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Abstract: Power consumption management is crucial to maintaining the reliable opera-
tion of power grids, especially in the context of the decarbonization of the electric power
industry. Managing power consumption of industrial enterprises by personnel proved
ineffective, which required the development and implementation of automatic energy
consumption management systems. Optimization of power consumption behavior requires
comprehensive and reliable information on the parameters of the technological processes
of an industrial enterprise. The paper explores the specific features of non-stationary condi-
tions of output production and assesses the potential for power consumption management
under these conditions. The analysis of power consumption modes was carried out based
on the consideration of random factors determined by both internal and external circum-
stances, subject to the fulfillment of the production plan. This made it possible to increase
the efficiency of power consumption in mechanical engineering production by taking into
account the uncertainty of seasonal and technological fluctuations by 15–20%, subject to the
fulfillment of the production plan. This study presents a justification for utilizing the theory
of level-crossings of random processes to enhance the reliability of input information. The
need to analyze the specific features of technological processes based on the probabilistic
structure and random functions is proven. This is justified because it becomes possible to
fulfill the production plan with technological fluctuations in productivity and, accordingly,
power consumption, which exceeds the nominal values by more than 5%. In addition, the
emission characteristics are clear, easy to measure, and allow the transition from analog
to digital information presentation. The algorithm and methods developed to analyze the
power consumption patterns of industrial enterprises can be used to develop automatic
power consumption management systems.

Keywords: industrial enterprise; technological process; analysis of power consumption
behavior; power consumption management; theory of level-crossings of random processes;
random function
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1. Introduction
The decarbonization of the global electric power industry is progressing in phases,

driven by the widespread development of power plants that utilize renewable energy
sources (RES) [1–3]. The largest share of commissioned renewable energy generation
capacity comes from the wind and solar sectors [4]. In countries with the necessary volume
of hydro resources, hydropower development continues through the construction and
commissioning of new hydroelectric power plants and pumped-storage power plants. The
unit installed capacity of hydroelectric power plants is constantly increasing, making a
significant contribution to the balance of electricity in the power systems [5,6].

In the context of the stochastic production of electricity by wind and solar power plants,
it is necessary to maintain a balance between active power production and consumption
within energy systems [7,8]. This can be achieved by increasing the maneuverability of
generation equipment of conventional power plants, integrating energy storage systems,
and managing the electricity consumption in industrial enterprises [9–11].

It is important to note that the reliability indicators of equipment used in wind and
solar power plants have a significant impact on the reliability of the energy systems. In [12],
it is noted that photovoltaic modules in solar power plants in moderate climates begin to
fail en masse after about 10–12 years due to exposure to dust, high humidity, vibration,
and other factors. Failures of photovoltaic modules often cause damage to multi-string
inverters, which reduces the reliability indicators of solar power plants.

Power consumption management is highly effective because it facilitates a quick
restoration of active power balance in the power grid by disconnecting less critical power
loads at industrial enterprises [13,14]. However, it is essential to take account of the specifics
of technological processes, as changes in the power consumption of consumers involved in
a continuous production process can lead to product defects, accompanied by substantial
losses [15,16].

The advancement of digital technologies changes the principles of interaction between
electricity producers, such as power plants and generation companies, and industrial en-
terprises. This process is enabled by the adoption of modern measuring, communication,
and information and computing systems, alongside data collection, transmission, and pro-
cessing systems [17,18]. Modern power supply systems leverage cutting-edge technologies,
such as cyber-physical devices, the Internet of Things, artificial intelligence, robotics, and
augmented and virtual reality [19–21]. Intelligentization of the electric power industry re-
quires vast amounts of data, which, when processed, create a qualitatively new information
framework for the development and implementation of automatic power consumption
management systems [22,23].

The digitalization of the electric power industry requires a revision of existing ap-
proaches and models for planning, forecasting, and managing electricity consumption, as
well as ensuring the reliability and economic efficiency of industrial consumers. All these
factors have a direct impact on the technological process and overall product output [24,25].

An analysis of human-induced impacts, including cyberattacks, on power industry fa-
cilities reveals that levels of electricity consumption and its structure can vary dramatically,
exhibiting both increases and decreases [26,27]. Fluctuations in electricity consumption are
also possible in cases where fulfilling the production plan is a priority. Administrative and
market mechanisms currently used to manage electricity consumption prove ineffective in
today’s landscape, while new management algorithms have yet to be adequately developed
and tested [28,29].

These conditions justify the need to develop modern methods of planning, forecasting,
and optimization of power consumption behavior as well as algorithms for managing
power consumption of industrial consumers. The ongoing evolution of network topology
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and operating parameters within power grids and power supply systems of industrial
consumers necessitates the advancement of new mathematical models and algorithms,
which are crucial for making informed decisions on managing electricity consumption,
tailored to the specific features of technological processes.

