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Abstract: This paper addresses the Capacitated Location Tree Problem with Interconnec-
tions, a new combinatorial optimization problem with applications in network design. In
this problem, the required facilities picked from a set of potential facilities must be opened
to serve customers using a tree-shaped network. Costs and capacities are associated with
the opening of facilities and the establishment of network links. Customers have a given
demand that must be satisfied while respecting the facilities and link capacities. The prob-
lem aims to minimize the total cost of designing a distribution network while considering
facility opening costs, demand satisfaction, capacity constraints, and the creation of in-
terconnections to enhance network resilience. A valid mixed-integer programming was
proposed and an exact solution method based on the formulation was used to solve small-
and medium-sized instances. To solve larger instances two metaheuristic approaches were
used. A specific decoder procedure for the metaheuristic solution approaches was also
proposed and used to help find solutions, especially for large instances. Computational
experiments and results using the three solution approaches are also presented. Finally, a
case study on the design of electrical transportation systems was presented and solved.

Keywords: Capacitated Location Tree Problem; location; network design; BRKGA; PSO

1. Introduction
In the intricate fabric of human history, the undulating currents of societal mobility

have woven a complex narrative closely tied to the imperatives of commerce, sparking
the birth and evolution of sophisticated transportation systems. As the population bur-
geons, the need for increased mobility propels the adoption of electric transportation
systems—subways, electric trains, and cable cars—with each standing as a testament to
innovation and progress. Within this evolving landscape, the pivotal consideration of
electrical consumption emerges as the keystone, dictating the efficiency and efficacy of
these burgeoning transit modes [1].

The escalating demands of a growing population have triggered an unprecedented
demand for electric transportation services, compelling the evolution of systems capable
of seamlessly delivering the required electrical power. The expansive growth of metro
networks and the surging number of commuters at each station underscore the paramount
importance of traction substations. These substations, acting as sentinels of power, are
crucial in supplying the essential energy needed to maintain the pinnacle of service quality
amidst rising demand [2].
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Navigating this intricate scenario, an innovative algorithm takes center stage, poised
to deftly address the complex challenge of strategically placing traction substations and
managing their intricate interconnections. At its core, this algorithm fervently pursues
the cardinal objective of minimizing the proliferation of necessary traction substations.
Executed with meticulous precision, this endeavor is dedicated to optimizing energy
efficiency and fortifying infrastructural integrity, constituting a cornerstone contribution to
achieving the sustainability and operational excellence of burgeoning electric transportation
systems [3].

Integral to this paradigm is the dynamic presence of traction current converter plants,
serving as linchpins in the power supply network. These converter plants assume two
principal forms: decentralized and centralized. In the decentralized model, a single plant
directly supplies the overhead lines or third rail of the traction system without an interme-
diary feed into a traction current distribution network. Conversely, centralized converter
plants play a dual role, supplying the traction power network while directly providing
power to the overhead lines or third rail. This nuanced addition accentuates the multi-
faceted nature of the infrastructural landscape, where the strategic placement of traction
substations harmonizes with the dual modality of traction current converter plants, or-
chestrating an intricate ballet of power distribution and efficiency in the realm of electric
transportation [4].

This paper introduces the Capacitated Location Tree Problem with Interconnections
(CLTPI). The problem arises from the need to optimally design electric transportation
networks capable of partially functioning during disruptions. In the CLTPI, a subset
of capacitated facilities (electrical substations) from a set of potential locations must be
opened (built) to service a set of clients (traction substations) with a specific demand.
Clients are serviced using a capacitated network that has to be established. There are costs
associated with opening any of the potential facilities, as well as with the topological design
of the network.

A formulation and two metaheuristic solution methods are proposed and used to
solve a set of benchmark test instances from the literature. The benchmark instances
are derived from the Location Routing problem, which is closely related to the CLTPI.
Computational experiments and the results obtained from the three proposed solution
methods are presented and discussed.

Section 2 presents a relevant literature review related to the CLTPI. Section 3 describes
the problem and proposes a mixed-integer programming formulation. Three solution
approaches are presented in Section 4. Computational experiments and their results are
presented in Section 5, while the case study and its outcome are discussed in Section 6.
Finally, the most relevant findings and potential future research are presented in Section 7.

