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Abstract: The colonoscopy procedure heavily relies on the operator’s expertise, under-
scoring the importance of automated polyp segmentation techniques in enhancing the
efficiency and accuracy of colorectal cancer diagnosis. Nevertheless, achieving precise seg-
mentation remains a significant challenge due to the high visual similarity between polyps
and their backgrounds, blurred boundaries, and complex localization. To address these
challenges, a Multi-scale Selective Edge-Aware Network has been proposed to facilitate
polyp segmentation. The model consists of three key components: (1) an Edge Feature
Extractor (EFE) that captures polyp edge features with precision during the initial encoding
phase, (2) the Cross-layer Context Fusion (CCF) block designed to extract and integrate
multi-scale contextual information from diverse receptive fields, and (3) the Selective Edge
Aware (SEA) module that enhances sensitivity to high-frequency edge details during the
decoding phase, thereby improving edge preservation and segmentation accuracy. The
effectiveness of our model has been rigorously validated on the Kvasir-SEG, Kvasir-Sessile,
and BKAI datasets, achieving mean Dice scores of 91.92%, 82.10%, and 92.24%, respectively,
on the test sets.

Keywords: polyp segmentation; context fusion; edge aware; high-frequency information;
deep learning

1. Introduction
Colorectal cancer (CRC) ranks as the third most prevalent and serious cancer world-

wide [1] and is characterized by a high incidence and mortality rate. A strong correlation
exists between polyps—especially adenomatous polyps—and the development of CRC, as
these polyps represent a critical precursor stage. Consequently, effective prevention of CRC
necessitates early detection through screening tests such as colonoscopy. Colonoscopy re-
mains the gold standard for CRC screening due to its high diagnostic accuracy; however, it
is heavily dependent on the operator’s expertise and the procedural environment. Despite
advancements, challenges such as the complex intestinal topology, inconsistent lighting
conditions, and continuous organ deformation contribute to a substantial polyp miss rate.
Studies reveal a missed detection rate of 26.8% for polyps in the right colon and 21.4% for
polyps in the left colon [2,3]. These limitations highlight the urgent need for automated
polyp segmentation systems to assist clinicians in improving diagnostic reliability and
reducing error rates.

Deep learning has emerged as a transformative approach in medical image analysis,
offering robust solutions for developing next-generation imaging applications [4]. The
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introduction of U-Net by Ronneberger et al. in 2015 [5] was a significant milestone, estab-
lishing deep learning as a cornerstone in medical image segmentation. Nevertheless, polyp
segmentation presents unique challenges, including an imbalance between foreground and
background classes, as well as blurred and indistinct edges. Previously, a potential solution
came from the statistical region-based segmentation method developed by Slabaugh et al.,
which improves segmentation by modeling image regions statistically, particularly for
ultrasound images with complex backgrounds [6]. While this method was not initially
designed for polyp segmentation, its approach to handling low-contrast regions can be
beneficial in our context as well.

Polyp boundaries, influenced by variations in shape, size, light, and texture, can make
polyp boundaries difficult to distinguish and works like U-Net++ [7]. ResUnet++ [8] aims
to address these complexities. However, U-Net and its variants usually use a symmetric
encoder-decoder structure, which is able to process the global information of the image,
but there is no specialized mechanism to enhance the edge details, and the local feature
maps may lose some critical edge information in the decoding stage, which may affect
the accurate segmentation of edge details. In addition, although the U-like structure of
the network improves the fusion of features to a certain extent by skip connection, the
capture of multi-scale edge information is still limited. Recently, some methods have
been proposed to try to solve these problems. PraNet [9] uses a reverse attention module
to mine boundary clues, establish the relationship between region and boundary clues,
and calibrate misaligned predictions through a cyclic cooperation mechanism between
regions and boundaries to improve segmentation accuracy. CPFNet [10] employs a context
pyramid fusion network to provide multiple levels of global context to the decoder through
reconstructed skip connections. TGA-Net [11] leverages a text-guided attention mechanism
to enhance polyp segmentation by integrating natural language descriptions of polyp size
and quantity with image features. However, the lack of standardized text information
limits its effectiveness.