The study [30] focuses on a model for forecasting energy consumption based on the as-
sessment of electricity consumption parameters relying on the Bayesian estimation method
and the Markov Monte Carlo method in order to reduce electricity costs. In [31], the authors
explore methods to lower the auxiliary consumption of thermal power plants. The study
considers various factors, including the types, capacity, and duration of operation of peak
electric loads; the fuel used; and the capacity of the power plant; as well as the external
conditions. In [32], a statistical analysis based on the probability theory is proposed for
analyzing electricity consumption in order to determine the “energy efficiency index”.
This index is used to assess the loss of energy resources during production processes for
reducing environmental fines. In [33], a system of energy efficiency indicators is designed
to facilitate energy audits in coal mining enterprises. The study also involves systematizing
the factors that influence the consumption of energy resources and their reduction and in-
vestigating the barriers that hinder the implementation of energy-saving measures. The use
of artificial intelligence methods, in particular artificial neural network methods, including
the long-short-term memory (LSTM) method, is proposed in [34] to improve the accuracy
of forecasting electricity consumption at industrial enterprises. The research also highlights
the importance of utilizing the Gaussian distribution principles along with normalization
and scaling techniques for primary data processing. In [35], the authors suggest using
cluster analysis methods to examine electricity consumption measurement data across
various parameters while considering load fluctuations and typical load curves. Electricity
consumption is forecast based on the LSTM neural network, factoring in the influence of
meteorological data on the accuracy of load forecasting. A system of differentiated tariffs
for industrial consumers is proposed in [36] to reduce electricity supply costs by shifting
the load curve to off-peak hours across the day. This brings down the cost of production by
reducing electricity expenses by at least 1.5 times and enables power grid companies to
receive a uniform load on power lines and transformers throughout the day, preventing
emergency overloads. A particle swarm optimization algorithm is used in [37] to forecast
and analyze the changing trend of industrial electricity consumption, which increases the
adaptability of the model. The authors propose utilizing the forecasting results to plan the
expansion of energy systems and enhance the operation of the electricity market. In [38],
various scenarios for reducing the network load during emergency situations are examined
by leveraging advanced information and communication technologies. This approach relies
on the methods for optimizing and modernizing the generation of emergency commands.

In [39], the problem of positive stabilization of linear continuous singular systems of
both proportional and proportional derivatives of state feedback is considered. In [40], a
control strategy is presented for an isolated hybrid DC microgrid that includes photovoltaic
systems, piezoelectric elements, and storage batteries. An approach to model predictive
control supplemented by reinforcement learning is proposed to optimize the performance
of a hybrid DC microgrid that can be used in industrial power supply systems. In [41],
a new combined method for long-term forecasting of consumer power supply systems
development is proposed, which allows taking into account their features when planning
the development of power systems. In [42], a new hybrid method is proposed that allows
for improving the accuracy of short-term load forecasting, which is based on the use of an
artificial neural network and an artificial bee colony algorithm. This method allows for
taking into account historical data and weather conditions.
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The considered methods of power consumption analysis are used to improve the
economic indicators of industrial enterprises by enhancing the efficiency of power use,
reducing environmental fines, planning the expansion of power systems, enhancing the
operation of the electricity market, as well as shedding load at the dispatcher’s command
in the event of emergencies [43,44]. The studies discussed do not take into account the
specific features of the technological process, but this is essential to predict the possibility
of its completion in order to fulfill the production plan in accordance with the contract.

The aims of the study are (1) to analyze the features of technological processes at indus-
trial enterprises, (2) to analyze the possibilities for fulfilling the plan for production output
under conditions of changing speed of the technological process and power consumption,
(3) to study the characteristics of the random function of power consumption and the
law of distribution of emissions of the random process, and (4) to develop an algorithm
and methods for analyzing the modes of power consumption of industrial enterprises
taking into account the features of technological processes for their use in automatic power
consumption control systems.

The paper is organized as follows. Section 2 examines the characteristics of non-
stationary conditions of producing products and power consumption by industrial enter-
prises and discusses methods for analyzing and making decisions on power consumption
management. Section 3 presents an algorithm designed to analyze the current state of
the technological process and power consumption behavior. This section also justifies the
need to factor in potential fluctuations in the system parameters when managing power
consumption and outlines the conditions for specifying power consumption patterns and
parameters. Section 4 focuses on the findings and potential areas of research in the field of
power consumption management. The conclusion encapsulates the key results of the study.

2. Materials and Methods
The operating conditions of modern power systems, which integrate conventional

power plants (thermal, nuclear, hydroelectric), renewable energy power plants, distributed
generation facilities, and energy storage systems, differ significantly from the planned
ones [45,46]. This situation stems from the changes in the topology and operating conditions
that result from emergency shutdowns of equipment at power plants and in electrical
networks, limitations in the transfer capability of electrical network equipment, as well as
changes in electricity consumption for various reasons [47,48]. In this context, accurately
forecasting electricity generation to meet the demand of industrial enterprises for power
both in volume and quality becomes increasingly challenging [49,50].

The size of the electricity consumption of an industrial enterprise depends on the
characteristics of the technological processes and the output plan [51]. Technological
processes are also affected by random factors, leading to a probabilistic nature of electricity
consumption at various stages [52]. The technologies for managing power consumption that
are widely used in industrial enterprises prove ineffective because their implementation
relies on personnel, even when integrated with automated process control systems. Control
actions are aimed at disconnecting some of the less critical process equipment [53,54]. It is
quite difficult to assess the technical and economic consequences of changing the power
consumption behavior with high accuracy under these conditions.

