to LB = −∞.

(2) Solve the main problem Equation (49) based on the worst‑case scenario u∗
1 , obtain

the optimal solution, and update the objective function to the lower bound LB of themodel.
(3) Substitute the optimal solution obtained in step (2) into Equation (50) to solve the

sub‑problem, obtain the objective function value and uncertain variables after solving the
sub‑problem u∗

k+1, and update the upper bound UB of the model.
(4) Set a threshold ξ, and when the k‑th iteration is reached, if UB‑LB < ξ, stop the

model iteration and output the iterated objective function F and the optimal solution u∗
k ,



Algorithms 2025, 18, 36 12 of 21

y∗k , x∗k . When UB‑LB≥ ξ, add new variables and constraints, andmake k = k + 1, and return
to step (2) until the result meets the accuracy requirements.

5. Case Studies Analysis
5.1. Data Explanation

This article selects the load curve of a typical 24 h day in spring and optimizes the
output curves of wind turbines and photovoltaic power plants. The real‑time electricity
prices for demand‑side loads and power interactions betweenmicrogrids and distribution
networks in this model are shown in Figure 2.
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Figure 2. Real‑time electricity price of microgrid.

The discount rate r for the micro‑gas turbine unit, new energy, and energy storage
device in the text is set to 0.08, and the ratio εch and εdis of the maximum charging and
discharging power of energy storage to the maximum capacity of the battery is 0.25. The
robustness index of load power Γload is always 0.15, while the robustness indexes Γwt, Γpv,
and the initial value of thewind turbines andphotovoltaic power plants are all 0.05. During
the model building process, the operating parameters of each unit are shown in Table 1.

Table 1. Parameters of the microgrid model.

Unit Name Parameter Name Value Taking

Micro‑gas turbine unit

Unit output upper limit Pmax
G /kW 500

Lower limit of unit output Pmin
G /kW 50

Fuel cost cfuel/(￥/kWh) 0.6
Discounted YG years/year 15

New energy Discounted Ywt years/year 20
Discounted Ypv years/year 15

Energy storage device

Lower limit of state of charge 0.1
Upper limit of state of charge 0.9

Initial state of charge 0.5
Charge and discharge efficiency 0.95

Discounted Ybat years/year 10

Switching power of
distribution network

Power purchase upper limit Psell,max
M /kW 400

Upper limit of electricity sales power
Pbuy,max
M /kW

400

In the model presented in this article, the micro‑gas turbine unit generates a series of
polluting gasses during operation. Due to the fact thatwind and solar power generation do
not produce polluting gasses, they will not be discussed. The environmental parameters
of the microgrid are shown in Table 2.
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Table 2. Environmental parameters of miniature gas turbine set.

Pollutant Gasses Emission Coefficient (g/kWh) Governance Cost (JPY/kg)
CO2 889 0.210
SO2 1.8 1.842
NOx 4.6 62.964

5.2. Multi Scenario Sample Data Generation

In the model, the fluctuation degree in the wind turbine and photovoltaic power sta‑
tions is reflected in the value of robustness indexes Γwt and Γpv. To accurately assess the
impact of the volatility of new energy outputs on grid planning, the initial group sample
data are first generated when Γwt = Γpv = 0.03. Subsequently, while the robustness index of
the wind turbine Γwt = 0.03 remains unchanged, the robustness index of the photovoltaic
power station is gradually increased from 0.03 to 0.08, and a series of operating cost data af‑
fected by photovoltaic output fluctuations is obtained. Finally, while the robustness index
of the photovoltaic power station Γpv = 0.03 remains unchanged, the robustness index of
thewind turbine is gradually increased from 0.03 to 0.08, and a series of operating cost data
affected by the output fluctuation of the wind turbine are obtained. The final generated
sample data are shown in Table 3.

Table 3. Operating costs under changes in robustness indicators Γwt and Γpv.

Γwt Γpv

Initial
Investment
Cost/JPY

Equipment
Maintenance
Cost/JPY

Environmental
Governance
Costs/JPY

Total Cost of
Microgrid/

JPY

Time
/ms

0.03

0.03 181,472.08 12,967.28 4648.24 203,980.58 32.91
0.04 181,307.14 19,031.09 4702.38 202,407.29 31.69
0.05 181,116.65 19,154.91 4749.62 202,650.68 30.47
0.06 180,994.28 19,276.89 4786.97 202,865.76 29.25
0.07 180,863.33 19,386.59 4821.71 203,026.18 28.04
0.08 180,712.29 19,497.45 4856.18 203,264.19 26.90

