
Academic Editors: Shuai Li and

Dunhui Xiao

Received: 26 November 2024

Revised: 2 January 2025

Accepted: 6 January 2025

Published: 12 January 2025

Citation: Garcke, J.; Ruttscheidt, S.

Finite Differences on Sparse Grids for

Continuous-Time Heterogeneous

Agent Models. Algorithms 2025, 18, 40.

https://doi.org/10.3390/a18010040

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Finite Differences on Sparse Grids for Continuous-Time
Heterogeneous Agent Models
Jochen Garcke 1,2,* and Steffen Ruttscheidt 1

1 Institut für Numerische Simulation, Universität Bonn, 53111 Bonn, Germany
2 Fraunhofer SCAI, 53754 Sankt Augustin, Germany
* Correspondence: garcke@ins.uni-bonn.de

Abstract: We present a finite difference method working on sparse grids to solve higher
dimensional heterogeneous agent models. If one wants to solve the arising Hamilton–
Jacobi–Bellman equation on a standard full grid, one faces the problem that the number
of grid points grows exponentially with the number of dimensions. Discretizations on
sparse grids only involve O(N(log N)d−1) degrees of freedom in comparison to the O(Nd)

degrees of freedom of conventional methods, where N denotes the number of grid points
in one coordinate direction and d is the dimension of the problem. While one can show con-
vergence for the used finite difference method on full grids by using the theory introduced
by Barles and Souganidis, we explain why one cannot simply use their results for sparse
grids. Our numerical studies show that our method converges to the full grid solution for
a two-dimensional model. We analyze the convergence behavior for higher dimensional
models and experiment with different sparse grid adaptivity types.

Keywords: sparse grids; Hamilton–Jacobi–Bellman equation; high-dimensional approximation

1. Introduction
In recent years, advances in economic research are due to the formulation of models

that do not admit closed form solutions. One is particularly interested in models of higher
dimensionality, such as heterogeneous agent models which may have a large amount of
agents that differ in some dimensions. These heterogeneities, such as productivity, can
be modeled by stochastic processes. Further, there are models with a large number of
state variables, e.g., New Keynesian models, and asset pricing models may feature many
different assets, while multi-country models may have a large number of countries.

Thus, it is important to develop efficient numerical methods to approximate and
compute the solution of higher dimensional problems. For this purpose we propose and
investigate adaptive sparse grids. With standard discretizations, one faces the problem
that one cannot introduce many variables due to the curse of dimensionality, a terminol-
ogy coined by Bellman in [1] that describes the exponential dependence of the overall
computational effort on the number of dimensions. In this work, we study how to solve
continuous-time heterogeneous agent models with multiple assets in higher dimensions
with a finite difference (FD) approach on sparse grids that is based on standard interpolation
and allows easy implementation.

In [2], a finite difference method is used to solve the Hamilton–Jacobi–Bellman (HJB)
equation in the economic context. This approach was improved in [3] to handle borrowing
constraints by mathematically recasting them as state constraints. The computational
method was further adapted in [4] to handle non-convexities and multiple assets.

Algorithms 2025, 18, 40 https://doi.org/10.3390/a18010040

https://doi.org/10.3390/a18010040
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8334-3695
https://doi.org/10.3390/a18010040
https://www.mdpi.com/article/10.3390/a18010040?type=check_update&version=3

Algorithms 2025, 18, 40 2 of 29

In [5], finite differences on sparse grids were introduced and several theoretical results
regarding consistency, stability, and convergence are shown. Further studies have been
made in [6–8]. Nevertheless, the theory remains limited mostly due to the difficult handling
of specific basis transformations used in the sparse grid finite difference operators. Fur-
thermore, the implementation is non-trivial and most sparse grid libraries do not feature
these operators.

Therefore, we introduce and employ a finite difference method following [9], which is
based on interpolation on adaptive sparse grids and which can be implemented easily using
existing sparse grid implementations. Notice that interpolation-based ideas were already
presented in [10]. With the presented finite difference approach using adaptive sparse grid
interpolation, we are able to solve continuous-time heterogeneous agent models in higher
dimensions. Note that we use a finite difference approach following [3] to solve these agent
models, but instead of implementing it on full grids we performed it on adaptive sparse
grids. This allowed the numerical treatment of scenarios in up to six dimensions, thereby
extending the range of possible numerical studies, in particular economic.

This article is structured as follows. The setup and motivation is given in Section 2,
where we present a two-dimensional model problem. In Section 3, we briefly describe
sparse grids and the employed finite differences on sparse grids [9]. An investigation of
sparse grid interpolation is carried out in Section 3.3 to explain why we do not simply
obtain convergence by means of Barles and Souganidis [11], which comes down to the
non-monotonicity of sparse grid interpolation. We further present some approaches to
overcome some of the arising issues regarding non-convergence. This is followed by a
detailed presentation of the algorithm and its implementation in Section 4. Even though
we do not have a theoretical convergence result, we give numerical results in Section 5 that
show that our sparse grid solution converges to the full grid solution for a two-dimensional
model. We further implement higher dimensional models for our numerical experiments in
which we analyze the convergence behavior for regular sparse grids and for adaptive sparse
grids with different adaptivity approaches. We conclude this work with an outlook in
Section 6. The Appendix contains information about the implemented higher dimensional
models and the choice of parameters for the numerical experiments.

2. Heterogeneous Agent Models as Optimal Control Problems
In this work, we aim to solve heterogeneous agent models. Even though traditionally

heterogeneous agent models have mostly been set in discrete time, recently there has
been progress using continuous-time formulations. Several well-known heterogeneous
agent models (e.g., Bewley, Huggett, and Aiyagari models) were recasted in continuous
time by [3]. They state computational advantages relative to discrete time, including the
handling of borrowing constraints as a simple boundary condition on the value function,
the numerical solution of first order conditions characterizing optimal policy functions,
and the observation that continuous-time problems with discretized state space generate
sparsity in the matrices characterizing the model’s equilibrium conditions. Even though
we restrict ourselves to certain types of models in our experiments, we point out that the
presented framework is basically applicable to any heterogeneous agent model. We here
mainly follow [12]. For mathematical descriptions and proofs, see [13].

2.1. Optimal Control Problems

Most deterministic infinite time optimal control problems in continuous time can be
written as

max
{α(t)}t≥0

J(x, α), with J(x, α) :=
∫ ∞

0
e−ρth(x(t), α(t))dt (1)

Algorithms 2025, 18, 40 3 of 29

such that the law of motion for given state x and control α

ẋ(t) = f (x(t), α(t)) and α(t) ∈ A

holds for t ≥ 0 and x(0) = x0 using the notation ẋ(t) = d
dt x(t).

Here, x ∈ X ⊂ Rm denotes the state vector, α(t) ∈ A ⊂ Rn the control vector, and
h : X × A → R the instantaneous return function. Further, ρ ≥ 0 denotes the discount rate
which discounts future returns. The state changes depending on the current state and action
(control), following f : X× A→ Rm. Note that there are finite time and infinite time models.
In economics, infinite time models are often just used to simplify theoretical aspects.

The value function associated to the problem (1) is defined as

v(x) = max
{α(t)}t≥0

J(x, α).

We define the optimal control as α̂(t) ∈ A, t ≥ 0 such that

v(x) = J(x, α̂).

To solve optimal control problems, one uses the dynamic programming principle (DPP)
introduced by Bellman; see [14]. It is based on the recursive structure of the problem. By
using this principle, one can show that the value function satisfies the HJB equation [15],

ρv(x) = max
α∈A

h(x, α) + f (x, α)T∇xv(x)·, ∀x ∈ X. (2)

To compute the optimal controls, one typically uses the first order conditions (FOCs)
on the HJB equation. For that, one computes the derivatives with respect to the different
controls and sets them to zero. The optimal controls for all states are collected in the
so-called policy function.

2.2. Optimal Control Problems in Economics

The above framework can be used to model economic settings. We present a slightly
simplified two asset model from [4]; further details and economic background can be found
therein. Note that we have omitted the initial state in the following and denoted the time
dependence of the states by a subscript t.

Specifically, we want to solve the following maximization problem

max
{ct ,dt}t≥0

E0

∫ ∞

0
e−ρth(ct)dt (3)

subject to

ḃt = wzt + rb(bt)bt − dt − χ(dt, at)− ct (4a)

ȧt = raat + dt (4b)

zt = Poisson with intensities λ(z, z′) (4c)

bt ≥ b
¯
, at ≥ 0. (4d)

Here, bt denotes liquid assets and at illiquid assets. The respective returns on these assets
are rb and ra, where rb(bt) summarizes the interest rate schedule faced by households.
Further, we have consumption ct, deposits dt, and the transaction cost function χ. Instead
of obtaining wage w, one receives uninsured income wzt, where we assume that the
exogenous productivity state z evolves stochastically over time, which is modeled as a
Poisson or diffusion process.

Algorithms 2025, 18, 40 4 of 29

While wage and consumption are self-explanatory, we aim to explain the other compo-
nents of the model. One can label an asset as liquid or illiquid depending on the extend to
which transaction costs are involved for buying or selling them. As conducted in [4], we
define liquid assets as deposits in financial institutions’ saving, checking, call and money
market accounts, government bonds, and corporate bonds net of revolving consumer credit.
The rate of returns indicates at which rate the assets generate earnings. Note that for negative
bt, this is a borrowing rate. A borrowing constraint is the maximum amount of money an
agent can borrow, e.g., from banks, firms, or governments [3]. It is modeled as bt ≥ b

¯
.

Note that b
¯
= 0 implies that the agent cannot borrow, but just save. Contrary to liquid

assets bt, illiquid assets at cannot be sold that easily without losing value since (higher)
transaction costs for selling and buying are involved. The deposit rate is the amount one
transfers into the other account. If dt > 0, one deposits into the illiquid account and if
dt < 0, one withdraws from the illiquid account. Households have to pay a transaction cost
χ(dt, at) for depositing or withdrawing from their illiquid account. In [4], it is pointed out
that in the equilibrium, illiquid assets pay a higher return than liquid assets due to the
transaction costs, i.e., ra > rb.