Attention mechanisms have gained prominence across various domains in recent years.
While these mechanisms show potential for improving polyp segmentation, challenges
persist due to foreground-background imbalance and edge blurring. Overemphasis on
attention mechanisms may introduce irrelevant noise, adversely impacting model accuracy.
Consequently, accurately distinguishing the polyp foreground from its edges within a
similar background remains a significant challenge. This is particularly critical in extracting
high-frequency edge details and seamlessly integrating them with contextual features to
enhance segmentation performance.

To address the aforementioned challenges, we propose the Multi-Scale Selective Edge-
Aware Network (MSEANet), a novel framework that selectively fuses edge information and
multi-scale contextual information via an edge-aware module for polyp segmentation. The
proposed method effectively integrates global contextual information with high-frequency
edge features of polyps, thereby enhancing segmentation performance. Furthermore,
MSEANet operates in a fully end-to-end manner, eliminating the need for additional
manual annotations or separate training stages. The main contributions are summarized
as follows:

(1) An enhanced Edge Feature Extractor (EFE) is introduced to capture high-frequency
edge information of polyps during the early stages of the encoder, ensuring precise
delineation of polyp boundaries.

(2) The Cross-layer Context Fusion (CCF) block is designed to effectively merge local
structural features with global contextual information, improving the model’s ability
to understand target characteristics and accurately localize polyps in complex scenes.
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(3) Through the proposed Selective Edge Aware (SEA) module, edge information and
contextual features extracted by the CCF block are integrated and preserved across
multiple scales. This design significantly enhances segmentation accuracy by main-
taining the fidelity of polyp boundaries.

(4) Our proposed MSEANet was rigorously tested on the Kvasir-SEG [12], Kvasir-
Sessile [13], and BKAI [14] datasets, achieving mean Dice scores of 91.92%, 80.63%,
and 91.50%, respectively. These results demonstrate the effectiveness of our method
in diverse datasets.

In the following sections, we provide a detailed description of the proposed algorithm,
including related work, methods, experiments, and conclusion.

2. Related Work
2.1. Encoder-Decoder Model

The advent of convolutional neural networks (CNNs) has revolutionized medical im-
age segmentation, providing the foundation for the development of sophisticated models.
Among these, U-Net [5] stands out as a seminal architecture that introduced an encoder-
decoder structure, enabling the efficient extraction of rich image features across multiple
hierarchical levels, making U-Net a widely adopted solution in medical imaging tasks. Its
skip connections effectively bridge the semantic gap between low- and high-level features.
Building upon U-Net’s success, the DeepLab family of networks [15–17] has pushed the
boundaries of segmentation accuracy by incorporating innovations like dilated convolu-
tions and Atrous Spatial Pyramid Pooling (ASPP). These techniques expand the receptive
field without increasing the computational burden, allowing the network to capture global
contextual information while preserving spatial resolution. These advancements have
laid the groundwork for automated polyp segmentation, demonstrating the potential of
encoder-decoder models in addressing complex medical image analysis tasks.

However, despite their achievements, traditional encoder-decoder architectures that
rely solely on convolutional operations face notable limitations. On the one hand, global
contextual information is transmitted from deeper stages to shallower stages, and it may
be diluted due to the weak feature extraction ability of individual stages. On the other
hand, the skip connection in each stage ignores global information and is an indiscrim-
inate combination of local information, which will introduce irrelevant clutter and lead
to misclassification of pixels. In polyp segmentation, challenges such as blurred edges
and the inability to effectively integrate global and local contextual information often
arise. These shortcomings hinder the precise delineation of polyp boundaries and the
comprehensive understanding of intricate patterns within complex scenes. Addressing
these limitations requires innovative designs that go beyond conventional convolutional
paradigms to enhance edge sensitivity and multi-scale contextual understanding. For
example, multidimensional signal analysis techniques, such as wavelet transform and
Fourier transform, can be leveraged to capture features at multiple scales. These methods
have been shown to enhance feature fusion and improve boundary detection by explicitly
modeling multi-scale information.