2. Literature Review
Network design problems have been widely studied in the literature. The minimum

spanning tree (MST) can be considered the fundamental problem for network design that
can be solved using polynomial–time algorithms like the ones proposed by [5,6]. The MST
considers a set of vertices that have to be connected through a network so that a commodity
(electricity, information, water, etc.) can flow from any origin vertex to a destination one.
When capacities restrict the flow through the network’s links, the capacitated minimum
spanning tree (CMST) arises [7]. By including such constraints, the problem becomes of the
type NP-Hard, as Papadimitriou showed in [8].

On the other hand, location problems have also been extensively studied in the
literature. The most basic location problem is the p-median problem or uncapacitated
facilities location problem (UFLP) [9]. In this problem, p facilities have to be open to serve
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a set of customers. In the capacitated version of the problem (capacitated facility location
problem) [10], capacities are considered for plants, and each customer has a predefined
demand to be delivered.

The CLTPI can be considered a combination of the CMST and CFLP problems with
additional constraints (interconnections). One of the most related research works to the
CLPTI is by Araóz et al. [11], which presents three location-routing problems (LRPs) defined
over tree-shaped graphs. LRPs have been widely studied in the literature. Interesting
reviews of LRPs can be found in [12,13]. The authors propose various LRPs defined over
a tree-shaped road network (graph). The authors present several variants of the problem
depending on the characteristics of customers’ demand. In all the proposed variants, the
best location has to be selected among a set of facilities at the graph’s vertices, and customers
are assigned to one selected facility. Finally, closed routes are designed using open facilities
as depots while minimizing the total cost. The authors propose solution methods that
first determine which facilities are open and assign the customers to such facilities. The
optimal routing is then obtained by decomposing it into smaller subproblems associated
with each open facility. Since the problem is defined over a tree-shaped graph, edges (the
authors used a non-directed graph) are traversed precisely twice. A representation of the
LRP variants proposed in this research work is presented in Figure 1. As mentioned before,
these problems are LRPs and, therefore, different from the CLTPI.

Figure 1. Araóz et al. proposed LRPs over tree-shaped graphs [11]. (a) Tree and edges. (b) Allocation
to two facilities. (c) Allocation to one facility.

Another related problem is the Capacitated Facility Location/Network Problem
(CFLNDP) [14], which arises from the CFLP. The CFLNDP considers a set of vertices
representing clients with a given demand. A facility might be open at each client vertex and
with a given capacity. Open facilities serve directly through a link to the clients assigned to
the open facility. The authors consider an incomplete graph for the problem. The CFLNDP
solutions are star-shaped networks originating from an open facility. In the CFLNDP, no
capacity over the links is considered, and clients are served using direct links from the
facilities. The main differences with the CLTPI are that there is no capacity over the links,
there is no topological design of the network, all clients can open a facility, and the problem
is defined over an incomplete graph.

Another two problems in the context of tree and location problems are the Capacitated
Ring Tree problem (CRTP) [15] and the Ring-Tree Facility Location problem (RTFLP) [16,17].
Both problems consider a central depot to which the customers have to be connected by
using a ring-tree-shaped network. Both problems consider two types of customers. Type 1
customers can be connected to the network by a tree or a ring, while type 2 customers need
to be connected by rings. The rings are part of the inner level of the network, and trees are
part of the outer level. The CRTP and the RTFLP consider a limit for the number of rings
used to connect all customers and capacity constraints in the number of clients connected
to each ring. The RTFLP considers facility opening costs (in the vertices that are part of the
rings) and capacities in the outer level of the network, while the CRTP does not. The RTFLP
can be considered a generalization of the CRTP. Among the most important differences
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between the CLTPI and RTFLP are that facilities can be opened for any customer (therefore
becoming part of a ring) and that customers are connected to a central depot.