In the framework given in Section 2.1, we have the state x(t) = (bt, at) consisting of
liquid bt and illiquid at assets. The control α(t) at time t reflects the consumption ct and
deposit dt. Moreover, the state changes f (x(t), α(t)) = (wzt + rb(bt)bt − dt − χ(dt, at)−
ct, raat + dt)T at time t follows (4a) and (4b). Thus, at time t, for the asset state (bt, at), we
want to choose an optimal control (ct, dt), i.e., how much we consume and deposit, to
maximize (3). Note again that this choice directly results in a change in the state.

A standard choice for the return function h(c) in (3) is the Constant Relative Risk
Aversion (CRRA)-utility function u given by

u(c) =
c1−γ

1− γ
, (5)

with risk aversion γ > 0. Note that u is strictly convex and strictly monotonously increasing
in c.

We use in (4a) the transaction cost function χ from [16] given by

χ(d, a) = χ0|d|+
χ1

2

(
d
a

)2

a + χ21{d ̸=0},

with the derivative with respect to d given by

∂dχ(d, a) = χ01{d>0} − χ01{d<0} + χ1
d
a

.

Here, the linear component χ0 > 0 generates inaction in optimal deposit decisions. The
quadratic term with χ1 > 0 ensures that deposit rates d/a are finite, so that households’
asset holdings never jump.

By using standard arguments, one obtains the HJB equation

ρv(b, a, zi) =max
c,d

u(c)

+ ∂bv(b, a, zi)(wz + rb(b)b− d− χ(d, a)− c)

+ ∂av(b, a, zi)(ra + d)

+
2

∑
j=1

λ(i, j)(v(b, a, zj)− v(b, a, zi)),

(6)

Algorithms 2025, 18, 40 5 of 29

for i = 1, 2 for the two state Poisson process. The first order conditions with respect to c
and d yield

∂cu(c) = ∂bv(b, a, z), (7a)

∂av(b, a, z) = ∂bv(b, a, z)(1 + ∂dχ(d, a)) (7b)

and thus we can simply compute the optimal consumption and optimal deposits given the
value function derivatives. The optimal consumption is then given by

c = (vb(b, a, z))−
1
γ .

Using our cost function, we obtain the optimal deposits for illiquid assets

d = d+︸︷︷︸
case d>0

+ d−︸︷︷︸
case d<0

=

((va

vb
− 1− χ0

) a
χ1

)+

+

((va

vb
− 1 + χ0

) a
χ1

)−
.

(8)

Both can be collected per state to obtain the policy function given the value function.
In (4), the productivity zt follows a Poisson process with intensities λ(z, z′). The setting

can be easily extended to diffusion type stochastic processes. Thus, productivity, which is a
measure for the output per unit of input, is modeled such that it influences the households
income as wzt. For the same model setup, one could also interpret z as a specific skill that
influences the income. Note that all agents face different productivity shocks and thus this
is an example of an economic model featuring heterogeneity.

Higher Dimensional Models

In the appendix, we give higher dimensional models that are natural extensions of this
two-dimensional model, where we add assets such as housing ones or multiple diffusion
type stochastic processes for different types of productivity.

2.3. Approaches Used in Economics to Handle High-Dimensional Discrete Time Model Problems

We refer to [17] for a broad overview of computational methods for solving high-
dimensional discrete time economic models. Let us briefly summarize the most important
approaches and additionally reference some more recent works.

Conventional numerical methods to solve dynamic economic models do not allow
feasible or accurate computations in higher dimensions. Stochastic simulation algorithms
build on Monte Carlo integration and least square learning. When the former does not
achieve a high accuracy, the latter may become unstable. Further, projection methods build
on tensor product constructions and are thus not feasible in high dimensions. Last but not
least, perturbation methods that solve for a steady state by using Taylor expansions have
uncertain accuracy.

To overcome the above described issues, the approaches were adapted to handle high-
dimensional problems. In [18], a generalized stochastic simulation approach is proposed
that replaces the Monte Carlo integration with a deterministic one, and the least squares
learning with numerically stable regression methods. In [19], sparse grids are used to
replace the expensive tensor product grids. For perturbation methods that are feasible in
higher dimensions, see [20,21].

Sparse grids in combination with a fixed point iteration on the Euler equation are
proposed in [22] to solve a multi-country model featuring up to twenty state variables.
Combining it with a simulation to determine the high probability area and then using a
principal components transformation allows it to focus the computation on the relevant do-

Algorithms 2025, 18, 40 6 of 29

main. Parallel adaptive sparse grids were used in [23] to solve high-dimensional stochastic
dynamic models where functions are interpolated on a sparse grid either within time or
value iterations. Further, in [24], dynamic portfolio choice models are solved with adaptive
sparse grids, where in addition to an adaptive approximation of the value function, separate
adaptive sparse grids for policy functions are also computed. A recent review on sparse
grids for dynamic economic models can be found in [25]. The finite difference operators on
sparse grids from [5] were recently adapted for economic applications in [26].

For a general overview of stochastic optimal control in the discrete time case, we refer
to [27] and the references therein.

3. Sparse Grids
Sparse grids were introduced in [28] and date back to [29]. We give only a short

introduction here. See [30–32] for details and approximation properties.
To construct sparse grids, one uses a tensor product construction to obtain a multi-

dimensional basis on the d-dimensional unit cube Ω̄ := [0, 1]d from the one-dimensional
hierarchical basis. We use the multi-index l = (l1, . . . , ld) ∈ Nd to denote the level. We then
consider the set of d-dimensional rectangular grids Ωl with mesh size

hl := (hl1 , . . . , hld) := 2−l.

With each individual grid point xl,i, where i indicates its spatial position, we associate a
piecewise d-linear nodal basis function,

Φl,i(x) :=
d

∏
j=1

ϕlj ,ij
(xj),

which is the product of the one-dimensional basis functions and has a support of size
2hl. The one-dimensional ϕlj ,ij

(xj) are the well-known hat functions. Using these basis
functions, we can define the d-dimensional nodal function spaces

Vl := span{Φl,i : 1 ≤ i ≤ 2l − 1}

which are zero on the boundary ∂Ω and consist of piecewise d-linear functions, and the
d-dimensional hierarchical increment spaces

Wl := span{Φl,i : i ∈ Nd : 1 ≤ i ≤ 2l − 1, ij odd ∀ 1 ≤ j ≤ d }.

Let us define the full grid spaces

Vn := V(n,...,n) =
⊕
|l|∞≤n

Wl,

where each function f ∈ Vn can be represented as

f (x) = ∑
|l|∞≤n

∑
1≤i≤2l−1,

ij odd ∀1≤j≤d

αl,i ·Φl,i(x), (9)

and αl,i ∈ R are the coefficients of the representation in the hierarchical tensor product basis.
We can generalize the hierarchical representation (9) to different levels of discretization k
per dimension, i.e., f ∈ Vk, by replacing |l|∞ ≤ n in the first sum by li ≤ ki, ∀1 ≤ j ≤ d.

Algorithms 2025, 18, 40 7 of 29

Now consider the d-linear interpolation of a function f by a fn ∈ Vn, i.e., a representa-
tion as in (9). For illustration, we look at the linear interpolation in one dimension; for the
hierarchical coefficients αl,j, l ≥ 1, i odd, it holds

αl,i = f (xl,i)−
f (xl,i − hl) + f (xl,i + hl)

2
= f (xl,i)−

f (xl,i−1) + f (xl,i+1)

2

= f (xl,i)−
f (xl−1,(i−1)/2) + f (xl−1,(i+1)/2)

2
.

This illustrates why the αl,i are also called hierarchical surplus: they specify what has to be
added to the hierarchical representation from level l − 1 to obtain the one of level l. We can
rewrite this in the following operator form

αl,i =

[
−1

2
1 − 1

2

]
l,i

f

and with that we generalize to the d-dimensional hierarchization operator as follows,

αl,i =

(
d

∏
t=1

[
−1

2
1 − 1

2

]
lt ,it

)
f . (10)

We denote H with the hierarchization operator that performs the transformation (10) from the
nodal function values of f ∈ Vn to obtain all the arising hierarchical values αl,i. The inverse
operator E = H−1 is called the dehierarchization operator and computes from the hierarchical
values αl,i the corresponding (nodal) function values f on all the grid points.

The idea is now to use, instead of full grid spaces, sparse grid spaces V̂n of level n,
defined by

V̂n :=
⊕

|l|1≤n+d−1

Wl,

where instead of the maximum of the level indices their sum is used. Here, hierarchical
basis functions with a small support, and therefore a small contribution to the function
representation [30,31], are not included in the discrete space V̂n of level n anymore. Note
that the change from n to n + d− 1 has to do with the boundary treatment, the underlying
aspects are not relevant in the scope of this work, they can be found, e.g., in [31]. A function
in V̂n is represented in the hierarchical basis analogue to (9) as

f (x) = ∑
|l|1≤n+d−1

∑
1≤i≤2l−1,

ij odd ∀1≤j≤d

αl,i ·Φl,i(x). (11)

We define the set In of all indices of functions in V̂n by In := {(l, j)||l|1 ≤ n + d− 1, 1 ≤ i ≤
2l − 1, ij odd ∀1 ≤ j ≤ d}.

For a simplified exposition, we have so far only considered functions that are zero on
the boundary of the domain. To allow non-zero boundary values, one introduces additional
nodes on the boundary. This can be achieved by adding two boundary points on level l = 1
in the construction. By conducting this, we can obtain a modified set of subspaces W̃l by
the construction explained before.

See [25,26,30–32] for further background and details.

3.1. Finite Difference Schemes on Sparse Grids

Finite differences on sparse grids were introduced and studied in [5], where con-
sistency proofs and convergence results are given; see also [6,7,33]. The construction of

Algorithms 2025, 18, 40 8 of 29

finite difference operators is based on a dimensional splitting combined with the nodal to
hierarchical basis transformation (10) and its respective back-transform.

Let us first describe the original sparse grid finite difference approach, where operators
are a composition of three partial operators [5]:

• A basis transformation from nodal to hierarchical basis (10) in all dimensions but the
dimension j, in which we aim to use the finite difference stencil.