2.2. Parallel Attention Model

Attention mechanisms have garnered significant interest for their ability to enhance
feature representation, making them a valuable component in image segmentation tasks.
Self-attention [18], in particular, enables models to prioritize critical features while filtering
out irrelevant information. For instance, a stepped network [19] has been introduced for
real-time polyp segmentation in colonoscopy images. This network employs four blocks
for spatial feature extraction, integrating a dual attention module within each block and
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utilizing a multi-scale fusion module to consolidate features across scales. However, such
models often suffer from slow processing speeds and limited ability to effectively integrate
global contextual information. Recently, models incorporating parallel attention structures
have demonstrated promising results. For example, the Parallel Reverse Attention Network
(PraNet) [9] leverages a reverse attention mechanism to focus on polyp regions while
employing a recursive feature aggregation module to capture global contextual information
effectively. Similarly, PRAPNet [20] is an improved deep learning model designed to
further enhance polyp segmentation performance through its Parallel Residual Atrous
Pyramid structure.

The combination of parallel structures and attention mechanisms not only accelerates
network processing but also enhances focus on critical aspects such as edge features and
global contextual information. This capability is particularly advantageous in scenarios
where polyps exhibit high visual similarity to the background or have blurred boundaries.
However, efficiently extracting edge features and seamlessly fusing them with contextual
information remain significant challenges. To address this, this study proposes a network
model based on a parallel attention structure, leveraging its robust contextual fusion
capabilities and flexible module integration to achieve improved polyp segmentation.

3. Methods
MSEANet is designed to accurately capture complex boundary details while improv-

ing segmentation performance across diverse clinical scenarios. The overall network archi-
tecture is illustrated in Figure 1a. Built on an encoder-decoder framework, MSEANet com-
prises a feature encoder, an EFE module, three CCF modules, and four SEA modules. The
functionality and design of each of these components are detailed in the following sections.
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3.1. Feature Encoder

ResNet-50 [21] can take advantage of its natural residual structure to accelerate the
convergence of the network and also effectively mitigate the gradient vanishing problem.
The feature encoder utilizes a pre-trained ResNet-50 [21] as its backbone network to extract
feature maps

{
f r
i , i ∈ 1, 2, 3, 4, 5

}
at various stages and scales. These feature maps encapsu-

late diverse spatial and semantic information throughout the encoding process. In the early
stages, feature maps generally exhibit higher spatial resolution, containing richer spatial
details critical for edge detection.

Initially, the feature maps f r
1 with the most spatial information are passed through

the EFE module to generate polyp edge feature maps and prediction maps. Subsequently,
feature maps

{
f r
1 , f r

2 , f r
3
}

,
{

f r
2 , f r

3 , f r
4
}

,
{

f r
3 , f r

4 , f r
5
}

extracted from the backbone network
are grouped across layers and passed to the CCF module, which is responsible for fusing
the context information. Finally, in order to obtain the enhanced feature representation
of the feature map f r

5 in different dimensions, we introduce Dual Attention [22] and
apply it. Dual Attention [22] includes Position Attention and Channel Attention, which are
two mechanisms that can enhance feature representation in different dimensions and are
especially effective in segmentation tasks, helping to suppress redundant features that are
irrelevant to the segmentation task, enhancing the model’s attention to the polyp itself, and
reducing the possibility of mis-segmentation. To be compatible with the segmentation task,
we remove the last average pooling layer and the fully connected layer of ResNet-50 [21].