Finally, the Tree of Hubs Location Problem (THLP) is another problem related to the
CLTPI. In this problem, a set of hubs must be located to transport people or commodities
between the origin and destination points in the network. The main difference between the
THLP and the classical Hub Location Problem (HLP), is that solutions in THLP must be
tree-shaped. The THLP does not consider capacity over the hubs or the links between the
hubs, differing from the CLTPI [18].

Table 1 presents a summary of problems related to the CLTPI. It presents the most
relevant characteristics of each problem and some essential related works and methods
used to solve them. The intention is to show some relevant related works, not an extensive
literature review (for example, for the CFLP, the literature is quite comprehensive). The
table shows that exact methods are predominant in the CFLNDP, the THLP, the RTFLP, and
the LRP over tree-shaped networks. On the other hand, exact and heuristic methods are
used for the CMST and the CFLP.

Table 1. Literature Review. Related Problems.

Problem Characteristics Authors Solution Methods

Capacitated minimum Tree-shaped network Chandy and Lo [7] Little’s branch-and-bound
spanning tree Capacitated links Ahuja et al. [19] Multi-Exchange Neighborhood

One source Ruiz et al. [20] BRKGA
No location Ruiz [21] Branch-and-cut algorithm

Capacitated facility Capacitated facilities Holmberg et al. [22] Exact Algorithm
location problem Facility location Chudak and Williamson [23] Local Search

Various sources Rahmani and MirHassani [24] Hybrid Firefly-GA
No network

Location-routing problems Facility location Aráoz et al. [11] Decomposition
over a tree network No capacities

Routing problem

Capacitated Facility Facility location Melkote and Daskin [14] MILP
Location/Network Problem Capacitated facilities

Star-shaped network
Various sources

Ring-Tree Facility Facility location Abe et al. [16] MILP
Location problem Ring-shaped network Abe et al. [17] Branch-and-Price

One source

Tree of Hubs Facility location Contreras et al. [18] Integer Programming
Location Problem No capacities Contreras et al. [25] Decomposition

Tree-shaped network de Sá et al. [26] Benders decomposition

3. Problem Description and Formulation
The Capacitated Location Tree Problem with Interconnection (CLTPI) focuses on

optimizing the design of a distribution network to minimize the total cost. In this context,
strategic decisions must be made regarding the placement of facilities, referred to as plants,
to service a set of clients with specific demands. The network design must be robust. Hence,
interconnections between facilities must be included to ensure service continuity, even in
the event of a failure in any of them.

Interconnections, defined as links between two facilities, are exclusively utilized in
failure situations and are not part of the network’s regular operation. They aim to maintain
the supply in case of a failure in any facility, ensuring the system’s reliability. Additionally,
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the problem considers capacity constraints in both facilities and connections. Capacity
constraints in facilities limit the amount of energy they can supply, while constraints on
connections regulate energy flow between facilities and clients.

The formulation and modeling of the problem are carried out using graphs, allow-
ing for an efficient representation of the relationships between facilities and connections.
However, it is relevant to note that this problem is NP-Hard, signifying that its complexity
increases significantly as the numerical instance size to be solved grows.

Despite an exhaustive literature review, no evidence of prior studies addressing the
CLTPI has been found. It arises from the urgent need to design electrical networks for
electric transportation systems capable of operating partially, even in the event of failures
in power substations.

In summary, the primary objective of the problem is to minimize the total cost of
network design, considering the cost of opening the required facilities, and designing the
network to meet the required demands of all clients. This involves respecting capacity
constraints in facilities and connections while strategically creating interconnections be-
tween facilities to maintain continuous service, at least partially, in the case of a failure in
any facility.

The problem is formally defined with a complete directed graph, G = (V, A), where
V is the set of vertices and A = (i, j)|i ∈ V, j ∈ V|i ̸= j is the set of arcs. The set V contains
two subsets of vertices: (i) Vp ⊂ V, the subset of plants, and (ii) Vc ⊂ V, the subset of
clients. Therefore, V = Vp ∪Vc. For every arc (i, j) ∈ A, there is an associated cost, cij, that
represents the cost of establishing a connection between vertices the i ∈ V and j ∈ V. The
number of available plants is given by p = |Vp|, the number of customers requiring the
service by c = |Vc|, and the total number of vertices by n = p + c = |V|.