• Application of a finite difference stencil in dimension j with mesh size given as the
local step size to the neighboring grid point in dimension j.

• A basis transformation from hierarchical to nodal basis, i.e., reverse of (10), in all
dimensions but dimension j.

The finite difference operators use per dimension the neighboring grid points of the
respective grid point, i.e., the closest grid points in the dimension. For the approximation of
the derivative on regular sparse grids, one uses appropriate equidistant difference stencils.
If adaptive refinement, as later explained in Section 3.2, is used, the grid points in the
different dimensions are no longer equidistant, that is the distance can no longer be defined
based on the grid refinement level, but the stencil is still chosen such that the closest
neighbors in the respective dimensions are used.

We consider an alternative approach [9], which employs additional points and is
simpler to implement since it only involves function evaluations. Instead of using the
function values on the sparse grid points, one interpolates on nodes that we will refer to
as ghost nodes. This way we do not have to use basis transformations such as (10) and one
could simply take any sparse grid library, such as SG++ [32], to implement this approach.

To describe the approach from [9], we first define the above noted ghost points.
Afterwards, we describe interpolation operators working on these points. Finally, we
introduce the finite difference operators by using these interpolation operators.

To define ghost nodes, we start by defining the ghost node step size.

Definition 1 (Ghost node step size). We define the ghost node step size hgj in dimension

j, 1 ≤ j ≤ n, for a grid point xl,i by hgj := 2−kj where k j denotes the maximal level used in
dimension j.

Note that this is half of the size of the smallest support of the basis functions in this
dimension. This makes sense since for this step size the local behavior of the approximation
is still captured. For adaptive sparse grids, one could also take a bigger distance in some
grid points, but due to the linearity of the approximation in this part, this does not change
the result.

Note that for the different sparse grid operators, we need to interpolate on different
points. For the forward difference, we have to add the ghost node step size in the respec-
tive dimension and for the backward difference we have to subtract it in the respective
dimension. We refer to them as forward difference ghost nodes and backward difference ghost
nodes. Examples for forward difference ghost nodes are given in Figure 1. Notice that
for the second derivative finite difference, we can, as usual, employ the first derivative
operators twice. Other difference operators are possible but we restrict ourselves for a
simplified presentation.

Definition 2 (Ghost node). For a grid point xl,i in which we aim to compute the finite differences
in dimension j, 1 ≤ j ≤ d, we define the corresponding forward difference ghost node by

gF,j
l,i := (xl1,i1 , . . . , xlj ,ij

+ hgj , . . . , xld ,id)

Algorithms 2025, 18, 40 9 of 29

and similarly for the backward difference, we define the corresponding backward difference ghost
node by

gB,j
l,i := (xl1,i1 , . . . , xlj ,ij

− hgj , . . . , xld ,id).

Figure 1. Visualization of the ghost points for the forward difference in x-dimension. Left: the ghost
node (red) that is used for the sparse grid forward finite differences in x-dimension in the green grid
point. Right: all forward difference ghost nodes that are used for the sparse grid are drawn in red. On
the boundary, the red ghost nodes coincide with existing grid points, while in the interior function
interpolation has to be used on the ghost nodes.

The main idea of the construction of finite difference operators is simply to collect
the terms that are considered constants under partial differentiation. When one computes
partial derivatives, other variables are held constant by definition. Therefore, if a function
is multiplicatively separable in other variables, one can just compute the derivative of
the variable as in one dimension. As the set of basis functions are built from hierarchical
functions in one dimension, the basis functions lead to separable functions.

Without a loss of generality, we describe the finite difference operators in two di-
mensions with the derivative taken in the first dimension. The generalization to higher
dimensions is straightforward using j for the dimension in which the derivative is taken
and a multi-index −j represents all other dimensions besides j. Using the fact that ϕl2,i2(x2)

from Φ(l1,l2),(i1,i2)(x1, x2) = ϕl1,i1(x1)ϕl2,i2(x2) does not depend on x1, and the linearity of
the differential operator, we obtain

∂

∂x1
f (x) =

∂

∂x1
∑

(l1,l2),(i1,i2)∈In
α(l1,l2),(i1,i2)ϕl1,i1(x1)ϕl2,i2(x2)

=
∂

∂x1

 ∑
(·,l2),(·,i2)∈In

ϕl2,i2(x2) ·

 ∑
{(l1,i1):(l1,l2),(i1,i2)∈In}

α(l1,l2),(i1,i2)ϕl1,i1(x1)

= ∑

(·,l2),(·,i2)∈In
ϕl2,i2(x2) ·

∂

∂x1

 ∑
{(l1,i1):(l1,l2),(i1,i2)∈In}

α(l1,l2),(i1,i2)ϕl1,i1(x1)

.

Now, the expression in the ()-brackets to be differentiated is an one-dimensional function
of x1, on which any finite difference scheme can be applied to approximate the derivative.

Using, e.g., the forward difference,

ψ(x + h)− ψ(x)
h

, where ψ(x) := ∑
{(l1,i1):(l1,l2),(i1,i2)∈In}

α(l1,l2),(i1,i2)ϕl1,i1(x1), (12)

we can now define a finite difference operator on sparse grids that is based on interpolation
at (x1, x2) and (x1 + h, x2). For a given grid and the desired difference operator, we can
simply consider all respective ghost nodes arising from (x1 + h, x2) and interpolate on these.

Algorithms 2025, 18, 40 10 of 29

Definition 3 (Interpolation-based sparse grid finite difference operator). Let us formally
denote the interpolation operator to be evaluated on xl,i on the sparse grid by

Is :
l⊕

k=1

Wk → Vl,

which is essentially (11) for Vl. We define the corresponding interpolation operator for the by hgj

shifted sparse grid, that is the grid of ghost nodes, needed for the forward difference IF
hgj

and backward

difference IB
hgj

, respectively, in dimension j, 1 ≤ j ≤ d by

IF
hgj

:
l⊕

k=1

Wk → Vl and IB
hgj

:
l⊕

k=1

Wk → Vl,

respectively. We define the sparse grid forward difference operator D̃S,F
j reflecting (12) by

D̃S,F
j := IF

hgj
− Is :

l⊕
k=1

Wk → Vl.

The corresponding sparse grid backward difference operator D̃S,B
j is given by

D̃S,B
j := Is − IB

hgj
:

l⊕
k=1

Wk → Vl.

We point out that one does not need to use interpolation for the boundary points in
the respective dimension (see the right picture in Figure 1 with red points on top of sparse
grid points) since the function values for these grid points are already known.

Notice that the interpolation operators work on hierarchical values. Note further that
we can similarly define other finite difference operators by interpolating on the required
points. Let us turn to the boundary handling. Since the forward difference is not defined on
the upper boundary, we use the backward difference and thus also the backward difference
ghost nodes here. Similarly, we use the forward difference on the lower boundary since the
backward difference is not defined here.

For the second derivative difference operator, we can also use the above approach by
interpolating to the respective points. If we need both the first and the second derivative,
there are two approaches to avoid recomputation. First, one can use the interpolated values
that one used for the first derivative finite differences also for the second derivative finite
differences. Second, as is pointed out in [5], one can use the computed first derivative
operators to compute the second derivative one by using the following relationship between
the first and the second derivative operators on sparse grids given by

D̃S
jj = D̃S,B

j ◦ D̃S,F
j = D̃S,F

j ◦ D̃S,B
j

which is a well-known identity for the full grid operators. This is due to the observation
that locally the operator works on one-dimensional full grids [5].

The operators are linear and can thus be represented by matrices; therefore, a compari-
son of the approaches can be easily undertaken using the corresponding matrices. Observe
that the version presented in [5] is working on nodal values, whereas the interpolation-
based version is working on hierarchical basis coefficients. One thus applies the nodal to
hierarchical basis transformation as the first operation in the interpolation-based version to
compare the arising discretization matrices of both sparse grid finite difference approaches.
For regular sparse grids of level l = 1, 2, 3, it is confirmed in [33] that both approaches yield

Algorithms 2025, 18, 40 11 of 29

the same finite difference operator. The formal relationship between the two approaches
needs further investigation.

3.2. Adaptive Sparse Grids

One can further reduce the computational complexity by using an adaptive sparse grid.
For example, this is the case if the function has changes in its steepness, i.e., large second
derivatives. The idea is to add new points to the sparse grid if it is likely that they increase the
obtained accuracy. This is called adaptive refinement. As a criterion for adaptation, one typically
uses a local error estimation based on the hierarchical surplus (coefficient), and then adds
child nodes (in the hierarchical structure) to those points with a large estimate. Vice versa,
grid points whose corresponding basis functions do not contribute much can be removed in a
coarsening step. For a description of similar algorithms for refinement and coarsening in the
optimal control setting, see [34,35], and a general view can be found in [32].

We use different types of adaptivity criteria that are based on the hierarchical surpluses
as an error indicator. The overall algorithm uses both the adaptive refinement and the
adaptive coarsening, together. Given an index set I , a refinement parameter ε, a coarsening
parameter ν, and the approximated function v on QI , we can refine and coarsen the
grid and approximate the function on the new grid. For our experiments, we use the
coarsening parameter ν = ε/10, which is a typical choice [34,35]. An additional component
can be self-adaptivity as also used in [5], where the refinement threshold and coarsening
parameter are automatically decreased when no new points are added by adapting with
the current parameters.

3.3. (Non-)Convergence of Sparse Grid Finite Difference Schemes for Solving the HJB Equation

The requirements one needs to fulfill to obtain a convergent approximation scheme
for HJB equations by means of Barles and Souganidis [11] involve a stable, consistent,
and monotone scheme. While it is trivial to show that one needs monotone interpolation,
interpolation on sparse grids is not monotone in general, as it is already pointed out
in [36]; see also [32]. Since we are approximating value functions arising from economic
models, it is of interest if one can achieve monotonicity by restricting ourselves to concave
monotonically increasing functions as they arise for the employed models. Ref. [9] notes
that the introduced upwind finite difference scheme converges even though the scheme
is not monotone. However, Ref. [9] does not give examples or justifications that it is
not monotone.

In just one dimension, the scheme is monotone since it is uses standard linear interpo-
lation. Observe that we only need one-dimensional monotonicity per dimension, that is
with respect to the used ghost points.