3.2. Edge Feature Extractor

The edges of polyps are often blurred and challenging to distinguish. Inspired by Edge-
Prioritized Polyp Segmentation (EPPS) [23], this paper improves the EFE to accurately
capture high-frequency features of polyp edges. This module extracts and fuses edge
information through multi-level convolution and upsampling operations, as illustrated in
Figure 1b. The design of EFE focuses on efficiently extracting edge-related high-frequency
information from the feature maps generated at the initial stage of the encoder. Specifically,
the input feature map undergoes successive 3 × 3 convolutions to extract base features.
Atrous Separable Convolution is employed for downsampling, which helps to preserve
spatial information typically lost with traditional max-pooling operations. After two
downsampling operations, the resolution of the feature map is progressively reduced while
its semantic information becomes more enriched. The downsampled feature maps are then
upsampled using bilinear interpolation, spliced with the preceding layer’s feature maps
processed by 1 × 1 convolution, and further fused through a 3 × 3 convolution.

This process is conducted at two scales to ensure the fine-grained edge information is
fully integrated with the deep semantic features. The upsampled feature maps are passed
through a convolution layer and a sigmoid function to generate edge prediction maps
Edgepred. Simultaneously, the EFE module outputs fused edge-enhanced features f e for
further processing during the subsequent decoding stage.

Manual annotation is not required for ground truth edge labeling. Instead, the Canny
operator is used to extract edge ground truth from polyp masks. This approach provides
greater accuracy and eliminates the variability and uncertainty often associated with
manual labeling.

3.3. Cross-Layer Context Fusion

The encoder in a segmentation network learns global context information, including
the surroundings and category characteristics of objects [24,25]. However, in complex
scenarios, the encoder often struggles to adequately capture the edges, shapes, and struc-
tures of polyps, and it has limitations in extracting multi-scale contextual information. To
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address these challenges, we designed the CCF module, which enhances the network’s un-
derstanding of complex polyp morphology by fusing feature maps from different layers and
combining contextual information across multiple scales and receptive fields. As illustrated
in Figure 2a, the workflow of the CCF module consists of four main steps: feature maps
{x1, x2, x3} from three different scales are passed through a standard 3 × 3 convolution
operation to standardize them to the same number of channels as x1. The feature maps x2

and x3 are scaled to the same spatial resolution as x1 using 2× downsampling and 2× up-
sampling, respectively. The three adjusted feature maps are concatenated along the channel
dimension, generating a richer multi-scale feature representation. On the concatenated fea-
ture map, four parallel dilated convolutions with dilation rates of {1, 6, 12, 18} are applied.
These dilation rates capture multi-scale contextual information from varying receptive
fields, enriching the feature map’s contextual expression and diversity. Mathematically,
this process can be summarized as:

Ci = Concat
{

Dsample( f r
i ), f r

i+1, Upsample
(

f r
i+2

)}
, i = 1, 2, 3 (1)

where Ci represents the feature extracted from the ith stage of the encoder. By fusing
feature maps from adjacent scales, the feature map Ci with enhanced contextual expres-
sion is obtained. Finally, the MSFBlock [26] is introduced to fuse Ci into f c

i , as shown
in Figure 2b. The MSFBlock processes feature maps from varying receptive fields and
performs hierarchical fusion, integrating multi-scale contextual information and enhancing
the feature maps’ expressive power.

Figure 2. (a) Structure of Cross-layer Context Fusion (CCF) module. (b) Structure of Multi-scale
Selective Fusion (MSF).

In MSEANet, three CCF modules are strategically placed between the encoder and
decoder. These modules guide high-level global semantic information to different fea-
ture extraction stages, significantly improving the network’s ability to extract multi-scale
contextual information and understand the complex edges and morphology of polyps.
This design enhances the accuracy and robustness of polyp segmentation, particularly in
challenging scenarios.
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3.4. Selective Edge Aware

The structure of the SEA module is illustrated in Figure 3. During the decoding stage,
the SEA module robustly fuses edge information across multiple scales, significantly en-
hancing the model’s ability to delineate complex polyp boundaries. In polyp segmentation
tasks, precise edge information is critical for improving segmentation performance. The
SEA module leverages a reverse attention mechanism in conjunction with edge feature
fusion, increasing the model’s sensitivity to the target boundaries.