0.04

0.03 180,572.62 19,543.18 4882.06 203,417.38 25.78
0.04 180,361.24 19,597.53 4924.20 203,675.53 24.55
0.05 179,946.72 19,646.31 4971.03 203,892.77 23.32
0.06 179,815.43 19,700.12 5021.37 204,016.66 22.15
0.07 179,693.21 19,752.88 5077.69 204,139.46 21.03
0.08 179,565.17 19,807.91 5124.58 204,259.25 19.98

0.05

0.03 179,447.52 19,866.50 5189.23 204,374.19 18.93
0.04 179,304.45 19,916.67 5248.69 204,419.32 17.88
0.05 179,154.07 20,072.35 5300.18 204,526.60 16.82
0.06 179,033.22 20,251.77 5357.24 204,642.23 15.94
0.07 178,288.53 21,251.08 5373.06 204,912.67 15.16
0.08 178,272.26 21,369.44 5392.10 205,033.80 14.37

0.06

0.03 178,149.82 21,472.37 5416.17 205,094.18 13.60
0.04 178,103.59 21,593.97 5431.05 205,168.57 12.78
0.05 178,067.16 21,769.91 5447.43 205,239.50 12.14
0.06 178,003.27 21,856.37 5471.38 205,304.46 11.59
0.07 177,956.54 22,116.75 5469.32 205,445.63 10.97
0.08 177,815.17 22,377.18 5467.28 205,586.80 10.56

0.07

0.03 177,673.75 22,637.52 5465.22 205,727.96 10.22
0.04 177,532.32 22,897.90 5463.17 205,869.13 9.83
0.05 177,390.89 23,158.29 5461.12 206,010.30 9.42
0.06 177,265.81 23,317.00 5465.10 206,047.91 8.99
0.07 177,140.72 23,475.71 5469.08 206,085.52 8.67
0.08 177,015.64 23,634.43 5473.06 206,123.13 8.34
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Table 3. Cont.

Γwt Γpv

Initial
Investment
Cost/JPY

Equipment
Maintenance
Cost/JPY

Environmental
Governance
Costs/JPY

Total Cost of
Microgrid/

JPY

Time
/ms

0.08

0.03 176,890.56 23,793.14 5477.04 206,160.73 8.06
0.04 176,765.47 23,951.85 5481.02 206,198.34 7.84
0.05 176,640.39 24,110.56 5485.00 206,235.95 7.51
0.06 176,533.32 24,261.97 5489.11 206,234.59 7.26
0.07 176,426.25 24,413.38 5493.23 206,233.23 7.09
0.08 176,319.18 24,564.79 5497.34 206,231.87 6.81

FromTable 3, it can be seen that as Gammawt andGamma PV represent the deviation
between predicted and actual costs, as Gamma wt and Gamma PV decrease, i.e., as the
number of iterations increases, the solving time of the column and constraint generation
algorithms gradually increases, and the time increases faster when the values of Gamma
wt and Gamma PV are larger.

Due to the excessive number of scenes, only the optimization results of Γwt = Γpv = 0.05
(Figure 3), Γwt = 0.05, Γpv = 0.08 (Figure 4), and Γwt = 0.08, Γpv = 0.05 (Figure 5) are pre‑
sented here.

Algorithms 2025, 18, x FOR PEER REVIEW 15 of 23 
 

0.08 176,319.18 24,564.79 5497.34 206,231.87 6.81 

From Table 3, it can be seen that as Gamma wt and Gamma PV represent the devia-
tion between predicted and actual costs, as Gamma wt and Gamma PV decrease, i.e., as 
the number of iterations increases, the solving time of the column and constraint genera-
tion algorithms gradually increases, and the time increases faster when the values of 
Gamma wt and Gamma PV are larger. 

Due to the excessive number of scenes, only the optimization results of Γwt = Γpv = 0.05 
(Figure 3), Γwt = 0.05, Γpv = 0.08 (Figure 4), and Γwt = 0.08, Γpv = 0.05 (Figure 5) are presented 
here. 

 

Figure 3. Optimization and dispatch results of microgrid (Γwt = Γpv = 0.05). 

 
Figure 4. Optimization and dispatch results of microgrid (Γwt = 0.05, Γpv = 0.08). 

0 5 10 15 20 25

Time/h

-200

-100

0

100

200

300

400

500

600

700

800

Po
w

er
/k

W

Output of micro−combustion unit
Photovoltaic output
Wind power output
Microgrid power purchase
Load power

0 5 10 15 20 25
Time/h

-200

-100

0

100

200

300

400

500

600

700

800

Po
w

er
/k

W

Output of micro−combustion unit
Photovoltaic output
Wind power output
Microgrid power purchase
Load power

Figure 3. Optimization and dispatch results of microgrid (Γwt = Γpv = 0.05).