Let us give a definition of monotone interpolation.

Definition 4 (Monotone interpolation in one dimension). Let x1, . . . , xn be data points with
x1 < . . . < xn. A function f is called monotone if it holds that f (x1) ≤ . . . ≤ f (xn) or
f (x1) ≥ . . . ≥ f (xn). In case of strict inequalities f is strictly monotone. The interpolation f I of f
is monotone, if for every pair of two points x̃1 < x̃2, x̃1, x̃2 ∈ [x1, xn] it holds

f I(x̃1) ≤ f I(x̃2) for f (x̃1) ≤ f (x̃2)

or
f I(x̃1) ≥ f I(x̃2) for f (x̃1) ≥ f (x̃2),

Algorithms 2025, 18, 40 12 of 29

with strict inequality for strictly monotone interpolation.

Note that we are interested in higher dimensions and aim for one-dimensional mono-
tone interpolation for the restriction to the different dimensions.

Non-Monotone Sparse Grid Interpolation for Concave Monotonically Increasing Functions

We give a counter example to show that sparse grid interpolation for monotonically
increasing concave functions is not monotone in general. To achieve this, we give concave
monotonically increasing functions for which negative hierarchical coefficients arise. Let us
consider the interpolation of the function

f1(x, y) =
−1

1 + 10x + 10y
+ 50,

which is similar to functions that arise as value functions for some models. Computing
the eigenvalues of the Hessian shows that it is negative semidefinite in [0, 1]2 and thus
the function is concave, but note that it is not strictly concave. Unfortunately, we see in
the function plots in Figure 2 and the contour plots in Figure 3 that the interpolation is
not monotone. Increasing the factors in front of x and y increases this effect. Here, we
use a sparse grid level l = 3, but corresponding counter examples can be constructed for
other levels.

(a) Function plot of f1. (b) Interpolation plot of f1.

Figure 2. Plots of the original function f1 on the left and its sparse grid interpolation of level l = 3 on
the right.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Contour plot of function f1.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contour plot of the interpolation of f1.

Figure 3. Contour plots of the function f1 on the left and its sparse grid interpolation of level l = 3 on
the right.

Note further that the above interpolation is in particular not monotone with respect
to the points used for our sparse grid finite differences. In Figure 4, one can see that the
value shown in red is higher than the one in green. Thus, even if we restrict ourselves to
the ghost points, we do not have the monotonicity we hoped for.

Algorithms 2025, 18, 40 13 of 29

Strictly concave functions can also yield non-monotone sparse grid interpolation, e.g.,
f2(x, y) = −1/(1 + (x + 0.01)0.2 + (y + 0.01)0.2) + 50. Here, one can check the concavity
by using the leading principal minors criteria. Finally, we point out that one cannot simply
set the negative hierarchical coefficients to zero to obtain a monotone approximation.

49

1

49.2

49.4

1

49.6

0.8

49.8

0.5
0.6

50

0.4

0.2

0 0

Figure 4. For the backward difference at (0.5, 0.25), one uses the values drawn as the green and the
red points.

3.4. Overcoming the Non-Monotonicity of Sparse Grid Interpolation

There are several possible approaches to obtain monotone interpolation on sparse
grids. The most trivial way is to go to a higher sparse grid level; this is visualized in Figure 5,
where the interpolation of f4 is presented for sparse grid levels l = 5, 7, 9 instead of l = 3.
The approach is simple, but one cannot go to arbitrarily high levels in higher dimensions;
moreover, for higher levels, corresponding counter examples can be constructed as well,
therefore a guarantee of monotonicity cannot be expected.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 5. Plots of contour plots for the sparse grid interpolation of f4 for different levels. (a) Contour
plot for the interpolation of f4 for level l = 5. (b) Contour plot for the interpolation of f4 for level
l = 7. (c) Contour plot for the interpolation of f4 for level l = 9.

Alternatively, one can identify the areas where non-monotonicities arise and insert
points only in these areas. For that, one can adapt the sparse grid using the hierarchical
coefficients as error indicators, as is performed in standard adaptive approaches. Another
approach is to go to a “full” grid in the critical area. Here, one determines the maximal one-
dimensional level used in the critical area and then simply uses the full grid level. Thereby
non-monotonicity cannot arise in this area. For investigations on these approaches for
monotone functions see [33]. Being of heuristic nature, we do not expect that monotonicity
can be guaranteed. Specific to our situation, the most promising alternative refinement is
to use the computed derivatives. That is, one can use the approximations of the derivative
and check if these are non-negative since that indicates a non-monotone interpolation.
By marking such points for adaption, one can iterate until all derivative approximations

Algorithms 2025, 18, 40 14 of 29

are non-negative or below a certain error threshold. With this approach, a guarantee of
monotonicity might be achievable.

In our numerical experiments, we do not investigate these strategies and consider the
enforcing of monotone interpolation on adaptive sparse grids a topic of future research.

4. Numerical Approach Using an Upwind Scheme
Let us follow the work of [3] and explain how to construct a consistent, stable, and

monotone finite difference scheme on full grids for solving the HJB equation arising from
economic models. The approach was extended to sparse grids and applied to economic
models in [9]. You can find a more mathematical description of finite difference schemes
for solving the HJB equation that is not targeted to economic models in [37].

Notice that in our approach we follow exactly the same scheme, but instead of using a
full grid with standard finite differences we use a sparse grid with the difference operators
introduced in [9], as described in Section 3.1. The idea in this work is to use an approach
with proven convergence on full grids and show the approximation quality for the sparse
grid finite difference method following the same upwind scheme. At the end of this section,
we generalize the matrix notation so that it can easily be extended to the sparse grid setting.

We consider the model presented and explained in Section 2.2. Notice that (ct, dt) is
our control and (bt, at) reflects the state at time t. Thus, given the state, we want to choose
an optimal control and this choice directly reflects in the change in the state.

4.1. Discretization

To simplify the notation, we use here a reduced model derived from (4) that is without
the illiquid assets at and deposit control dt, i.e., it considers only the state bt and control
ct. Therefore, the update in the state space is in the following ḃt = wzt + rb(bt)bt − ct. The
extension to the full model from (4) is commented upon in Section 4.2.

The finite difference approximation of HJB Equation (2), using J points, is

ρv(bj) = u(cj) + v′(bj)(w + rbbj − cj), cj = (u′)−1(v′(bj)), j = 1, . . . , J (13)

where v(bj)
′ = v′j is either the forward or the backward difference approximation. Note

that the computation for cj arises from the first order condition with respect to cj and the
equation is still highly nonlinear. It therefore has to be solved using an iterative scheme. In
the following, whenever we state an equation for j, this holds true for j = 1, . . . , J.

An issue when constructing such a scheme is the monotonicity condition. We use
an upwind scheme that gives a rule for the choice of the finite difference: (a) we use the
forward difference when the drift of the state variable (here, savings sj = w + rbbj − cj)
is positive and (b) use the backward difference when it is negative. For a function v, let
us denote the forward difference by vF and the backward difference by vB. For the drift,
the superscripts indicate which finite difference operation is used on the value function.
We define

sF
j = w + rbbj − cF

j and sB
j = w + rbbj − cB

j (14)

with cF
j = (u′)−1(vF

j) and cB
j = (u′)−1(vB

j). Notice that since v is concave, it holds vF
j ≤ vB

j

and thus directly sF
j ≤ sB

j . If sF
j ≤ 0 ≤ sB

j , we set sj = 0 which leads to v′(bj) = u′(w + rbbj)

by simple algebra, i.e., we are in the steady state. Note that we can thus approximate the
derivative v′j by

v′j = vF
j 1{sF

j >0} + vB
j 1{sB

j <0} + v̄j1{sF
j ≤0≤sB

j }

Algorithms 2025, 18, 40 15 of 29

with v̄j = u′(w + rbbj). This construction yields monotonicity but there is also an intuition
for this: if the continuation value at vj−1 or vj+1 is higher, we are at least as well off.

Denoting max{x, 0} as x+ and min{x, 0} as x− for any x ∈ R we end up with

ρvj = u(cj) +
vj+1 − vj

∆b
(sF

j)
+ +

vj − vj−1

∆b
(sB

j)
−.

We should mention that there is a circular element to the above equation in the sense that v′j
is also used to compute cj. Due to the well-known envelope condition, this does not change
the monotonicity; see [3]. Furthermore, it is possible to construct other monotone schemes,
but this one is perfectly suited to implement borrowing constraints that we now turn to.

4.1.1. Handling the Borrowing Constraint

At the lower end of the state space, i.e., at b1, we aim to impose the borrowing
constraint bt ≥ b

¯
. We have two main ingredients:

• The first order condition still holds at the boundary: u′(c(b
¯
)) = v′(b

¯
).

• To respect the constrain, we need s(b
¯
) = w + rbb

¯
− c(b

¯
) ≥ 0.

Since u is strictly monotonically increasing and concave, we obtain

v′(b
¯
) ≥ u′(w + rb

¯
)

by a simple combination of the above points. We can ensure that the borrowing constraint
is never violated by setting

vB
1 ≡

v1 − v0

∆b
= u′(w + rb1).

Hence, the boundary condition is only imposed if s1 < 0 and thus only for the backward
difference.

Let us turn to the upper end of the state space, i.e., bJ . One should make sure that the
backward difference is used at the upper bound. If bJ is large enough, savings are always
negative and thus s+J = 0. Therefore, the forward difference is never used at the upper
bound so that no boundary condition has to be imposed. In practice, it can be appropriate
to use an artificial state constraint a ≤ amax and treat it like the borrowing constraint, just
for the upper bound.

We further use the concept of soft borrowing constraints in order to avoid spikes that
are counter-factual to empirical observations [3].

4.1.2. Overcoming the Nonlinearity

HJB Equation (2) is nonlinear due to the maximum operator. We use an iterative
scheme to solve this equation, i.e., policy iteration, as for the example explained in [15]. Its
general idea is to linearize the HJB equation by omitting the maximum operator and using
an iteration instead of searching for the maximum.