Monitoring the compliance with process regulations and fulfillment of the production
plan in all stages of the process is essential to manage power consumption. Since power
consumption management has a significant impact on the process parameters and produc-
tion volumes, it is necessary that the algorithms for power consumption management be
designed based on an in-depth analysis of the control object. Reliable information on the
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state and permissible operating conditions of power supply systems is required to manage
power consumption [55–57]. This will eliminate significant losses.

In [58], the authors present diagrams of power consumption management systems,
which take account of the interaction between power grids and power supply systems
of industrial enterprises, including scenarios of emergency power shortages in power
grids. This facilitates the analysis of the transition of a technological process to a new
state characterized by a new power consumption behavior. The listed problems can be
solved through the use of the mathematical apparatus of probability theory, mathematical
statistics, and the theory of level-crossings of random processes.

The permissible operating conditions, productivity, and the degree of influence of ex-
ternal and internal factors vary depending on the specific technological process. Therefore,
it is crucial to analyze the current state of the technological process to prevent failures in
both the technological process and the power supply system operation [59,60].

The solution to the formulated problem is determined by the following:

• The types, quantity, and parameters of controlled components.
• The sequence, duration, and frequency of analysis of the state of the technological

process and its power supply system.
• The accuracy of assessment of current parameters of the production process and its

power supply system.
• The accuracy of forecasting the state of the technological process and its power supply

system [61,62].

The state of the technological process and its power supply system should be forecast
based on trends in the change of conditions and parameters of the technological process.
This will facilitate informed decisions on managing the parameters of the technological pro-
cess and power consumption behavior. In this case, it is important to assess the probability
of the process parameters going beyond the permissible limits because this assessment
affects the capacity to meet the production targets, the change in the power consumption
behavior, and the probability of level-crossings of random processes.

The ability to fulfill the production plan is associated with several random factors
determined by both internal and external circumstances. One of them is the amount of
power consumed (P, kW) at the current time. The second is the power consumed (W, kWh)
over the period tpl required for the timely fulfillment of the production plan, provided the
power supply conditions are met.

In [63], the study reveals that the relationship between the output volume B and
the electricity consumption W at the surveyed industrial enterprises is not functional
B = f (W) but probabilistic and is determined based on correlation coefficients changing
in the range rB,W = 0.43 − 0.89. This is mainly characteristic of enterprises that produce
small-scale products while simultaneously manufacturing a large range of products in
various stages of the technological process. Large industrial enterprises, where production
processes vary in duration and complexity, are also influenced by the indicated factors.

Here are examples of how to calculate the correlation coefficient for two industrial
enterprises with different technological processes and different power consumption.

Example 1. During 4 days (n = 4), one of the enterprises of the chemical industry has the volume
of output production B (kg) with daily power consumption W (MWh), which are given in Table 1.
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Table 1. Data of the volume of output production and power consumption of the chemical industry
enterprise.

B, kg 1000 1100 1220 1350

W, MWh 5.6 6.6 7.0 7.8

Estimates of the mathematical expectation, dispersion, standard deviations, and corre-
lation coefficient are calculated using known equations:

M∗(B) =
∑4

i=1 Bi

n
= 1167.5 kg; M∗(W) =

∑4
i=1 Wi

n
= 6.75 MWh;

D∗(B) =
∑4

i=1[Bi − M∗(B)]2

n − 1
= 22922 kg2;

σ∗
B =

√
D∗(B) = 151.4 kg;

D∗(W) =
∑4

i=1[Wi − M∗(W)]2

n − 1
= 0.837 MWh2;

σ∗
W =

√
D∗(W) = 0.915 MWh;

r∗B,W =
∑4

i=1 [Bi − M∗(B)]·[Wi − M∗(W)]

(n − 1)σ∗
Bσ∗

W
= 0.98.

The obtained value of the correlation coefficient (0.98) indicates a fairly close (close to
functional) dependence between the volume of output of an industrial enterprise and its
electricity consumption. The value n − 1 in the denominator of the equations for calculating
the dispersion and correlation coefficient eliminates the bias of their estimates at a small
number of observations.

Example 2. At one of the enterprises of the metalworking industry, the study of the dependence
of the volume of output production B (ton) on the value of electricity consumption W (MWh) was
carried out. The results of measurements for 15 days (n = 15) are shown in Table 2.

Table 2. Data of the volume of output production and electricity consumption of the metalworking
industry enterprise.

№ B, ton W, MWh № B, ton W, MWh № B, ton W, MWh

1 70.3 7.9 6 98.4 0.8 11 81.9 11.2

2 85.0 0.9 7 59.2 6.0 12 97.1 0.5

3 100.0 3.7 8 86.8 7.2 13 68.2 4.6

4 78.1 8.1 9 70.1 8.8 14 92.1 9.7

5 77.9 6.9 10 42.2 10.2 15 91.2 1.0

To reveal the dependence between B and W, their ordering is required. For the purpose
of visualization, the paired values for 15 days (w1; в1), (w2; в2), . . ., (w15; в15) are graphically
represented in the Cartesian coordinate system in Figure 1.
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Figure 1. Graphical representation of paired values (wi; вi) from Table 2.