Formulation

A mixed-integer linear problem (MILP) flow-based formulation is proposed and
presented in this section to model the CLTPI. This MILP formulation uses binary variables
and continuous variables. Before formulating the problem, the following parameters
are defined:
n the total number of vertices in graph G, with n = |V|;
p the number of available locations for plants;
cl the number of customers to serve, with cl = n− p;
dj the required demand of the customer j ∈ Vc;
cij the cost of establishing a connection using the arc (i, j) ∈ A;
fp the opening cost for the plant (facility) p ∈ Vp;
bp the limited capacity of the plant (facility) p ∈ Vp;
Q the capacity of the connection links.

The required variables to formulate the problem are also defined:

yp =

{
1, if plant p is open, p ∈ vp

0, otherwise.

xijp =

{
1, if arc (i, j) is used in the network and is connected to plant p ∈ Vp

0, otherwise.

tijp = the flow passing through arc (i, j) with origin in plant p ∈ Vp

Using the previously defined parameters and variables, the following optimization
formulation arises:
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Min ∑
p∈Vp

fpyp + ∑
p∈Vp

∑
i∈V

∑
j∈Vc

cijxijp (1)

subject to

∑
p∈Vp

∑
i∈V
i ̸=j

xijp = 1 ∀j ∈ Vc (2)

∑
p∈Vp

∑
i∈Vc
i ̸=j

dixjip ≤ Q− dj ∀j ∈ Vc, (3)

∑
i∈V

∑
j∈Jc
j ̸=i

djxijp ≤ bpyp ∀p ∈ P (4)

∑
p∈Vp

∑
i∈V
i ̸=j

tijp − ∑
p∈Vp

∑
i∈Vc
i ̸=j

tjip = dj ∀j ∈ Vc (5)

0 ≤ tijp ≤ Q ∀i ∈ V, j ∈ Vc, p ∈ P (6)

xijp ∈ {0, 1} ∀i ∈ V, j ∈ Vc, p ∈ P (7)

yp ∈ {0, 1} ∀p ∈ P (8)

The objective function (1) of the previously presented model minimizes the network’s
total construction cost. The first term represents the cost of opening the required facilities,
while the second represents the cost of establishing the necessary connections for all the
vertices in the network. On the other hand, the constraints (2) guarantee that every client
vertex is connected to the network, while the constraints (3) limit the number of outgoing
arcs from a client vertex, considering the capacity of the links. The plant’s capacity is
controlled with the constraints (4). To control the links’ capacity and the connectivity of the
solution, the flow constraints (5) and (6) are used.

This type of MILP model can be solved by using an exact method (EM) to obtain
solutions for the CLTPI. For this research, the EM combines a dual-simplex algorithm with
branch-and-bound techniques to solve CLTPI instances.

4. CLTPI Solution Algorithms
Instances of the CLTPI can be solved using exact and metaheuristic methods. Exact

methods are based on mathematical programming formulations. On the other hand,
metaheuristic methods are inspired by natural phenomena, physics phenomena, and animal
behavior, among other sources. In this section, three solution approaches are presented.
The first is an exact method (EM) based on the formulation presented in Section 3. The
EM uses a branch-and-bound algorithm over the CLTPI formulation to obtain solutions. A
good description of the branch-and-bound algorithm can be found in [27]. Since the CLTPI
is an NP-Hard problem, solution methods like EMs are non-polynomial and consume many
computational resources. In other words, the complexity of the EM grows exponentially as
the size of the instances increases, and so does the computational effort.

The other two are metaheuristic evolutionary algorithms. It is known that large
instances of NP-Hard problems are tough to solve using exact methods and require a sig-
nificant computational effort to obtain solutions. Therefore, using metaheuristic algorithms
that can provide good-quality solutions with a reasonable computational effort is relevant.
Different kinds of heuristics and meta-heuristics have been used for solving combinato-
rial optimization problems like Genetic Algorithms [28], Simulated Annealing [29], Ant
Colony Optimization [30], the Gravitational Search Algorithm [31], Tabu Search [32], and
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Particle Swarm Optimization [33], among many others. To solve instances of the CLTPI,
two metaheuristic optimization algorithms were selected: (i) the Particle Swarm Optimiza-
tion algorithm (PSO) and (ii) the Biased Random-Key Genetic Algorithm (BRKGA). The
reason for selecting both algorithms was their proven performance in solving tree-related
combinatorial optimization problems (see [21,34]). In the following, a brief description of
these metaheuristic optimization algorithms is provided.