While explicit schemes are often easier to understand, they are only stable if they
satisfy the so-called CFL condition which gives an upper bound on the step size. Contrarily,
implicit schemes are unconditionally stable. The implicit scheme is now given by

vn+1
j − vn

j

∆
+ ρvn+1

j = u(cn
j) +

vn+1
j+1 − vn+1

j

∆b
(sF,n

j)+ +
vn+1

j − vn+1
j−1

∆b
(sB,n

j)− (15)

Algorithms 2025, 18, 40 16 of 29

where the value functions on the right hand side are of step n + 1. We note that this
system is not fully implicit since the consumption c of step n is used in the computation
(also for the drifts sF,n

j and sB,n
j). Using a Newton method, one could also solve the fully

implicit method.

4.1.3. Stochastic Settings

For the heterogeneous agent model (3) and (4) featuring a Poisson process, we add
another dimension using k = 1, . . . , K where k refers to the respective Poisson state and
K is the total number of Poisson states. We discretize HJB Equation (6) that arises for this
model with a two-state Poisson process by

vn+1
j,k − vn

j,k

∆
+ ρvn+1

j,k = u(cn
j,k) +

vn+1
j+1,k − vn+1

j,k

∆b
(sF,n

j,k)+ +
vn+1

j,k − vn+1
j−1,k

∆b
(sB,n

j,k)−

+ λk(vn+1
j,−k − vn+1

j,k),
(16)

where −k denotes the other Poisson state, respectively. Note that Poisson states cannot be
discretized by sparse grids since they are already discrete.

For heterogeneous agent models with a diffusion process instead of a Poisson one,
e.g., (A1) and (A2), we add another grid dimension for the productivity state z. We
discretize the HJB equation (A3) that arises for the above model by

vn+1
j,k − vn

j,k

∆
+ ρvn+1

j,k = u(cn
j,k) +

vn+1
j+1,k − vn+1

j,k

∆b
(sF,n

j,k)+ +
vn+1

j,k − vn+1
j−1,k

∆b
(sB,n

j,k)−

+
vn+1

j,k+1 − vn+1
j,k

∆z
(µk)

+ +
vn+1

j,k − vn+1
j,k−1

∆z
(µk)

−

+
σ2

k
2

vn+1
j,k+1 − 2vn+1

j,k + vn+1
j,k−1

(∆z)2 .

(17)

Note that we can easily implement reflecting boundary conditions by using

∂zvj,1 =
vj,1 − vj,0

∆z
= 0 and ∂zvj,1 =

vj,K − vj,K+1

∆z
= 0,

which implies vj,0 = vj,1 and vj,K+1 = vj,K, respectively.

4.1.4. Matrix Notation

After linearizing and discretizing the HJB equation, we can easily formulate the
resulting equations as a system for the value function. Note that we indicate vectors, i.e.,
one-dimensional arrays, by bold formatting and lower-case letters, whereas we indicate
matrices by bold formatting and upper-case letters. By reordering the discretized HJB
equation by its subscripts, we can setup the respective matrices to formulate the discretized
HJB equation in case of a diffusion process to compute an iterate of the value function vn

following the implicit scheme (17) by

1
∆
(vn+1 − vn) + ρvn+1 = un + (An + Λ)vn+1 (18)

where An ∈ Rm×m is the non-stochastic drift matrix and Λ ∈ Rm×m is the intensity matrix
which models the stochastic process for productivity z.

Algorithms 2025, 18, 40 17 of 29

To define An and Λ more formally, one can denote the construction via finite difference
operators and specific scalar matrix-row multiplications. Let us show this for Equation (17).
We denote the row-wise vector matrix scalar multiplication, i.e., scalar multiplication of
vector entry i, 1 ≤ i ≤ m with matrix row i by ⋆. To denote (17) using matrix notation (18),
we have with D for a finite difference operator and sF, sB for the vector with entries (14)

An = (sF,n)+ ⋆ DF
b + (sB,n)− ⋆ DB

b (19)

and
Λ = (µ)+ ⋆ DF

z + (µ)− ⋆ DB
z +

1
2

σ2 ⋆ Dzz, (20)

where the standard operations should be understood entry-wise. The finite difference
matrices D, with sub- and superscripts indicating the taken derivative, are built using the
standard full grid finite difference stencils; see any standard textbook such as [38] for a
description. Note that, e.g., ((sF,n)+ ⋆ DF

b)v
n is nothing else but (DF

b vn)⊙ ((sF,n)+) where
⊙ denotes the entry-wise vector multiplication.

By simple algebra, we obtain

((
1
∆
+ ρ)I−An −Λ)︸ ︷︷ ︸

B

vn+1 = un +
1
∆

vn︸ ︷︷ ︸
rn=r(vn)

(21)

with identity matrix I ∈ Rm×m, i.e., we want to solve the linear system given by

Bvn+1 = rn (22)

with B ∈ Rm×m and rn ∈ Rm. Note that Λ does not depend on n and thus can be precomputed.
As explained in Section 3.1, we use sparse grid finite difference operators operating

on hierarchical coefficients. Since we require derivative approximations of the value
function, we now denote v as the vector storing hierarchical coefficients of the value
function approximation. For the approximation of the utility function (5), we already have
nodal values and thus u now describes the vector containing nodal coefficients for the
utility function. To solve the linear system with consistent basis representations, we use the
hierarchical to nodal basis transformations E and obtain((

1
∆
+ ρ

)
E−Λ−An

)
vn+1 = un +

1
∆

Evn (23)

for diffusion processes where Λ is built with difference operators and thus works on
hierarchical coefficients, whereas for Poisson processes we have((

1
∆
+ ρ

)
E− EΛ−An

)
vn+1 = un +

1
∆

Evn (24)

where Λ models the Poisson process. Notice that the resulting vectors on both sides
of the equation are given in nodal values and the solution vn+1 is given in hierarchical
values again such that we can simply use it in the next iteration for the computation of
its derivatives.

The overall procedure is given in Algorithm 1; see [34,35] for more details on the
algorithmic details for the adaptive sparse grids approach, refinement, and coarsening, etc.

Algorithms 2025, 18, 40 18 of 29

Algorithm 1 Solving the HJB equation on (adaptive) sparse grids

Data: model parameters, sparse grid parameters
Result: solution v of HJB equation

1: Initialization:
2: generate sparse grid
3: compute hierarchical to nodal basis transformation matrix E ▷ see after (10)
4: generate finite difference operators ▷ see (3) in Section 3.1
5: set up matrix Λ that models stochastic process ▷ see (20) in Section 4.1.4
6: compute initial guess in hierarchical representation v0 ▷ see e.g., (25) for model (3) and

(4)
7: Iterative part:
8: for n = 0, 1, . . . do
9: refine sparse grid and initialize the new sparse grid

10: compute forward and backward differences of vn ▷ use FD operators
11: compute optimal controls ▷ consumption, deposits for model (3) and (4),
12: ▷ use forward and backward differences of vn

13: build drift matrix An ▷ (19) in Section 4.1.4, follow upwind scheme and use FD
operators

14: solve (23) respectively (24) for vn+1 ▷ see Section 4.1.2, linearized HJB equation
15: if vn+1 is close to vn according to stopping criteria then
16: v← vn+1

17: STOP
18: end if
19: coarsen sparse grid
20: end for

4.2. Further Aspects

Considering the employed two-asset model problem (3), (4), notice that the optimal
deposits d are computed in (7) with the derivative with respect to both b and to a. Thus,
to obtain a monotone scheme for this model, we use the trick to upwind such that there
are no terms with different controls together and the respective forward and backward
differences are used correctly. We split the drift of b into different parts that do not have
this type of interaction and approximate the value function using the split. For the optimal
deposits we follow the same splitting idea.

The resulting system is implicit in b, a, and z. It is also possible to formulate a semi-
implicit equation that is explicit in the productivity state z but still implicit in b and a, which
allows for splitting the problem in K subproblems that one can solve simultaneously using
parallelization. See [33] for the full technical details.

As an initial guess for the value function we use

v0 =

(
wz + rb(b)b + raa

1− γ

)1−γ

/ρ, (25)

where we follow the standard approach to start by staying “put”, i.e., with controls equal
to zero.

5. Numerical Results
Before we present the numerical results, let us define our error metrics denoting the

reference solution by fref and the sparse grid solution by fSG. We use a normalization
with respect to the reference solution to allow us to compare the arising errors of different
functions. Thus, we compute relative errors by

Algorithms 2025, 18, 40 19 of 29

e f
2,r(x1, . . . , xM) =

(
1
M

M

∑
m=1

∣∣∣∣ fref(xm)− fSG(xm)

maxm fref(xm)−minm fref(xm)

∣∣∣∣2) 1
2

,

e f
∞,r(x1, . . . , xM) = max

m

∣∣∣∣ fref(xm)− fSG(xm)

maxm fref(xm)−minm fref(xm)

∣∣∣∣.
(26)

Here, the xm are either the points of the full grid reference solution or random points for
error measurement, where we use M = 5000.

Note that for all adaptive refinements, we use a normalization of the hierarchical
coefficients with respect to the range in nodal values. We always use the coarsening
parameter ν = ε/10 and always coarsen with respect to the value function; this yields
better results in our experiments.

We solve the linear equation system with an ILUC preconditioned BiCGSTAB in Matlab.

5.1. Two-Dimensional Model

Let us begin with the 2d model (3) and (4) presented in Section 2.2 to give some intuition
and to show that our sparse grid algorithm converges to the solution of the full grid method.
We present relative errors for the value function and all policy functions for regular sparse grids
of different levels. The reference solution is computed on a 600× 600 full grid.

In Figure 6, we show the convergence behavior of regular sparse grids for the value
function, the deposit policy, and the consumption policy. First of all, we see that the sparse
grid algorithm converges to the full grid solution. We additionally note that the accuracy
for both Poisson states is quite similar. Note that this may change if the resulting functions
become more different.

One can see that the e∞-error for one state of the consumption function is quite high.
This is due to that fact that the consumption function of state 1 is very steep close to the
boundary and hence cannot be captured well by sparse grids.

Note that in the following results, we give the errors for the multivariate functions,
where the different outputs are stacked into one vector.