From the comparison between Figures 3 and 4, it can be seen that the increase in the
fluctuation of photovoltaic power station output has a significant impact on the scheduling
of typical spring days from 11:00 to 15:00. The output of micro combustion units increases
significantly, photovoltaic consumption decreases significantly, and there are no signif‑
icant fluctuations in electricity sales. From the comparison between Figures 3 and 5, it
can be seen that the increase in fluctuation of wind turbine output has a greater impact
on typical spring days from 11 a.m. to 15 p.m. and from 20 to 23 p.m. The output of
micro combustion units significantly increases during lunchtime, while the wind power
output of the system is lower at night. Therefore, power balance is maintained by purchas‑
ing electricity.
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Figure 4. Optimization and dispatch results of microgrid (Γwt = 0.05,Γpv = 0.08).
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Figure 5. Optimization scheduling results of microgrid (Γwt = 0.08,Γpv = 0.05).

In summary, when the fluctuations inwind turbine and photovoltaic power plant out‑
puts increase, the system chooses to maintain power balance by increasing the output of
micro combustion units at noon, and the impact and mode of the two are similar. But at
night, the fluctuations in wind turbines have a significant impact on the scheduling and
operation of microgrids, especially in terms of the amount of electricity purchased by mi‑
crogrids. This is because the uncertainty of the wind still exists at night, and the factors
such as the ambient temperature at night will also affect the performance of the wind tur‑
bine, making its output power not as stable as during the day. The photovoltaic power
station mainly relies on solar radiation for power generation, and its output power fluctu‑
ateswith the change in solar radiation intensity, angle, and other factors during the day. At
midday, when the solar radiation is relatively stable, the power fluctuations are relatively
small. At night, without solar radiation, the output of the photovoltaic power station is
zero, which will not affect the system because of the continuous fluctuations in natural
energy, like wind turbines.
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In terms of the microgrid dispatching strategy, there is no power input from the pho‑
tovoltaic power station at night as a buffer. Once the wind turbine fluctuates, the power
balance of the whole microgrid will be greatly affected. Because, at this time, it can only
rely on another limited power supply to adjust, such as energy storage system and micro
combustion units, the energy storage system may have problems such as capacity limits,
so the impact of the fluctuation of wind turbines on the dispatching operation of the mi‑
crogrid will be more prominent.

5.3. Calculation and Analysis of Scheduling Potential

Calculate the (35) correlationdegree of the data in Table 3 usingEquations (28) and (40),
calculate the entropy weight using Equation (36), and finally calculate the weighted corre‑
lation degree. Among them, ρ = 0.5 represents the traditional grey correlation theory, and
the selection of dynamic ρ is an improved grey correlation theory.

(1) Comparative analysis of grey relational theory.
According to Table 4, the improved grey correlation theory effectively weakens the in‑

fluence of the maximum value of the difference matrix in the calculation of the correlation
coefficient by redefining the selection of the resolution coefficient ρ. Meanwhile, as shown
in Table 4, the application of the improved algorithm effectively highlights the correlation
between the initial investment cost and environmental governance cost with the total op‑
erating cost of the microgrid, thereby reflecting the high correlation between the volatility
of new energy output and the initial investment cost and environmental governance cost.

Table 4. Comparison of the grey correlation degree for the different algorithms.

Calculation
Method Unit Name

Initial
Investment

Cost

Equipment
Maintenance

Cost

Environmental
Governance

Costs

Weighted
Correlation
Degree

Ρ = 0.5

Photovoltaic
power
station

0.882 0.514 0.797 0.716

Wind turbine
unit 0.916 0.559 0.891 0.763

Bender’s de‑
composition
algorithm

Photovoltaic
power
station

0.893 0.496 0.813 0.721

Wind turbine
unit 0.924 0.542 0.899 0.774

Wavelet
analysis

Photovoltaic
power
station

0.887 0.507 0.808 0.718

Wind turbine
unit 0.921 0.549 0.910 0.767

Variable
correlation

test

Photovoltaic
power
station

0.914 0.442 0.837 0.732

Photovoltaic
power
station

0.937 0.535 0.916 0.791

Dynamic ρ

Photovoltaic
power
station

0.932 0.413 0.865 0.738

Wind
turbine unit 0.951 0.527 0.929 0.798
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(2) Analysis of the correlation between fluctuations in new energy output and various
cost indicators.