4.1. Biased Random-Key Genetic Algorithm (BRKGA)

Bean [35] first proposed Random-Key Genetic Algorithms for solving combinato-
rial optimization problems. Combinatorial optimization problems, by their nature, are
integer-based, meaning that variables must take integer values. The algorithm encom-
passes a population of random vectors that encode the solution to the stated problem. Later,
Gonçalves and Resende [36] introduced the BRKGA, or Biased Random-Key Genetic Algo-
rithm, for the first time. The BRKGA has been widely used in the context of combinatorial
optimization problems like bin-packing problems [37], routing problems [38], clustering
problems [39], regression testing [40], scheduling problems [41], and many other problems.
Since the BRKGA has proven to be efficient in solving combinatorial optimization problems,
frameworks and libraries have been developed, like the ones by Toso and Resende [42],
Silva et al. [43], Andrade and Toso [44], and Oliveria et al. [45], among others.

The BRKGA has also been used in facility location and network design problems. In
the context of facility location problems, it is essential to mention the works by Biajoli [46],
Souto et al. [47], and Morais et al. [48]. In the context of tree problems, there are also
relevant works like the ones by Ruiz et al. [20] and Pessoa et al. [49].

Random vectors are generally represented in the interval [0, 1] and are called chromo-
somes. Through the algorithm, a population evolves for several iterations (generations).
In such algorithms, up to L populations with np individuals can be used, which evolve
independently for a certain number of generations (IG). At this point, the best members of
each population are introduced into the other populations to diversify them. This process
is repeated every IG generation.

On the other hand, bias in such algorithms is introduced by giving greater priority
to parents with a better value in their objective function to pass on their genes to their
descendants. The BRKGA starts by generating an initial population, IP, of random vectors,
v, with values in the interval [0, 1]. Then, every vector vi in the population IP is subjected
to a decodification procedure that returns a fitness value, f vi. Using f vi, the vectors vi are
sorted in ascending (minimization function) or descending (maximization function) order.
Once ordered, the first pe members are selected as the elite members of the population. The
population IP in the generation g has pe elite members and np− pe non-elite members. To
create the population IP in the next generation, g + 1, all elite members in the g genera-
tion are copied without modification. Then, a small number of pm mutants is randomly
generated and introduced into the population IP. The other np− pe − pm individuals are
created by using crossover. Crossover is performed by always using an elite member as a
parent. The other parent could be either a non-elite or an elite member of the population.
Elite parents have a greater priority, 0.5 > ρe < 1, to pass on their genes to a descendant.
Figure 2 shows a graphical description of how the next generation g + 1 is created from the
current generation g.

The BRKGA evolves until a stop criterion is met. The most common criterion is to
stop after a given number of iterations without improvement is reached. In Figure 3, the
flowchart of the BRKGA algorithm is shown.



Algorithms 2025, 18, 50 8 of 24

Figure 2. BRKGA crossover between elite and non-elite members in generation g to produce genera-
tion g + 1.

Figure 3. BRKGA flow chart.

4.2. PSO

Particle Swarm Optimization (PSO) stands as an evolutionary computing technique
within the domain of bioinspired systems. The PSO was first proposed by Kennedy and
Eberhart [33]. The PSO is a very popular optimization algorithm that has been used in
various topics and applications. In the context of combinatorial optimization problems,
the PSO has been used in vehicle routing problems (VRPs) [50–52], facility location prob-
lems [53–55], location-routing problems [56,57], and scheduling problems [58,59], among
many others. The PSO is a continuous optimization algorithm, although some discrete
versions have been proposed, like the ones by [60,61]. Additionally, many variants of the
PSO have been proposed. A good overview of such variants can be found in Jain et al. [62].
Another comprehensive review of the PSO can be found in [63].