102 103

10−2

10−1

number of grid points

l2-error

value state 1
value state 2
deposit state 1
deposit state 2
consumption state 1
consumption state 2

102 103

10−2

10−1

number of grid points

l∞-error

value state 1
value state 2
deposit state 1
deposit state 2
consumption state 1
consumption state 2

Figure 6. Accuracy of different sparse grid levels: e2 and e∞-errors for the value function; deposit
policy and consumption policy for states 1 and 2.

5.1.1. Adaptive Sparse Grids

We performed experiments with several types of adaptivity criteria since there is no
theoretical rule determining which criterion is optimal. The solution of the HJB equation—the
value function—often does not give useful insight. Thus, we are also interested in a good
approximation of the policy function describing the controls’ consumption ct and deposit
dt. These were computed by the approximated derivatives of the value function as given by
(7). Hence, it is not directly clear where the grid should be refined. That is why we study
value function adaptivity and policy functions adaptivity. Additionally, we experiment with
combinations of both.

Algorithms 2025, 18, 40 20 of 29

Thus, for the value function adaptivity we used the hierarchical coefficients of the
sparse grid value function approximation. Similarly, we used the hierarchical coefficients
of the policy function approximation for the policy function adaptivity. Hence, for the
two-dimensional model (3) and (4) described in Section 2.2, we can use a value function
adaptivity, a consumption function adaptivity, or a deposit function adaptivity.

Moreover, we used the combination of the above described adaptivity types. One
possibility is a logical combination. By that we mean the use of a logical operator like OR or
AND to combine adaptivity with respect to different functions, i.e., the criteria have to be
fulfilled by one of them, i.e., OR, or all of them, i.e., AND, to mark a point for adaptivity.
Moreover, one can implement a weighted combination by computing a weighted sum of the
hierarchical coefficients of different functions on the same points.

First, in the two-dimensional case we could visualize the different grids obtained by
value function adaptivity versus policy function. Here, we focused on the deposit function
since we observed the biggest errors for it, but the observations could be transferred to
policy functions in general.

In Figure 7, the approximation of the value function for state 1 and the sparse grid
are shown. Note that we indicate the grid points by their respective function values as
bullet points. One can see that, using value function adaptivity, the sparse grid is refined
in the area in which the value function is steep. Note that this is not the area where the
deposit function is steep. Using deposit function adaptivity, the resulting sparse grid looks
completely different, now there are more grid points in the area where the deposit function
is steep.

(a) Adaptivity based on the value function. (b) Adaptivity based on the deposit function.

Figure 7. Scatter and surface plot of both the value (left) and the deposit (right) functions for state 1
for the adaptive sparse grid using different refinement criteria in (a,b).

5.1.2. Accuracy for Adaptive Sparse Grids

For more insight into the approximation quality of different types of adaptivity, we
aim to compare the accuracies resulting from different types of adaptivity. We use the
discrete relative e2,r- and e∞,r-errors noted in the beginning of this section. We compute
a reference solution on a sparse grid of level l = 11 and interpolate both the reference
solution and the approximations of the adapted sparse grids and lower level regular sparse
grids to uniformly distributed points.

We present in Figure 8 the results for different refinement thresholds, where we limit
the maximum number of adaption steps so that we do not exceed the level of the reference
grid. We can observe that value function adaptivity performs well for the value function
approximation. In some cases, other adaptivity versions outperformed the value function
adaptivity for the deposit policy accuracy, in the beginning. Concerning the l2-error, the
other adaptivity criteria are not better, if at all, than a regular sparse grid. For the maximum
error this depends on the function under consideration, e.g., for the deposit policy function
only with finer resolutions, the adaptation based on the value function helps.

Algorithms 2025, 18, 40 21 of 29

101 102 103 104

10−3

10−2

10−1

number of grid points

l2-error of value functions

regular
value
consumption
deposit
value & consumption
value & deposit

101 102 103 104

10−3

10−2

10−1

number of grid points

l2-error of deposit policy functions

regular
value
consumption
deposit
value & consumption
value & deposit

101 102 103 104

10−3

10−2

10−1

100

number of grid points

l2-error of deposit consumption functions

regular
value
consumption
deposit
value & consumption
value & deposit

101 102 103 104

10−3

10−2

10−1

number of grid points

l∞-error of value functions

regular
value
consumption
deposit
value & consumption
value & deposit

101 102 103 104

10−1

100

number of grid points

l∞-error of deposit policy functions

regular
value
consumption
deposit
value & consumption
value & deposit

101 102 103 104

10−1

100

number of grid points

l∞-error of consumption policy functions

regular
value
consumption
deposit
value & consumption
value & deposit

Figure 8. Accuracy plots for the two-dimensional problem using the regular sparse grid and different
adaptivity versions starting at level l = 2 with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5

(marked on the respective lines) after using at most ten adaption steps.

Note that it depends on the model parameters if value function adaptivity or policy
function adaptivity is better. In general, if one is not particularly interested in a specific
policy function and if one does not want to spend a lot of time on parameter fine-tuning,
we recommend value function adaptivity, which turns out to be the best approach in most
situations. Further, we observed that it requires fine-tuning and testing, or an algorithm
for parameter optimization, to find a good combination of parameters improving on value
function adaptivity.

5.2. Four-Dimensional Model

Let us present our results for the 4d model (A1) and (A2) explained in Appendix A.1.
We computed the accuracy for different sparse grid levels and adaptivity versions by using a
reference solution that we computed on a higher sparse grid level l = 8. Instead of computing
the error on the grid of the reference solution, we computed the error by interpolating on
uniformly distributed points for both the reference and the analyzed solutions.

We present in Figure 9 the results for different refinement thresholds, where we limit
the maximum number of adaption steps so that we do not exceed the level of the reference
grid. We compare the results for value function adaptivity, deposit function adaptivity, and
by logical OR combined value and deposit function adaptivity.

Note that all adaptivity versions work for the policy function approximation, where
the maximum error is still relatively large. However, for the value function approximation,
one can see that value function adaptivity worked better than the other adaptation criteria.
Overall, the adaptivity gave better results in comparison to a regular grid. We observed a
stagnation in particular for the policy function; we assumed this was due to the limitation
of the refinement level to the maximum level of the reference sparse grid. For a more
detailed comparison of the convergence behavior of the different adaptivity approaches,
other error estimations rather than comparing against a regular sparse grid of high level
are needed.

Algorithms 2025, 18, 40 22 of 29

102 103 104
10−3

10−2

10−1

number of grid points

l2-error of value functions

regular
value
deposit
value & deposit

102 103 104

10−1.5

10−1

number of grid points

l2-error of deposit policy a functions

regular
value
deposit
value & deposit

102 103 104

10−2

10−1

number of grid points

l2-error of consumption policy functions

regular
value
deposit
value & deposit

102 103 104

10−2

10−1

number of grid points

l∞-error of value functions

regular
value
deposit
value & deposit

102 103 104

10−0.8

10−0.6

10−0.4

10−0.2

number of grid points

l∞-error of deposit policy a functions

regular
value
deposit
value & deposit

102 103 104

10−0.8

10−0.6

10−0.4

10−0.2

100

number of grid points

l∞-error of consumption policy functions

regular
value
deposit
value & deposit

Figure 9. Accuracy plots for the four-dimensional problem using regular sparse grid and different
adaptivity versions starting at level l = 2 with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5

(marked on the respective lines) after using at most five adaption steps.

5.3. Six-Dimensional Model

Finally we give results in Figure 10 for the 6d model (A4) and (A5) explained in Ap-
pendix A.2. We again compute the accuracy for different sparse grid levels and adaptivity
versions by using a reference solution that we computed on a higher sparse grid level l = 6.
Again, we did not add points which are not in this grid in our adaptation by limiting the
maximum number of adaptation steps. As in the last subsection, we interpolated on uniformly
distributed points for both the reference and the analyzed function for the error computations.

As in the lower-dimensional experiments, value function adaptivity worked better than
the other adaptivity types for the value function approximation. For the deposit function on
the other hand, the combined adaptivity of value and deposit function adaptivity also yielded
good results. The advantage of the adaptive approaches in comparison to the regular sparse
grid further increases. As before for the four-dimensional model, a more detailed comparison of
the convergence behavior would need other approaches for the estimation of the errors.

103 104

10−2

10−1

number of grid points

l2-error of value functions

regular
value
deposit
value & deposit

103 104

10−1.5

10−1

number of grid points

l2-error of deposit policy functions

regular
value
deposit
value & deposit

103 104

10−1.5

10−1

number of grid points

l∞-error of value functions

regular
value
deposit
value & deposit

103 104

10−1.5

10−1

10−0.5

number of grid points

l∞-error of deposit policy functions

regular
value
deposit
value & deposit

Figure 10. Accuracy plots for the six-dimensional problem for regular sparse grid and different
adaptivity versions starting at level l = 1 with refinement threshold ε = 10−1, 10−2, 10−3, 10−4, 10−5

(marked on the respective lines) after using at most four adaption steps.

Algorithms 2025, 18, 40 23 of 29

6. Conclusions and Outlook
In this work we introduced a finite difference approach using interpolations on an

adaptive sparse grid for solving economic models following the numerical scheme of [3].
We analyzed the accuracy for our approach for economic models ranging from dimension
d = 2 to dimension d = 6 and achieved good results for the used model parameters.

We can extract multiple results from our numerical studies. First, sparse grid finite
differences work quite well in practice for solving continuous-time economic models. For
a two-dimensional model, we showed that our numerical scheme converges to the full
grid solution, for which it is proven that it converges to the correct solution. Second,
the experiments with different types of adaptivity indicate that value function adaptivity
performs well for approximating the value function. To achieve a good approximation of
the policy functions, it can sometimes be better to use a criterion suited to this function
or combined criteria. Note though that for policy functions it strongly depends on the
choice of parameters, such as the starting level of the sparse grid or the starting refinement
threshold, to observe how well it performs. Nevertheless, we recommend to use value
function adaptivity since it leads to the best results in most cases.