Figure 3. Structure of Selective Edge Aware (SEA) module.

Each SEA module processes the predicted map predi+1 generated by the deep supervi-
sion output of the previous layer, activating it with a sigmoid function to produce a proba-
bility map of salient regions. This probability map is inverted to generate a background
attention map, which improves the model’s focus on background areas. Subsequently, the
background feature map is progressively fused with the global contextual feature map f c

i
from the CCF module, creating a refined feature map where salient regions are removed.
To further enhance edge information, the SEA module integrates edge features f e extracted
by the EFE module. These edge features are concatenated with the background feature
map, and the concatenated output is processed through a 3 × 3 convolution operation to
fully integrate multi-scale information, resulting in an enriched fused feature map f b

i . The
mathematical calculations can be summarized as follows:

f b
i = Fconv

[
Concat

(((
1 − σ

(
predi+1

))
⊗ f c

i
)
, f e)] (2)

where f b
i is the fused feature map, Fconv represents the 3 × 3 convolution operation, σ

is sigmoid function, and Concat denotes the concatenation operation. Subsequently, a
simple gating mechanism is employed to adaptively weight the fused features, amplifying
the model’s response in critical areas and improving the localization of edge and shape
information. A residual connection mechanism is then applied, where the weighted features
are added element-wise to the original input features. This residual design preserves the
global semantic information from the original features while enhancing local edge details.
The calculation can be expressed as:

f̂ b
i =

(
f b
i ⊗ σ

(
f b
i

))⊕
f c
i (3)
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where f̂ b
i is the final output feature map, f b

i represents the fused feature map, ⊗ means
element-wise multiplication,

⊕
indicates element-by-element addition, and f c

i denotes the
original input features.

By organically combining edge features, deep prediction features, and global con-
textual information, the SEA module can accurately capture the boundaries and shapes
of polyps. This design effectively addresses the challenge of insufficient preservation of
high-frequency information, thereby improving segmentation accuracy and robustness in
complex scenarios.

3.5. Loss Function

We employed the DiceBCE Loss L(·) to optimize the model training process, ensuring
improved performance in the polyp segmentation task. DiceBCE Loss is a combination
of Dice Loss and Binary Cross Entropy Loss. This loss function helps the model to better
capture complex boundary areas while ensuring pixel-level classification accuracy.

For each different scale of the output feature map predi, we compute its loss with
respect to the label maski, which is mathematically expressed as:

lossi = L(predi, maski) (4)

where maski is the labeled map obtained by sampling operation of ground truth.
We compute the difference between the edge prediction map and the true edge map

by separate edge loss function. The formula is:

losse = L
(

Edgepred, Edgegt

)
(5)

where losse represents the loss between the edge prediction map Edgepred output by the
EFE module and the ground truth of the edge Edgegt.

The final total loss is the weighted sum of the sum of the individual scale losses and
the edge loss, which is expressed as:

losstotal =
5

∑
i=1

lossi + losse (6)

This total loss losstotal is the optimization objective of the model, which aims to
improve the accuracy of the multi-scale segmentation effect and edge details by optimizing
this loss function.

4. Experiments
In this section, we present a qualitative comparison of MSEANet against state-of-

the-art methods using widely recognized polyp segmentation datasets. The evaluation
highlights the strengths and performance of MSEANet in comparison with existing tech-
niques. This paper employed five widely used metrics, including mean Intersection over
Union (mIoU), mean Dice coefficient (mDice), Recall, Precision, and F2-score. IoU measures
the similarity between predicted segmentation results and actual segmentation results. In
the following formula, Prediction is the prediction area of the model, Ground Truth is the
true label area, ∩ represents the intersection, and ∪ represents the union.