Its inception involves the establishment of random populations as an initial solution.
Subsequently, the algorithm evolves, generating a random velocity and potential solutions
known as particles, traversing the problem space. These particles maintain a meticulous
record of their coordinates within the problem space, intimately linked with the best
solution, denoted as fitness. The imperative retention of the fitness value leads to its
identification as Pbest. Furthermore, the best solution, derived from the global iteration of
the PSO, is preserved. This pinnacle solution, irrespective of its origin, is identified as Gbest
and represents the optimal state within the population. Central to the dynamic nature of
PSO are the acceleration coefficients, denoted as c1 and c2 in the algorithmic formulation.
These coefficients signify the weight of stochastic acceleration, influencing each particle’s
trajectory towards both its personal best Pbest and the global best Gbest. The manipulation
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of these acceleration constants introduces adjustments, thereby inducing tension within the
system and steering the optimization process.

In this paper, a variant of regular PSO is used. The variant includes ideas from [64]
for a variable inertia weight, from [65] for the variable acceleration coefficients c1 and c2,
and the algorithm reset from [66]. Therefore, this variant uses variable instead of constant
values for the parameters c1, c2, and w. As mentioned before, c1 and c2 are acceleration
coefficients, while w is the inertia coefficient. Also, the algorithm has a reset function
that randomly initializes the particles except for one particle, which is initialized with the
best solution the algorithm found before resetting. Such a function allows the algorithm
to escape from local optima and is activated when a specific criterion is met (number of
iterations without improvement). The reset function can be used several times, although
experiments showed that such a function should be used one or two times at most.

The flow chart of the algorithm is shown in Figure 4.

Figure 4. Parallel PSO with restart.

4.3. Decoder with Improvement Phase

The BRKGA and PSO are general-purpose optimization algorithms and require a de-
codification procedure to obtain solutions to a given problem. A cost-based decodification
procedure is proposed and presented to obtain solutions for the CLTPI. This procedure is
inspired by the one proposed in [21]. The decoder uses n = |V| variables, equal to the total
number of vertices in the graph G. Therefore, one variable is associated with each potential
facility and each customer. The decoder receives, as input, Xp, Xcl , G, n, p, cl, b, f , Q, d,
and c. Following a description of each input item is presented.

• Xp is the key vector associated with the set of potential facilities in the set Vp.
• Xcl is the key vector associated to the set of clients Vc.
• n is the total number of vertices in the graph G; n = |V|.
• p is the number of potential locations for facilities; p = |Vp|.
• cl is the number of customers to serve; cl = n− p = |Vc|.
• d is the demand vector for the customer j ∈ Vc.
• c is the cost matrix for establishing a connection using the arc (i, j) ∈ A.
• f is the opening cost for plants (facilities) in the set Vp.
• b is the capacity limit for plant (facilities) in the set Vp.
• Q is the maximum capacity of the connection links.
• A subtree is a rooted arborescence with an origin at a client vertex, i ∈ Vcl .



Algorithms 2025, 18, 50 10 of 24

• An s-tree, s-Tk, is a particular case of a subtree with an origin at k ∈ Vc, where k is
directly connected (xpkk = 1) to an opened plant vertex, p ∈ Vp.

• MPR is the minimum number of facilities to open to cover the accumulated demand
of all clients. MPR is computed using the variables yi defined in Section 3 and is solved
using the following optimization problem:

Min ∑
p∈Vp

yp (9)

subject to

∑
p∈Vp

fpyp ≥ ∑
j∈Vc

dj (10)

yp ∈ {0, 1} ∀p ∈ P (11)

The cost-based decoder uses two key vectors. The first key vector is related to the
potential facilities and the second to the clients. The decoder receives as input two key
vectors, Xp and Xc, of the size p and cl, respectively. Both key vectors are arranged in
ascending order. The core idea behind the cost-based decoder is to scan the vertices in
increasing order of the random keys in the vectors Xp and Xcl and try to assign the scanned
vertex i to its closest s-tree among the already-existing ones with enough available capacity.
Here, the distance from the vertex i to the s-tree s-Tk is defined by the least cij value for
j ∈ V(s-Tk).