According to Table 4, the ranking of the degree of correlation between new en‑
ergy and the initial investment cost, equipment maintenance cost, and environmental
governance cost of the local microgrid is as follows: distributed photovoltaic power
station > wind turbine. By comparing and analyzing the differences in various cost in‑
dicators, the correlation between wind turbines and equipment maintenance costs and en‑
vironmental governance costs is significantly higher than that of distributed photovoltaic
power plants. Therefore, in areas with heavy environmental pollution, the impact of wind
turbines in new energy should be fully considered. The correlation between initial invest‑
ment cost and new energy of wind turbines is slightly greater than that of distributed pho‑
tovoltaic power plants, so wind turbines should be given special consideration on the basis
of similar local photovoltaic and wind energy resources.

(3) Weighted correlation analysis.
According to Table 4, after comprehensive weighting of the cost indicators of new

energy and various power grid operations, they are sorted by size as follows: wind
turbines > distributed photovoltaic power plants. Therefore, it can be seen that when there
is an equal fluctuation in the output of new energy in the region, the cost of wind turbines
is greater than that of distributed photovoltaic power plants. Therefore, in the process of
long‑term planning for new energy in this area, emphasis should be placed on considering
the impact of wind turbines on overall operating costs.

(4) Comparative analysis of weighted correlation degree with other algorithms.
According to Table 4, compared to other correlation analysis algorithms, the improved

grey correlation theory proposed in this paper can better consider the correlation between
initial investment costs and environmental governance costs, resulting in a better initial
investment cost, equipment maintenance cost, and environmental governance cost. The
weighted correlation degrees of the improved grey correlation theory in this article are
0.738 and 0.798 in the photovoltaic power station and wind turbine unit, respectively.

6. Conclusions
This paper establishes a robust optimization model for the coordinated optimization

of new energy sources, energy storage devices, and micro‑gas turbine units, with the goal
of minimizing the operating cost of the microgrid by using the two‑stage robust optimiza‑
tion method. The linearization of the constraint conditions is achieved through the large
M method, and the correlation between the new energy and the operating costs as well as
the total operating costs of the microgrid are obtained through the improved grey correla‑
tion theory and entropy weight method, respectively, to quantitatively analyze the impact
of new energy on grid dispatch and identify the key new energy sources affecting micro‑
grid planning. The experimental results show that the improved grey correlation theory
optimization scheduling algorithm for new energy microgrids proposed obtains weighted
correlation degrees of 0.730 and 0.798 for photovoltaic power stations and wind turbines,
respectively, which are 3.1% and 4.6% higher than traditional grey correlation theory. In
addition, the equipmentmaintenance costs of thismethod are 0.413 and 0.527, respectively,
which are 25.1% and 5.4% lower compared with the traditional method, respectively, indi‑
cating that the method effectively improves the accuracy of quantitative analysis.

This paper only considers the economic optimality of the integrated system of new
energy sources. However, carbon trading is a significant part of the cost, so it should be
fully considered and as many new energy sources as possible should be used to fully con‑
sider environmental protection issues. Under the guidance of the “dual carbon” goal, the
research and practice of optimizing the dispatch of new energy sources are particularly
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critical. In the future, it is necessary to deepen the understanding of the characteristics of
new energy sources based on existing research and improve the optimization scheduling
model to enhance the accuracy and efficiency of the algorithm. At the same time, full con‑
sideration should be given to the energy coupling relationship to ensure that the entire
system not only achieves the optimal economic efficiency, but also the most environmen‑
tal protection.
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Glossary
Variable explanation table.

Variable Definition
Γwt Robustness index characterizes the volatility of uncertain variables of wind turbines

Γpv
Robustness index characterizes the volatility of uncertain variables in distributed photovoltaic
power stations

Γload Robustness indicators characterize the volatility of load‑uncertain variables
U Uncertain set of boxes with bounded closure
P0
wt,t The predicted output power of the wind turbine in period t

P0
pv,t Predicted output value of the distributed photovoltaic power station in the t period