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth| (7)
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Dice is used to measure the similarity between two sets, emphasizing the overlapping
parts and being sensitive to small object segmentation. The formula is as follows:

Dice =
2·|Prediction ∩ Ground Truth|
|Prediction|+ |Ground Truth| (8)

Recall quantifies the proportion of positive examples recognized by the model and
represents the proportion of correctly predicted pixel points to the true positive example
pixel points, with the formula:

Recall =
|Prediction ∩ Ground Truth|

|Ground Truth| (9)

Precision evaluates the proportion of pixels predicted to be positive instances that are
actually positive instances, indicating the accuracy of the prediction, and is calculated by
the formula:

Precision =
|Prediction ∩ Ground Truth|

|Prediction| (10)

F2-score is a weighted form of Dice and Recall, with more emphasis on Recall for tasks
requiring higher sensitivity, and is calculated as:

F2 =

(
1 + β2)·Precision·Recall
β2·Precision + Recall

(11)

where β is a weighting factor indicating the relatively higher importance of Recall. In this
paper, β is equal to 2.

4.1. Datasets

To evaluate the performance of the proposed MSEANet, we conducted extensive
tests on three publicly available polyp segmentation benchmark datasets: Kvasir-SEG [12],
Kvasir-Sessile [13], and BKAI [14]. Sample images from these datasets, along with their
corresponding edge prediction maps, are presented in Figure 4.
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Kvasir-SEG [12]: Kvasir-SEG is a publicly available endoscopic image dataset specifi-
cally designed for polyp segmentation tasks. It consists of 1000 annotated polyp images
with a variety of shapes, sizes, positions, and appearances. The image resolutions range
from 332 × 487 to 1920 × 1072 pixels, offering diverse challenges for segmentation models.
All images are derived from endoscopic examination videos and have been meticulously
annotated by experts from the University Hospital of Oslo, Norway. These reliable annota-
tions serve as high-quality labels for model training and evaluation, making Kvasir-SEG a
widely used benchmark for assessing segmentation performance.

Kvasir-Sessile [13]: Kvasir-Sessile is an extended dataset developed by researchers at
the Norwegian University of Science and Technology (NTNU) to target the segmentation
of flat polyps, a challenging and less prominent type of polyp. These polyps often feature
ambiguous boundaries and irregular shapes, complicating the segmentation task. The
dataset’s images are annotated by medical experts, including trained endoscopists, ensuring
precise labeling of polyp boundaries and morphology. This high-quality dataset supports
model development and testing for more challenging segmentation scenarios.

BKAI [14]: The BKAI dataset, curated by the BKAI laboratory in Vietnam, is a diverse
collection of endoscopic images for polyp segmentation. It includes images of various types
of polyps and represents a range of complex clinical scenarios, including variations in image
quality, lighting conditions, and background complexities. The dataset’s annotations are
manually generated by experienced endoscopists, ensuring accurate boundary localization
and precise labeling. This dataset provides a robust foundation for training and evaluating
models in challenging clinical contexts.

4.2. Experimental Preparation

The proposed model is implemented using the PyTorch 2.0.0 framework, with all
experiments conducted on an NVIDIA GeForce RTX 3090 GPU. The Kvasir-SEG [12] is
divided into training and testing sets in the official ratio of 880:120, while the Kvasir-
Sessile [13] is split in an 8:1:1 ratio for training, validation, and testing. For the BKAI [14],
since no test data is provided, we divided the training data into an 8:1:1 ratio for training,
validation, and testing. All images are uniformly resized to 256 × 256 pixels, and data
augmentation techniques, including random rotation, vertical and horizontal flipping, and
random erasing, are applied to enhance the training dataset’s diversity. The model is trained
with a learning rate of 1 × 10−4 using the Adam optimizer [27] and a batch size of 16. We
tried different sets of hyperparameters to determine the optimal configuration of the model.
To prevent overfitting, an early stopping mechanism is implemented, which halts training
if the validation loss does not improve after 40 epochs. Additionally, a ReduceLROnPlateau
learning rate scheduler is used to adapt the learning rate during training. The training
process usually takes about 35 min, and the model converges after about 50 epochs.