The analysis of Figure 1 shows that there is no clear functional dependence between
the values of wi and вi. However, it is obvious that smaller values of wi in most cases
correspond to larger values of wi. This allows us to conclude that power consumption
increases when the technological process functions with reduced productivity.

Estimates of the mathematical expectation, dispersion, standard deviations, and corre-
lation coefficient are calculated using the known equations:

M∗(B) =
∑15

i=1 Bi

n
= 5.8 ton; M∗(W) =

∑15
i=1 Wi

n
= 299.6 MWh;

D∗(B) =
∑15

i=1[Bi − M∗(B)]2

n − 1
= 13.7 ton2;

σ∗
B =

√
D∗(B) ≈ 3.7 ton;

D∗(W) =
∑15

i=1[Wi − M∗(W)]2

n − 1
= 255.6 MWh2;

σ∗
W =

√
D∗(W) ≈ 16 MWh;

r∗B,W =
∑15

i=1 [Bi − M∗(B)]·[Wi − M∗(W)]

(n − 1)σ∗
Bσ∗

W
= −0.54.

The given examples substantiate the necessity of taking into account the peculiarities
of technological processes at industrial enterprises of different industries when analyzing
the modes of power consumption.

Let us consider the process of producing output based on probabilistic analysis meth-
ods. It is obvious that deviations of process parameters and power consumption values
may differ between two contracts producing the same volume of identical products. For
two contracts that have the same deviations from planned values ∆B and ∆W at time t,
the differences may be significant if in one case the technological process is in the initial
stage, and in the other case, the process is in the final stage. Figure 2 presents an example
schedule to fulfill the production plan for output B with a power consumption level W for
a single technological process.
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Figure 2. Schedule of the production plan for the output B with power consumption W for a single
technological process: 1—planned schedule; 2—potential option for production output; 3—alternative
option for production output in one of the stages.

In general, Figure 2 shows a non-stationary random process [64], assuming that the
planned values Bpl(t), Wpl(t) at time t are represented by mathematical expectations for
the volume of production output and the amount of electricity consumption, which can be
calculated using Equation (1):

mB(t) = Bpl t ̸= const; mW(t) = Wpl t ̸= const. (1)

The expected state of the technological process is characterized by the probability of
completing the scope of work p(Bt) and, accordingly, the probability of power consumption
p(Wt) at time t. The automatic power consumption management system records the actual
values Bt and Wt at time t. The probability of producing the planned output level in
accordance with the contract is determined by the probability of producing any shortfall
during time tpl − t [64].

The production of output in accordance with the plan may be disrupted or adjusted
for various reasons—administrative, technological, and electrical. This may be related to
the untimely supply of raw materials and components, failures of process or electrical
equipment in the power supply system, and an active power shortage in the power grid. If
the delay in the output plan ∆Bt and the undersupply of the required amount of electricity
∆Wt at time t (Figure 2) are large enough, they cannot be compensated for by the available
reserves over the period of time t ÷ tpl .

To simplify the analytical model, we assume that at time t, the listed causes are
mutually independent events. Then, the probability of fulfilling the production output plan
pt

(
Bpl

)
can be determined as the product of the probabilities according to Equation (2) [65]:

pt

(
Bpl

)
= p(∆Bt) = pt(A) · p0

(
t, tpl

)
· pA

(
t, tpl

)
, (2)

where p(∆Bt) is the probability of compensation for deviation ∆Bt over the period of time
tpl ÷ t, provided that all technological regulations are adhered to; pt(A) is the probability
of absence of technological equipment failures by time t that would lead to non-fulfillment
of the plan; p0

(
t, tpl

)
is the probability of fulfilling the plan for the supply of raw materials

and components; and pA

(
t, tpl

)
is the probability of failure-free operation of process

equipment over the period of time t ÷ tpl .
Similarly, we assess the probability of having an adequate amount of electricity to

fulfill the production plan pt

(
Bpl

)
, which depends on the power supply system of the

industrial enterprise, namely, on the possibility of compensation for ∆Wt over the period of
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time t ÷ tpl and the availability of power reserves in the power grid. Then, the probability

of fulfilling the production plan pt

(
Bpl

)
can be calculated using Equation (3):

pt

(
Bpl

)
= p(∆Wt) = pt(E) · pr

(
t, tpl

)
· pPG

(
t, tpl

)
, (3)

where p(∆Wt) is the probability of compensation for deviation ∆Wt over the period of
time tpl ÷ t given the possibility of compensation for ∆Wt on the part of the power supply
system of the industrial enterprise and the power grid; pt(E) is the probability of the
absence of failures of electrical equipment in the power supply system by time t that would
lead to non-fulfillment of the plan; pr

(
t, tpl

)
is the probability of the presence of a power

reserve in the power grid; and pPG

(
t, tpl

)
is the probability of failure-free operation of

electrical equipment in the power grid over the period of time t ÷ tpl .
Analysis of Figure 2 shows that the production of the output, as per the technological

regulations, is carried out at the planned (calculated) speed Vpl , which can be calculated
using Equation (4):

Vpl = Bpl/tpl . (4)

If the technological process operates without deviations from the planned (calculated)
speed Vpl , the mathematical expectation of fulfilling the production plan by time t can be
calculated using Equation (5):

mB(t) = Vplt. (5)

If the technological process operates underloaded (or overloaded) with a correspond-
ing lack or surplus of electricity, the speed of output production can be calculated using
Equation (6):

mB(t) = Vtt, (6)

where Vt is the average speed of output production over the time interval 0 ÷ t.
In general, the speed of output production is a function V(t), which can be calculated

using Equation (7):

mB(t) = Bpl(t) =
∫ t

0
V(t)dt, (7)

which in real conditions corresponds to the production plan for the planned value of
electricity consumption at time t.