P0
load,t The predicted demand value for the load during the t period

Pwt,t The actual output value of the wind turbine in the period t
Ppv,t The actual output value of the distributed photovoltaic power station in the t period
Pload,t Demand value of the load during the t period
∆Pmax

wt,t Maximum fluctuation of wind turbines in period t
∆Pmax

pv,t Maximum fluctuation amount of the distributed photovoltaic power station in the t period
∆Pmax

load,t The maximum fluctuation of the load in period t
rwt,t Auxiliary variable with fluctuation upper and lower limit of an uncertain variable
rpv,t Auxiliary variable with fluctuation upper and lower limit of an uncertain variable
rload,t Auxiliary variable with fluctuation upper and lower limit of an uncertain variable
SOCt State of charge of the battery during period t
SOCt−1 Charge state of the battery during the t − 1 period
Pchbat,t Charging power of the battery during period t
Pdisbat,t Discharge power of the battery during period t
ηch Charging efficiency of the energy storage device
ηdis Discharge efficiency of the energy storage device
EEN Rated battery capacity
χbat,t A 0–1 integer variable
Nlife Number of cycles when the battery reaches the upper life limit
Dcyc
dod Discharge depth of the storage battery

N0 Number of cycles to reach the upper lifetime limit when the battery works at 100% discharge depth
kp Fitting coefficient of the power function
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kp Factory parameters of each battery
N0 Factory parameters of each battery
Ddod,t−1 Discharge depth during the t − 1 period
Dcyc
dod,t−1 Cycle discharge depth in period t

χSOC,t A 0–1 integer variable
χbat,t A 0–1 integer variable as the number of batteries
neq,t Equivalent full cycles of the battery during period t
Neq Daily equivalent full cycles of the battery
Cinv Total initial investment cost of the microgrid
Copen Operation and maintenance costs of the microgrid equipment
Emax
bat Maximum battery capacity of the energy storage device

Pmax
i Investment cost of the maximum technical output of the i‑th power equipment

ci Investment cost per unit power of the i‑th power equipment
FCRE(ri, Yi) Annual fund recovery rate
ri The discount rate of the i‑th electric power equipment
Yi The discounted years of the i‑th electric power equipment
Copen
G Operating costs of a micro‑gas turbine

Cgrid Microgrid electricity purchase and sale costs
Cop Maintenance costs of the equipment
cfuel,t Fuel costs during the t time period
PG,t Real‑time output of the micro‑gas turbine in the t period
kn,t The n th pollutant discharge of the micro‑gas turbine in period t
cn,t Unit price of n pollutant treatment of micro‑gas turbine in t
cbuy,t Unit price of electricity purchased during period t
csell,t Unit price of electricity sold in the t period
PbuyM,t The power purchased by the microgrid buys from the distribution network during period t
PsellM,t The power that the microgrid sells to the distribution network during period t

Ci
op

Maintenance cost unit price of the energy storage device, wind turbine, distributed photovoltaic power
station, and micro combustion unit

Pi,t
Output of energy storage device, wind turbine, distributed photovoltaic power station, and micro
combustion unit in the t period

Pmin
G Minimum technical output of a micro‑gas turbine

εch Maximum charge and discharge power of energy storage
εdis Ratio of the maximum battery capacity
SOCmin Lower limit of the battery charge state
SOCmax Upper limit of the battery charge state
SOCbeg Initial charge state of the scheduling cycle T battery
SOCend Final charge state of the T battery during the scheduling cycle
Pbuy,max
M The upper limit of the power that the microgrid buys from the distribution network

Psell,max
M The upper limit of the power that the microgrid sells to the distribution network

χM,t A 0–1 integer variable
Y = (Y1, Y2, . . . , Ya) The a new energy robustness index constitutes the index sequence
X = (X1, X2, . . . ,Xb) The index sequence of the dispatching and operation cost composition of the b microgrid
n Represents the number of economic cost data groups generated after changing the robust coefficient
∆ Differential matrix
∆ab The difference between the robustness index in group a and the economic characteristic index in group b
∆max The maximum value of the difference matrix
∆min Minimum value of the difference matrix

λab(n)
The association coefficient of the robustness index of group a and the economic characteristic index of
group b in row n

ρ Resolution coefficient, a number between 0–1
rab A group of grey correlation of robustness indicators and the economic characteristic index of group b
xmax The maximum value of the Xb

xmin The minimum value of the Xb
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Tb Entroropy of the index in term b
Hb Entropy weight of the indicators in term b
Ddod,n,t The discharge depth of the battery in period t
Dmin
dod,n Minimum value of the battery discharge depth in period t

Dmax
dod,n Maximum discharge depth of the battery in period t

gm,t A 0–1 integer variable
x, y, z Optimize the variable
u Unsure variable
A, B, E, F, G,H, I, d, h, k The constant–coefficient matrix of the corresponding constraints
α Secondary variables of the sub‑problem
k Total number of iterations of the model
yl , zl Solution of the sub‑problem after one iteration
ul The worst scenario found in an uncertain set after l iterations
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