4.3. Results

As shown in Figure 5, in situations where lighting is uneven and polyps are small
and difficult to discern, the model performs exceptionally well. This is primarily due to its
dedicated EFE module, which ensures the enhancement of edge information capture even
under challenging lighting conditions. In contrast, other methods, such as DeepLabv3+,
may be adversely affected by such conditions, failing to accurately capture the boundary
information. Notably, in images containing multiple polyps, MSEANet accurately segments
each polyp region. This success stems from the model’s robust understanding of global
contextual information and its effective integration of edge and global context features
during the decoding stage. The use of multi-scale features effectively compensates for
limitations in the receptive field, ensuring that even small polyps are accurately segmented.
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Furthermore, during the decoding phase, the model effectively fuses multi-scale informa-
tion, allowing it to accurately segment multiple polyps. This capability ensures that the
model does not miss any polyps. This design of MSEANet not only significantly expands
the model’s receptive field, but also enhances its capability to accurately segment small
polyps and identify multi-polyp regions.
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The quantitative results are summarized in Tables 1 and 2. In this study, MSEANet was
compared with several state-of-the-art methods commonly used in polyp segmentation,
including U-Net [5], ColonSegNet [28], Deeplabv3+ [17], PraNet [9], and TGA-Net [11].
These algorithms hold substantial importance in the field.

Comparison on Kvasir-SEG: As shown in Table 1, MSEANet outperforms other state-
of-the-art methods on the Kvasir-SEG dataset across all metrics. Notably, it achieves a mIoU
of 86.91% and a mDice of 91.92%, critical performance indicators in the medical domain.
Additionally, other metrics such as Recall, Precision, and F2-score also reflect the model’s
advanced capabilities.

Comparison on Kvasir-Sessile: The Kvasir-Sessile dataset holds substantial clin-
ical relevance as it includes challenging flat and sessile polyps [11]. As presented in
Table 1, MSEANet surpasses all other methods, achieving a mIoU of 72.88%. Compared
to PraNet [9], the mIoU increased by nearly 6%. These results underscore MSEANet’s
robustness and effectiveness in handling clinically significant yet difficult polyp types.

Comparison on BKAI: Table 2 showcases the comparative results on the BKAI dataset,
where MSEANet achieves a mIoU of 87.55% and a mDice of 92.24%, along with an F2-
score of 91.79%. These metrics highlight the model’s ability to excel even in diverse
and complex clinical scenarios. The high performance validates the model’s ability to
segment polyp regions accurately while significantly reducing the false negative rate.
By extracting and effectively fusing features across multiple scales and receptive fields,
MSEANet demonstrates a clear advantage over other advanced methods.

Model Result Analysis: The results demonstrate that MSEANet achieves excellent
performance across multiple datasets, which can be attributed to its unique architecture.
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Specifically, MSEANet incorporates dedicated modules for processing edge information
and multi-scale contextual features. During the decoder phase, these features are efficiently
fused through specialized mechanisms, allowing the model to capture both fine-grained
details and global context. As shown in Figure 5, MSEANet excels in handling challenging
scenarios, including blurry edges, multiple polyps, and complex backgrounds, thanks to its
edge-aware and multi-scale information fusion capabilities. In contrast, other methods may
struggle in these specific situations due to the absence of specialized edge-awareness mod-
ules or inadequate integration of global context. These architectural differences highlight
why MSEANet outperforms other advanced models.

Table 1. Comparisons with other advanced methods on the Kvasir-SEG and Kvasir-Sessile.

Method
Kvasir-SEG Kvasir-Sessile

mIoU mDice Rec Prec F2 mIoU mDice Rec Prec F2

U-Net [5] 76.82 84.01 86.38 88.14 84.69 24.72 36.88 72.37 32.64 46.35
ColonSegNet [28] 70.92 80.14 83.08 84.32 80.73 21.13 32.78 52.34 33.36 38.68
DeepLabV3+ [17] 80.44 87.48 88.74 90.18 87.68 59.27 70.78 70.85 82.25 70.09

PraNet [9] 83.02 89.8 90.60 91.64 90.09 66.71 77.36 80.69 82.44 78.71
TGA-Net [11] 83.30 89.82 91.32 91.23 90.29 69.23 79.78 79.35 84.88 79.89

MSEANet (Ours) 86.91 91.92 92.45 93.87 91.69 72.88 82.10 90.92 76.84 86.76

Table 2. Comparisons with other advanced methods on the BKAI.