For a convergence result for sparse grids finite difference schemes for solving the HJB
equation according to [11], we would need monotone sparse grid interpolation. However,
we showed that interpolation on sparse grids is not monotone in general, even if we restrict
ourselves to one-dimensional monotonicity for concave monotonically increasing functions.
A general theoretical result based on assumptions that are fulfilled by most economic
models is therefore hardly possible, since it depends on model parameters if the arising
interpolations on the value functions are monotone for the used adaptive sparse grid.
Thus, it depends on the model parameters if our approach works correctly without specific
approaches to overcome non-monotonicity. Nevertheless, the numerical results indicate
that a non-monotone discretization approach can achieve convergence, which highlights
the need for additional theoretical investigations.

While adaptive sparse grids allow the discretization of higher dimensional problems,
we note that the computational costs for solving the arising linear equation system do
increase with the number of dimensions. For the purpose of this study we used a standard
ILUC preconditioned BiCGSTAB iterative solver, but we expect that there are precondition-
ers available that are more suitable for this problem class, which would be one aspect of
future research. Additionally, parallelization can further improve the runtime.

Moreover, the computational performance of the different sparse grid approaches for
solving Hamilton–Jacobi–Bellman equations could be compared. Besides the one presented in
this work, this would involve, among others, parallel adaptive sparse grids from [23], finite
difference operators on sparse grids [26], and sparse grid semi-Lagrangian approaches [34,35].
Furthermore, there are investigations on using deep neural networks for solving dynamic
economic models, e.g., [39] casts these into nonlinear regression equations. An investigation
on which numerical approach is better suited for which economic scenario is warranted.

Author Contributions: Conceptualization, J.G. and S.R.; methodology, J.G. and S.R.; software, S.R.;
validation, J.G. and S.R.; writing—original draft preparation, J.G. and S.R.; writing—review and
editing, J.G.; visualization, J.G. and S.R.; supervision, J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank SeHyoun Ahn and Benjamin Moll for their fruitful discussions, and
SeHyoun Ahn for help with the Matlab implementation, which is based on his code written for [9].

Algorithms 2025, 18, 40 24 of 29

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
Appendix A.1. A Model with Four State Variables—A Three-Asset Model with Productivity
Modeled by a Continuous Stochastic Process

We are now turning to a model with four state variables that is an extension of our 2d-
model. The theory developed and used in the lower-dimensional problem can be adapted
to this problem. Thus, we only describe the differences to the 2d-model. Hence, the basic
idea here is again to derive an appropriate approach for full grid finite difference methods
and then use a sparse grid finite difference method to solve this model. Due to the higher
dimensionality, the standard full grid approach is no longer useful and the main advantage
of sparse grids shows off. We refer to Section 2.2 for descriptions of the model components
and to Section 4 for explanations of the numerical approach.

We are now interested in the following maximization problem,

max
{ct ,da

t ,dh
t }
E0

∫ ∞

0
e−ρtu(ct, ht)dt (A1)

subject to
ḃt = wzt + rb(bt)bt − da

t − χ(da
t , at)− dt

h − χ(dh
t , ht)− ct

ȧt = raat + da
t

ḣt = dh
t

żt = µ(zt)dt + σ(zt)dWt

bt ≥ b, at ≥ 0, ht ≥ 0

(A2)

The diffusion is reflected on the boundaries in dimension z, i.e.,

∂zv(b, a, h, z
¯
) = 0, ∂zv(a, z̄) = 0, for b ∈ (b

¯
, ∞), a ∈ (a

¯
, ∞), h ∈ (h

¯
, ∞).

We model housing assets h to pay a utility return added to the standard utility function
instead of a monetary return, i.e.,

u(c, h) =
c1−γ

1− γ
+ rhh

Notice that we now have a stationary diffusion process instead of a two-state Poisson
process for income zt. We assume that a worker’s efficiency evolves stochastically over
time on a bounded interval [z

¯
, z̄] with z

¯
≥ 0.

The HJB equation for this model is

ρv(b, a, h, z) = max
c,da ,dh

u(c, h)

+ vb(b, a, h, z)(wz + rb(b)b− da − χ(da, a)− dh − χ(dh, h)− c)

+ va(b, a, h, z)(ra + da)

+ vh(b, a, h, z)(dh)

+ ∂zv(b, a, h, z)µ(z) +
1
2

∂zzv(b, a, h, z)σ2(z).

(A3)

Appendix A.2. A Model with Six State Variables—A Two-Asset Model with Four Skill Types
Modeled by Continuous Stochastic Processes

The following model is again an extension of the 2d-model presented in Section 2.2. It
is used to analyze the high-dimensional behavior of the sparse grid approach. Note that by

Algorithms 2025, 18, 40 25 of 29

introducing different weights and ranges of the different stochastic processes or different
types of stochastic processes, this multi-dimensional modeling allows further analysis in
the economic context, but we restrict our numerical analysis to this simplified version.

We are interested in the following maximization problem,

max
{ct ,dt}t≥0

E0

∫ ∞

0
e−ρtu(ct)dt (A4)

subject to

ḃt =
(z1

t + z2
t + z3

t + z4
t)

4
w + rb(bt)bt − dt − χ(dt, at)− ct

ȧt = raat + dt

ż1
t = µ(z1

t)dt + σ(z1
t)dWt

ż2
t = µ(z2

t)dt + σ(z2
t)dWt

ż3
t = µ(z3

t)dt + σ(z3
t)dWt

ż4
t = µ(z4

t)dt + σ(z4
t)dWt

bt ≥ b, at ≥ 0

(A5)

Here, the diffusion processes zi
t, i = 1, . . . , 4 can be interpreted as different types of skills or

luck that evolve differently over time. W(t) ∼ N (0, t) is normally distributed, where µ(·)
is the drift and σ(·) is the diffusion of z. We use the standard CRRA-utility function again
and have reflecting boundary conditions again.

We obtain the HJB equation

ρv(b, a, z1,z2, z3, z4)

=max
c,d

u(c)

+ vb(b, a, z1, z2, z3, z4)

(
(z1 + z2 + z3 + z4)

4
w + rb(b)b− d− χ(d, a)− c

)
+ va(b, a, z1, z2, z3, z4)(ra + d)

+ ∂z1 v(b, a, z1, z2, z3, z4)µ(z1) +
1
2

∂z1z1 v(b, a, z1, z2, z3, z4)σ2(z1)

+ ∂z2 v(b, a, z1, z2, z3, z4)µ(z2) +
1
2

∂z2z2 v(b, a, z1, z2, z3, z4)σ2(z2)

+ ∂z3 v(b, a, z1, z2, z3, z4)µ(z3) +
1
2

∂z3z3 v(b, a, z1, z2, z3, z4)σ2(z3)

+ ∂z4 v(b, a, z1, z2, z3, z4)µ(z4) +
1
2

∂z4z4 v(b, a, z1, z2, z3, z4)σ2(z4).

Appendix A.3. Parameters

Here, we give the model and algorithm parameters that we used in our numerical studies.

Appendix A.3.1. Parameters for the Two-Dimensional Model

Table A1. Model parameters for the 2d model (3) and (4).

Parameter Default Value Description

γ 2 CRRA utility parameter
ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a

Algorithms 2025, 18, 40 26 of 29

Table A1. Cont.

Parameter Default Value Description

rh 0.0003 returns on illiquid asset h
χ0 0.07 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
ξ 0 automatic deposit parameter
w 4 wage
z1 0.8 Poisson state 1 (productivity)
z2 1.3 Poisson state 2 (productivity)
λ ±1/3 Poisson parameters

Table A2. Algorithm 1 parameters for the 2d model.

Parameter Default Value Description

crit 10−10 algorithm stopping criterion (maximum absolute
value function value of all grid points)

maxit 35 maximum number of iterations in Algorithm 1
∆ 100 ∆ in HJB equation

Table A3. Lower and upper bounds for the respective states in the 2d model. The lower bounds are
model parameters, whereas the upper bounds for the assets are numerical bounds on the computa-
tional domain.

State Lower Bound Upper Bound Description

b −2 40 liquid asset
a 0 70 illiquid asset

Appendix A.3.2. Parameters for the Four-Dimensional Model

Table A4. Model parameters for the 4d model (A1) and (A2).

Parameter Default Value Description

γ 2 CRRA utility parameter
ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a
rh 0.0003 returns on illiquid asset h
χ0 0.08 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
w 4 wage
σ 0.1414 standard deviation for productivity
ẑ 1 mean of z (used for computation of µ)
θ 0.3 persistence

Table A5. Algorithm 1 parameters for the 4d model.

Parameter Default Value Description

crit 10−7 algorithm stopping criterion (maximum absolute
value function value of all grid points)

maxit 35 maximum number of iterations in Algorithm 1
∆ 100 ∆ in HJB equation

Algorithms 2025, 18, 40 27 of 29

Table A6. Lower and upper bounds for the respective states in the 4d model. All lower bounds and
the upper bound of productivity are model parameters, whereas the upper bounds for the assets are
numerical bounds on the computational domain.

State Lower Bound Upper Bound Description

b −2 40 liquid asset
a 0 70 illiquid asset
h 0 70 housing asset
z 0.8 1.2 productivity

Appendix A.3.3. Parameters for the Six-Dimensional Model

Table A7. Model parameters for the 6d model (A4) and (A5).

Parameter Default Value Description

γ 2 CRRA utility parameter
ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative
ra 0.04 returns on illiquid asset a
χ0 0.07 parameter of cost function
χ1 3 parameter of cost function
χ2 0 parameter of cost function (fix costs)
w 5 wage
σ 0.1414 standard deviation for productivity
ẑ 1 mean of z (used for computation of µ)
θ 0.3 persistence

Table A8. Algorithm 1 parameters for the 6d model.

Parameter Default Value Description

crit 10−7 algorithm stopping criterion (maximum absolute
value function value of all grid points)

maxit 50 maximum number of iterations in Algorithm 1
∆ 100 ∆ in HJB equation

Table A9. Lower and upper bounds for the respective states in the 6d model. All lower bounds and
the upper bound of productivity are model parameters, whereas the upper bounds for the assets are
numerical bounds on the computational domain.