Given that the technological process may experience random deviations in output
∆Bt = Bplt − Bt and power consumption ∆Wt = Wplt − Wt (Figure 2), it is necessary to
switch to a new speed of output production (dash-dotted line 3 in Figure 2), which can be
calculated using Equation (8):

Vt = Vpl + ∆V = Vpl + ∆Bt/
(

tpl ÷ t
)

. (8)

Then, the probability of compensation for the deviation p(∆Bt) over the period of
time t ÷ tpl is determined by the probability of transition of the production process to
speed Vt, which is a random variable. If the distribution law p(V) and its parameters
are known, the probability of compensating for the deviation in the output p(∆Bt) and
electricity consumption from the power grid p(∆Wt) can be determined as the probability
that the actual speed of fulfilling the output plan Bpl with electricity consumption Wpl in
the remaining time t ÷ tpl will take the value V ≥ Vt. This value can be calculated by
Equation (9):

p(∆B ≥ ∆Bt) = p(∆W ≥ ∆Wt) = p(V ≥ Vt) =
∫ Vmax

Vt
p(V)dV, (9)
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where Vmax is the maximum speed of output production.
Analysis of the factors pt(E) and pPG

(
t, tpl

)
in Formula (3) reveals a significant

difference in technical and economic ramifications of electrical equipment failures in the
power supply system of industrial enterprise or power grid in the initial stage of the
technological process and at its end. With equal repair (replacement) times trep for electrical
equipment, the probability of fulfilling the plan in the first case is significantly higher.
Therefore, it is crucial to take into account that the probabilities pt(E) and pPG

(
t, tpl

)
depend on the timing of equipment failure.

The minimum time in which the production plan can be fulfilled when operating at
maximum speed Vmax can be determined using Equation (10):

tmin = Bpl/Vmax. (10)

If a unit of electrical equipment in the power supply system fails at the beginning of
the technological process for a time t0 (delay for the time of repair of the equipment unit),
then the plan can be fulfilled by operating at maximum speed Vmax. In this case, t0 can be
calculated using Equation (11):

t0 = tpl − tmin = tpl − Bpl/Vmax. (11)

Let us assume that at time t, with known Bt and Wt, there is a delay in the production
output for a period of time t1 − t (Figure 3), provided that the speed of production output
is then increased to Vmax. In this case, the power consumption Pmax will increase but the
final value of power consumption Wpl will remain unchanged, as shown in Figure 3.
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As seen in Figure 3, if a failure of a unit of electrical equipment in the power supply
system occurs at time t, then when it is restored in time tr = t1 − t, it becomes possible
to fulfill the output plan. However, the closer the time t is to the end of the established
deadline for implementing the plan tpl , the shorter the time interval remains for restoring
the failed unit of electrical equipment (Figure 3).

Therefore, tr all is the allowable time for repairing the failed unit of electrical equip-
ment, which can be calculated using Equation (12):

tr all = tpl − t1 − t. (12)
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Analysis of fluctuations in productivity and power consumption of various technolog-
ical processes showed that their deviations by no more than 5% from the nominal value
do not lead to deviations from the production plan. In continuous technological processes
of the chemical, metallurgical, and oil refining industries, the productivity of individual
mechanisms can be reduced only to 50% of the nominal. Otherwise, this will lead to a com-
plete stop of the technological process. In addition, an increase in the speed of production,
in accordance with Equation (8), at these industrial enterprises is practically impossible.
At industrial enterprises of the mechanical engineering and light industry, an increase in
the speed of production is possible due to the use of technological equipment located in a
cold reserve, as well as a time reserve (organization of second and third work shifts at an
industrial enterprise).

The consequences of eliminating deviations in output production from the plan should
be assessed based on the technical and economic damage Y = f (±∆Bt, ±∆Wt), taking
into account all the factors considered [66,67].

Thus, we propose using models based on a probabilistic structure and random func-
tions to examine electricity consumption while taking into account the specific features of
the technological process. The use of the theory of level-crossings of random processes in the
analysis of electricity consumption enhances the reliability of the initial information, which
is essential for the operation of the automatic electricity consumption management system.

3. Results
An algorithm was designed to analyze the current state of the technological process

and the power consumption behavior. It takes into account the specific features of the
process and assesses all intermediate and resulting indicators, including technical and
economic damage. The algorithm block diagram is shown in Figure 4.

To illustrate the work of the algorithm (Figure 4), an assembly shop of one of the
enterprises of the machine-building industry that fulfills an order during the time tpl , taken
as 100%, was selected.