Method
BKAI

mIoU mDice Rec Prec F2

U-Net [5] 75.99 82.86 82.95 89.89 82.64
ColonSegNet [28] 68.81 77.48 78.52 87.11 77.46
DeepLabV3+ [17] 83.14 89.37 88.70 92.30 88.82

PraNet [9] 82.64 89.04 89.01 92.47 88.85
TGA-Net [11] 84.09 90.23 90.26 92.08 90.02

MSEANet (Ours) 87.55 92.24 91.81 95.21 91.79

4.4. Ablation Study

To evaluate the effectiveness and importance of the proposed components, we con-
ducted four ablation experiments on the Kvasir-SEG dataset. The results, summarized in
Table 3, provide insights into the contribution of each module to the overall performance
of MSEANet.

Table 3. Ablation study of MSEANet on Kvasir-SEG.

Method mIoU mDice Rec Prec F2

Baseline 82.92 88.56 91.80 89.56 89.89
+CCF 84.74 90.23 92.02 91.94 91.60

+EFE&SEA 85.34 90.49 91.33 93.0 90.45
+ALL 86.91 91.92 92.45 93.87 91.69

The baseline achieved a mIoU of 82.92% and a mDice of 88.56%. When the CCF module
was added, the performance improved significantly, with the mIoU increasing to 84.74%.
This improvement highlights the CCF module’s ability to integrate multi-scale contextual
information effectively, enhancing the model’s global understanding of polyp morphology.

The inclusion of the EFE further boosted performance, with the mIoU reaching 85.34%.
This result demonstrates the EFE module’s role in capturing high-frequency edge details,
enabling better delineation of polyp boundaries.
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Similarly, the addition of the SEA improved performance, showcasing its capacity
to fuse edge and global context information. The combined effect of the EFE and SEA
modules reflects the model’s increased sensitivity to edge features and its ability to enhance
segmentation accuracy, particularly in challenging cases. Finally, when all modules—CCF,
EFE, and SEA—were integrated, the model achieved its highest performance, with a
mIoU of 86.91%, a mDice of 91.92%, and an F2-score of 91.69%. These results validate the
complementary contributions of each module and demonstrate their synergistic effect in
achieving superior segmentation outcomes.

5. Conclusions
In this study, we proposed the Cross-layer Fusion and Edge-Aware network

(MSEANet) to address challenges in polyp segmentation, including insufficient extrac-
tion of contextual information and insensitivity to high-frequency edge details across
multiple scales. To tackle these issues, the EFE module was designed to prioritize the
extraction of edge information from features rich in spatial details during the early stages of
the encoder. Concurrently, the CCF module was introduced to integrate global context in-
formation across multiple scales and receptive fields, enhancing the model’s understanding
of polyp morphology.

The features extracted by the EFE and CCF modules were subsequently passed to the
SEA module, where high-frequency edge features were effectively fused with global context
features. This fusion improved the model’s sensitivity to edge information, addressing a
critical limitation in existing polyp segmentation methods.

Comprehensive experiments on three benchmark datasets—Kvasir-SEG, Kvasir-
Sessile, and BKAI—validated the effectiveness of MSEANet. The results demonstrated
significant improvements in segmentation performance across all key evaluation metrics,
highlighting MSEANet’s potential for clinical applications in colonoscopy. These findings
underscore the value of combining edge-aware strategies with multi-scale context fusion
for advancing polyp segmentation technology.

Although our model performs well on multiple datasets, real-time performance and
more complex samples are required in clinical environments. Therefore, our future work
will explore model lightweighting and multimodal data fusion to improve model ro-
bustness and real-time performance so it can perform better in diverse and complex
clinical environments.
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