State Lower Bound Upper Bound Description

b −2 40 liquid asset
a 0 70 illiquid asset
h 0 70 housing asset
z1 0.8 1.2 skill type 1
z2 0.8 1.2 skill type 2
z3 0.8 1.2 skill type 3
z4 0.8 1.2 skill type 4

References
1. Bellman, R.E. Adaptive Control Processes; Princeton University Press: Princeton, NJ, USA, 1961.
2. Candler, G.V. Finite-Difference Methods for Dynamic Programming Problems. In Computational Methods for the Study of Dynamic

Economies; Cambridge University Press: Cambridge, UK, 1999.
3. Achdou, Y.; Han, J.; Lasry, J.M.; Lions, P.L.; Moll, B. Income and wealth distribution in Macroeconomics: A continuous-time

approach. Rev. Econ. Stud. 2022, 89, 45–86. [CrossRef]

http://doi.org/10.1093/restud/rdab002

Algorithms 2025, 18, 40 28 of 29

4. Kaplan, G.; Moll, B.; Violante, G.L. Monetary policy according to HANK. Am. Econ. Rev. 2019, 108, 697–743. [CrossRef]
5. Schiekofer, T. Die Methode der Finiten Differenzen auf dünnen Gittern zur Lösung Elliptischer und Parabolischer Partieller

Differentialgleichungen. Ph.D. Thesis, Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany, 1998.
6. Griebel, M. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 1998, 61, 151–179.

[CrossRef]
7. Griebel, M.; Schiekofer, T. An adaptive sparse grid Navier–Stokes solver in 3D based on the finite difference method. In

Proceedings of the ENUMATH97, Heidelberg, Germany, 28 September–3 October 1999.
8. Zumbusch, G.W. A Sparse Grid PDE Solver; Discretization, Adaptivity, Software Design and Parallelization. Adv. Softw. Tools Sci.

Comput. 2000, 10, 133–177.
9. Ahn, S. Sparse Grid Methods for Economic Models. Unpublished Manuscript, Code. Available online: https://sehyoun.com/

EXAMPLE_Aiyagari_HJB_Adaptive_Sparse_Grid_web.html (accessed on 12 November 2024).
10. Koster, F. Multiskalen-basierte Finite-Differenzen-Verfahren auf adaptiven dünnen Gittern. Ph.D. Thesis, Institut für Angewandte

Mathematik, Universität Bonn, Bonn, Germany, 2002.
11. Barles, G.; Souganidis, P.E. Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal.

1991, 4, 271–283. [CrossRef]
12. Moll, B. Lecture Notes of Income and Wealth Distribution in Macroeconomics. 2016. Princeton. Available online: https:

//benjaminmoll.com/lectures/ (accessed on 12 November 2024).
13. Kushner, H.; Dupuis, P.G. Numerical Methods for Stochastic Control Problems in Continuous Time; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2013; Volume 24.
14. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
15. Falcone, M.; Ferretti, R. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations; SIAM: Philadelphia, PA,

USA, 2013.
16. Ahn, S.H.; Kaplan, G.; Moll, B.; Winberry, T.; Wolf, C. When inequality matters for macro and macro matters for inequality. NBER

Macroecon. Annu. 2018, 32, 1–75. [CrossRef]
17. Schmedders, K.; Judd, K. Handbook of Computational Economics; Number Bd. 3 in Handbook of Computational Economics; Elsevier

Science: Amsterdam, The Netherlands, 2013.
18. Judd, K.; Maliar, L.; Maliar, S. Numerically Stable and Accurate Stochastic Simulation Methods for Solving Dynamic Models.

Quant. Econ. 2011, 2, 173–210. [CrossRef]
19. Krueger, D.; Kubler, F. Computing equilibrium in OLG models with stochastic production. J. Econ. Dyn. Control 2004,

28, 1411–1436. [CrossRef]
20. Jin, H.; Judd, K.L. Perturbation Methods for General Dynamic Stochastic Models. Technical Report, Mimeo April. 2002. Available

online: https://web.stanford.edu/~judd/papers/PerturbationMethodRatEx.pdf (accessed on 2 January 2025).
21. Maliar, L.; Maliar, S.; Villemot, S. Taking perturbation to the accuracy frontier: A hybrid of local and global solutions. Comput.

Econ. 2013, 42, 307–325. [CrossRef]
22. Judd, K.L.; Maliar, L.; Maliar, S.; Valero, R. Smolyak method for solving dynamic economic models. J. Econ. Dyn. Control 2014,

44, 92–123. [CrossRef]
23. Brumm, J.; Scheidegger, S. Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models. Econometrica 2017,

85, 1575–1612. [CrossRef]
24. Schober, P. Solving Dynamic Portfolio Choice Models in Discrete Time Using Spatially Adaptive Sparse Grids. In Proceedings of

the Sparse Grids and Applications–Miami 2016; Garcke, J., Pflüger, D., Webster, C.G., Zhang, G., Eds.; Springer: Cham, Switzerland,
2018; pp. 135–173.

25. Brumm, J.; Krause, C.; Schaab, A.; Scheidegger, S. Sparse Grids for Dynamic Economic Models. In Oxford Research Encyclopedia of
Economics and Finance; Oxford University Press: Oxford, UK, 2022. [CrossRef]

26. Schaab, A.; Zhang, A. Dynamic Programming in Continuous Time with Adaptive Sparse Grids. 2022. Available online:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4125702 (accessed on 12 November 2023).

27. Bertsekas, D.P.; Shreve, S. Stochastic Optimal Control: The Discrete-Time Case; Athena Scientific: Nashua, NH, USA, 1996.
28. Zenger, C. Sparse Grids. In Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel,

Germany, 18–21 January 1990; Hackbusch, W., Ed.; Vieweg-Verlag: Wiesbaden, Germany, 1991; Volume 31, pp. 241–251.
29. Smolyak, S.A. Quadrature and interpolation formulas for tensor products of certain class of functions. Dokl. Akad. Nauk SSSR

1963, 148, 1042–1053; Transl. Soviet Math. Dokl. 1963, 4, 240–243.
30. Bungatrz, H.J.; Griebel, M. Sparse grids. Acta Numer. 2004, 13, 147–269.
31. Garcke, J. Sparse Grids in a Nutshell. In Sparse Grids and Applications; Garcke, J., Griebel, M., Eds.; Lecture Notes in Computational

Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 88, pp. 57–80. [CrossRef]
32. Pflüger, D. Spatially Adaptive Sparse Grids for High-Dimensional Problems; Verlag Dr. Hut: München, Germany, 2010.

http://dx.doi.org/10.1257/aer.20160042
http://dx.doi.org/10.1007/BF02684411
https://sehyoun.com/EXAMPLE_Aiyagari_HJB_Adaptive_Sparse_Grid_web.html
https://sehyoun.com/EXAMPLE_Aiyagari_HJB_Adaptive_Sparse_Grid_web.html
http://dx.doi.org/10.3233/ASY-1991-4305
https://benjaminmoll.com/lectures/
https://benjaminmoll.com/lectures/
http://dx.doi.org/10.1086/696046
http://dx.doi.org/10.3982/QE14
http://dx.doi.org/10.1016/S0165-1889(03)00111-8
https://web.stanford.edu/~judd/papers/PerturbationMethodRatEx.pdf
http://dx.doi.org/10.1007/s10614-012-9342-y
http://dx.doi.org/10.1016/j.jedc.2014.03.003
http://dx.doi.org/10.3982/ECTA12216
http://dx.doi.org/10.1093/acrefore/9780190625979.013.820
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4125702
http://dx.doi.org/10.1007/978-3-642-31703-3_3

Algorithms 2025, 18, 40 29 of 29

33. Ruttscheidt, S. Adaptive Sparse Grids for Solving Continuous Time Heterogeneous Agent Models. Master’s Thesis, Institut für
Numerische Simulation, Universität Bonn, Bonn, Germany, 2018.

34. Bokanowski, O.; Garcke, J.; Griebel, M.; Klompmaker, I. An adaptive sparse grid semi-Lagrangian scheme for first order
Hamilton-Jacobi Bellman equations. J. Sci. Comput. 2013, 55, 575–605. [CrossRef]

35. Garcke, J.; Kröner, A. Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput.
2017, 70, 1–28. [CrossRef]

36. Noordmans, J.; Hemker, P.W. Application of an Adaptive Sparse Grid Technique to a Model Singular Perturbation Problem.
Computing 2000, 65, 357–378.

37. Achdou, Y.; Barles, G.; Ishii, H.; Litvinov, G.L. Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications;
Springer: Berlin/Heidelberg, Germany, 2013.

38. Langtangen, H.P. Computational Partial Differential Equations: Numerical Methods and Diffpack Programming; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2013; Volume 2.

39. Maliar, L.; Maliar, S.; Winant, P. Deep learning for solving dynamic economic models. J. Monet. Econ. 2021, 122, 76–101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10915-012-9648-x
http://dx.doi.org/10.1007/s10915-016-0240-7
http://dx.doi.org/10.1016/j.jmoneco.2021.07.004

	Introduction
	Heterogeneous Agent Models as Optimal Control Problems
	Optimal Control Problems
	Optimal Control Problems in Economics
	Approaches Used in Economics to Handle High-Dimensional Discrete Time Model Problems

	Sparse Grids
	Finite Difference Schemes on Sparse Grids
	Adaptive Sparse Grids
	(Non-)Convergence of Sparse Grid Finite Difference Schemes for Solving the HJB Equation
	Overcoming the Non-Monotonicity of Sparse Grid Interpolation

	Numerical Approach Using an Upwind Scheme
	Discretization
	Handling the Borrowing Constraint
	Overcoming the Nonlinearity
	Stochastic Settings
	Matrix Notation

	Further Aspects

	Numerical Results
	Two-Dimensional Model
	Adaptive Sparse Grids
	Accuracy for Adaptive Sparse Grids

	Four-Dimensional Model
	Six-Dimensional Model

	Conclusions and Outlook
	Appendix A
	A Model with Four State Variables—A Three-Asset Model with Productivity Modeled by a Continuous Stochastic Process
	A Model with Six State Variables—A Two-Asset Model with Four Skill Types Modeled by Continuous Stochastic Processes
	Parameters
	Parameters for the Two-Dimensional Model
	Parameters for the Four-Dimensional Model
	Parameters for the Six-Dimensional Model

	References