1. By the time of control t, 65% of the planned production volume with power consump-

tion (B pl t, Wpl t

)
should have been produced.

2. The actual process state (as measured by sensors and electricity meters) by control
time t corresponds to an output of 50% (B t, Wt).

3. The remaining amount of work to fulfill the output plan with the corresponding
electricity consumption is determined to be 50%.

4. Actual deviations from the plan on output and power consumption ∆Bt,∆Wt

amounted to 15%.
5. It is required to increase the speed of the technological process, compared to the

planned (calculated), to complete the task of production in the established time for a
time equal to 35% of the total time of work

(
tpl − t

)
.

6. If there are no restrictions on the amount of power consumption, then by increasing

the speed of the technological process by 43% at the time interval
(

tpl − t
)

, provided
that all the technological regulations are observed, the plan for production output can
be fulfilled by the time tpl − t.

7. If at the time interval
(

tpl − t
)

, there are failures of technological or electrical equip-
ment in the power supply system, disruptions in the receipt of raw materials and
components, as well as there is a deficit of active capacity in the power system, it is
necessary to assess the probability of transition to a mode with increased speed of the
technological process. According to retrospective statistical data for the enterprise



Algorithms 2025, 18, 49 12 of 21

under consideration and on the basis of the probability multiplication theorem for
independent events p(∆Bt) = p(∆Wt) ≤ 0.04.

8. If technological regulations allow the maximum speed of the technological process
(due to the introduction of reserve equipment) to exceed the nominal one by 80%,
then the minimum time tmin required to fulfill the plan for production output by the
time tpl will be 56% of tpl .

9. Based on this, it is possible to calculate the maximum time of possible delay in the
start of production (0 ÷ t 0), which for the considered enterprise will amount to 44%
of tpl at the nominal speed of the technological process.

The issues of techno-economic evaluation of damage from deviations in the technolog-
ical process and power consumption were not considered in this study.
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The initial data used in developing the algorithm (Figure 4) included information
received from process state sensors, an automated system for monitoring power quality
indicators and electricity meters, as well as technical and economic information, and the
results of expert assessments.

Implementation of the algorithm presented in Figure 4 in the automatic power con-
sumption management system facilitates monitoring of current deviations ±∆Bt, ±∆Wt,
along with the corresponding techno-economic assessment of damage, in any stage of the
production process. Deviations can be local (process line, workshop) or system-wide (indus-
trial enterprise). The information gathered allows for making informed decisions regarding
power consumption management, changes in the speed of output production, introduction
of additional reserves, and switching the equipment to another operating mode.

The algorithm for analyzing the current state of the technological process and the
dynamics of power consumption (Figure 4) takes into account the emergence of new initial
data. This allows for the accumulation of retrospective information for managing the
technological process and power consumption modes, as well as forecasting.

Let us analyze the fluctuations of a system parameter, which can be effectively used in
automatic power consumption management systems [68,69]. Increasing the frequency of
analyzing power flow parameters (voltage, current, power, frequency) within the power
supply system enables effective real-time management of power consumption [70]. This is
important because deviations in the power flow parameters can increase the probability
of the power consumption value going beyond the permissible limits of the planned one
(the mathematical expectation of a random process). If the value of power consumption
W1 changes by ∆W1, which is recorded during a control measurement at moment t1,
then it is essential to assess the probability of power consumption going beyond the
permissible limits in subsequent time intervals. Consequently, it is necessary to forecast
level-crossings of random processes. The need to use the characteristics of level-crossings
of random processes originates from the limiting conditions of technological processes
because manufacturers do not envisage redundancy in their process lines.

The requirements for safety, reliability, and efficiency of the technological process must
be met regardless of power consumption levels (maximum and minimum) and under all
permissible operational conditions [71,72]. This is important because the technological
process needs to operate under critical and extreme conditions, which can be achieved
through an in-depth analysis of the probabilistic structure of random processes. The graph
of possible fluctuations in the system parameter is shown in Figure 5.
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Since the question of the probabilities of rare random events in scientific and technical
literature, due to the lack and uncertainty of factual information, was discussed mainly
only in theoretical terms, this study uses the methodological approaches outlined in [73,74].

The range of permissible variations in the system parameter X, corresponding to the
values of power consumption (voltage, current, power, frequency) lies within the interval
{α, β}. As long as its value does not go beyond α < X < β, the technological process retains
its integrative property, including integrity (the unity of the interrelations and interactions
of components) and emergence (irreducibility of the system’s properties to the properties
of individual components). When X goes beyond the interval {α, β} , it is impossible to
maintain the dynamic equilibrium of the technological process through coordinated control.
When integrativeness is lost at t > t5 (Figure 5), the technological process is disrupted due
to the activation of protection devices that prevent damage to the process line [75–78].

The partial components of the system parameter X can take values {γ > α, δ < β},
which defines the area of partial homeostasis {γ < X < δ}. At {γ < X < α} or
{δ < X < β}, the technological process normally shifts to a new qualitative state, while
maintaining its functionality. This occurs in the time ranges {t1, t2} and {t3, t4}. The
approach of the system parameter to the maximum permissible values (areas A and B
in Figure 5) can lead to a disruption of the technological process. It is worth noting that
when the technological process enters the bifurcation zone, predicting its further state
becomes impossible.

Let us consider additionally the conditions specifying the behavior and parameters of
power consumption. The actual value of power consumption W (system parameter) is one
of the realizations of the random function ξ(t). In most problems of power consumption
management, it can be assumed that with a fixed value tpl and fluctuations of instantaneous
values of power consumption w(t), the consumed power p(t) also fluctuates proportionally,
i.e., w(t) ∝ p(t). Since any random function is defined by a collection of sample realizations
on a certain time interval t ∈ [t0, t0 + T], and under the assumption of stationarity and
ergodicity of the random function, it is sufficient to consider a single sample function ξ(t)
of a continuous random process.

The graph of the sample realization of the random function ξ(t) along with the
characteristics of the level-crossings of its trajectory W(t) as it crosses the critical level
Wcr max ∝ Pcr max is shown in Figure 6.
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Let us explain the parameters shown in Figure 6: τ0 is the time when the given
boundary is first reached; ξmm is the amplitude of the absolute maximum; ξm is the
amplitude of the local maximum; n(t) is the number of times the random function crosses
the level Wcr max; next(t) is the number of maxima and minima of the random function
ξ(t); τ+(W), τ–(W) are durations of level-crossings of the random function ξ(t) at the level
Wcr max [78].

A set of “special” points is identified to describe the behavior and introduce numerical
characteristics of random function. At a critical level of power consumption Wcr max, the re-
alization of the random function ξ(t) = w(t) is characterized by its positive n+(Wcr max, T),
negative n−(Wcr max, T), and overall n(Wcr, T) = n+(Wcr max, T) + n−(Wcr max, T) cross-
ings on the interval t ∈ [t0, t0 + T] (Figure 6).

The quantities τ+(W) = τ+−(W) and τ−(W) = τ−+(W) are the durations of positive
and negative level-crossings between positive (+) and negative (−) crossings of the critical
level Wcrmax. At the moment t1, the trajectory ξ(t) first goes beyond the limit Wcr max, and
the time it takes to reach it is τ0. The function ξ(t) on the interval T < ∞ has a finite
number of maxima nmax(T) and minima nmin(T) with different amplitudes ξm. At the
moment tm, the trajectory ξ(t) reaches the absolute maximum ξmm. This approach makes
it possible to describe the trajectory ξ(t) by a certain number of its extreme amplitudes
with an indication of the duration of the intervals between individual extremes. This
is important to design algorithms for managing power consumption when developing
automatic power consumption management systems.

The characteristics of the random function ξ(t) can be analyzed based on a sequence
of singular points of the trajectory ξ(t), representing a random sequence of level-crossings
(maxima), as shown in Figure 6. The set of points t+i and t−i , randomly distributed on the
axes A and B of time t, form a flow of random events. Then, the probability of the absence
of an event ti is equivalent to the probability that the random variable ξi will not exceed
the threshold value Wcrmax, which can be calculated using Equation (13):

p− = P(ξi < Wcr max) = Fξ(Wcr max) = 1 − p+. (13)

Thus, the values of the sample function ξ1, ξ2, . . . , ξn of the random sequence{
ξn, n = 1, n

}
reflect the probabilities of occurrence p+ and non-occurrence p− = 1 − p+

of a specific event at moments t1, t2, . . . , tn when the critical level of power consumption
Wcr max is exceeded. This approach is consistent with the classical Bernoulli scheme [79,80],
where a random variable n+(W cr max) is characterized by a binomial distribution:

pk
(
n+

)
= P

{
n+(Wcr max, n) = k

}
= Ck

n
(

p+
)k(p−

)n−k, k = 0, 1, 2, . . . , n, (14)

where Ck
n = n!/k!(n − k)! is the number of combinations of n elements by k.

Distribution (14) is used to estimate the probability P{n+(Wcr max, n) = k} that ex-
actly k exceedances of the electricity consumption threshold level Wcr max will occur in a
sequence of n independent measurements for time moments t1, t2, . . . , tn and, accordingly,
values of the random function ξ1, ξ2, . . . , ξn. The mathematical expectation and variance
of the number of possible exceedances of the electricity consumption level Wcr max are
calculated using Equation (15) [79], known from probability theory:

N+(Wcr max, n) = M
{

n+(Wcr max, n)
}
= np+; D

[
n+(Wcr max, n)

]
= np+

(
1 − p+

)
. (15)

Practical experience in analyzing the power consumption in technological processes
shows that there can be several increasing stages of critical power consumption levels
Wcr max. Each of these levels may be crossed by the sample function ξ1, ξ2, . . . , ξn at
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random moments in time ti. The sequence of crossings is considered a separate realization
t1, t2, . . . , tn of a random point process

{
ti
(
Wj

)}
of exceeding the power consumption

level Wj. The graph of power consumption for a technological process with two critical
power consumption levels W2 > W1 corresponds to the boundaries {γ < X < α} and
{δ < X < β} (Figure 5) and is shown in Figure 7.
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Given that the quantities ξi are independent, the conditions of the Bernoulli scheme
are satisfied. In this case, the number of exceedances n+

(
Wj, n

)
of the power consumption

level Wj follows a binomial distribution, similar to Equation (14). The mathematical
expectation and variance of the number of possible exceedances of the power consumption
level Wj can be calculated using Equation (15).

An analysis of Figure 7 suggests the conclusion that the random point process ti(W2)

at level W2 is the result of “thinning out” the flow ti(W1) from level W1. Consequently, the
probabilities of the mathematical expectation and the variance of the number of possible
exceedances of level p+(Wj) will decrease. Their difference is information about the
probability that the values of the random sequence ξn under study lie in the range of levels
ξ ∈ (W1, W2), which can be calculated using Equation (16):

P{ξ ∈ (W1, W2)} = p+(W 2

)
−p+(W 1

)
(16)

which is shown in Figure 5 by boundaries {γ < X < α} and {δ < X < β}.
Thus, process control comes down to changing the output plan deadlines, redistributing

raw materials and components, and altering the amount of power and electricity consumption.
The intricate nature of the control object (technological process), coupled with the poten-

tial to change the structure and connections, as well as the ability to vary the range of products
manufactured at an industrial enterprise, alongside random external and internal factors, signif-
icantly complicate the decision-making process for managing electricity consumption.

4. Discussion
Adhering strictly to contractual obligations concerning output production enables

industrial enterprises to minimize reputational risks and remain a reliable supplier for
their partners.

Each industrial enterprise has unique technological processes that necessitate their
thorough analysis to manage power consumption effectively. An enterprise can simul-
taneously manufacture a large range of products, which requires multiple technological
processes that vary in duration and power consumption. By considering the specific
features of these processes when managing power consumption, enterprises can reduce
product defects and, accordingly, minimize damage to the industrial operation, which is
critically important.
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Finding a balance between the reliability and efficiency of technological processes
at industrial enterprises by selecting optimal technological conditions requires selecting
appropriate algorithms for managing power consumption, in particular through the imple-
mentation of automatic power consumption management systems.

Widespread adoption of the “demand response” technology allows industrial enter-
prises to reduce electricity consumption by the volume and time specified by the power
system dispatcher. Many industrial enterprises across various countries are actively in-
volved in this process. This offers them financial advantages either through a discount on
electricity or through compensation for services that help reduce electricity consumption
on the power grid. The integration of automatic power consumption management systems
streamlines this process and reduces the likelihood of human errors when taking steps
to lower electricity consumption. In this case, it is only necessary to enter the amount of
electricity consumption reduction (MW or %), and the automatic power consumption man-
agement system will select the optimal control actions. The implementation of such control
actions will foster the reduction in electricity consumption by an industrial enterprise in
the required volume while fulfilling the output plan with minimal delays.

Technological processes operate under extreme power and process flow conditions,
often affected by random external and internal factors. Requirements for safety, reliability,
and efficiency of the technological process must be observed under all power consumption
levels, including maximum and minimum, and under all process conditions.

In the event of frequent power supply interruptions of the technological process caused
by electrical equipment failures in the power grid or unforeseen active power shortages, it is
crucial for the owner of the industrial enterprise to consider investing in the construction of
their own distributed generation facility [81,82]. This will ensure a reliable power supply to
the technological process in the minimum volumes necessary to fulfill the output plan [83].

The technical solution for implementing an automatic power consumption manage-
ment system, along with the developed algorithms, can be effectively replicated in industrial
enterprises with similar production processes. However, each industrial enterprise will need to
customize the algorithms for analyzing and managing power consumption behavior. Industrial
enterprises in other sectors will also need to revise the algorithms for analyzing and managing
their power consumption patterns. The authors’ methods and algorithms for analyzing power
consumption behavior will be highly effective in industrial enterprises within the mechanical
engineering sector, for which they were specifically designed.

Potential Areas of Development

The types and sizes of control actions for managing electricity consumption need to
be elaborated to meet the specific features of various technological processes and electrical
circuits within the power supply systems of industrial enterprises.

It is essential to further refine the methods for analyzing the probabilistic structure of a
random function for automatic power consumption management systems to enhance the relia-
bility of forecasting the number and magnitude of deviations, as well as their consequences.

The methods and algorithms developed for analyzing the power consumption behav-
ior of industrial enterprises, given the unique features of their technological processes, are
planned to be implemented in the automatic management system at one of the industrial
enterprises. Following the pilot phase and industrial operation of the automatic power
consumption management system, we will publish the results achieved and pinpoint areas
for further research.
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5. Conclusions
Managing the power consumption behavior of industrial enterprises requires com-

prehensive and reliable information about the features of their technological processes.
In addition, it is necessary to consider random factors determined by both internal and
external circumstances, which must be taken into account. This will reduce power usage
throughout the technological process while still meeting the planned output targets.

Analysis of trajectories and level-crossings of random processes when analyzing the
power consumption behavior of industrial enterprises fosters the estimation of the main
numerical characteristics of the binomial distribution at different critical levels of power
consumption. This allows us to evaluate and estimate the relative durations of random
function realizations within critical ranges, assess the probability of the trajectories w(t)
exceeding permissible limits, and analyze various.

The algorithm and methods designed to analyze power consumption behavior can
be used in the development of automatic power consumption management systems for
industrial enterprises.
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