As mentioned before, the cost-based decoder takes as input two random key vectors,
Xp and Xcl , the graph structure G = (V, A), the potential plant set Vp, the client set Vp, the
demand vector d, the capacity plant vector f , and the minimum required plants MPR and
returns an n-dimensional integer assignment vector, a. When i ∈ Vc, a(i) = k indicates that
the vertex i is assigned to the s-tree s-Tk, and a(i) = i indicates that the client i is directly
connected to an open facility. When k ∈ Vp, a(k) = k indicates that the plant k is open. The
algorithm uses a vector, s, to keep the residual capacities of opened plants and s-trees to
avoid allocating more demand than that supported by plants and links. Finally, the vector
r keeps a record of the plant to which an s-tree is directly connected.

Algorithm 1 gives the pseudo-code of the cost-based assignment assignment decoder.
In lines 1 and 2, the assignment vector a, available capacity vector s, and plant assignment
vector r are initialized. The lists are initialized in lines 3 to 5. The assignation of clients is
performed in the loop in lines 7 to 40. In each iteration, i denotes the vertex to be assigned
(initialized in line 6). In line 7, an ordered list is built using open plants and clients already
assigned, which are stored in the list ASSIGNED. The loop in lines 10 to 29 assigns the vertex
i to the closest s-tree or plant with available capacity. If the client i is assigned to an s-tree,
the vectors a, s, and r are updated in lines 13 to 16. If i is directly connected to a plant, the
vectors a, s, and r are updated in lines 19 to 22. If assigned, the client i is removed from the
list VERTICES and included in the list ASSIGNED in lines 25 and 26. If there is no s-tree or
plant with available capacity to accommodate i, then a new plant, k, is open, and the client
i is directly connected to it and included in the list ASSIGNED (lines 30 to 37).

The proposed decoder is a two-phase decoder. In the first phase, the key vector is
decoded and transformed into a solution of the CLPTI, while in the second phase, the
obtained solution is improved. For the CLTPI, the improvement phase re-optimizes s-
trees by computing an MST since s-trees respect the link capacity constraints. The MST is
computed for the set of vertices contained in the s-tree plus the plant to which the s-tree is
connected using Prim’s algorithm [6].
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Algorithm 1: Pseudo-code for cost-based assignment decoder
procedure cost-based assignment

Input: Xp,Xc, V, A, Vp, Vc, f , Q, d, c, MPR
Output: Assignment array a

1 a(p)← 0, s(p)← f (p), for p ∈ Vp

2 a(i)← 0, r(i)← 0, s(i)← Q, for i ∈ Vc

3 Initialize list VERTICES with vertices 1,∈ Vc in increasing order of Xc;
4 Initialize list ASSIGNED with vertices 1, . . . , MRP in increasing order of Xp ;
5 Initialize list PLANTS with vertices MPR, . . . , p in increasing order of Xp;
6 i← FIRST(VERTICES);
7 while i ̸= nil do

/* Try to connect i to an existing subtree or plant */
8 Sort vertices j in ASSIGNED in increasing order of cij;
9 j← FIRST(ASSIGNED);

10 while j ̸= nil and a(i) == 0 do
11 k← a(j);
12 if k ∈ Vc and s(k) ≥ di and s(r(k)) ≥ di then
13 a(i)← k;
14 s(k)← s(k)− di;
15 r(i)← k;
16 s(r(k))← s(r(k))− di;
17 end
18 if k ∈ Vp and s(k) ≥ di then
19 a(i)← i;
20 s(i)← s(i)− di;
21 r(i)← k;
22 s(k)← s(k)− di;
23 end
24 if a(i) ̸= 0 then
25 Remove i from CANDIDATE list;
26 Add i to ASSIGNED list;
27 end
28 j← NEXT(ASSIGNED);
29 end
30 if a(i) == 0 then

/* Open a new plant an connect vertex i */
31 k← FIRST(PLANTS);
32 a(i)← i;
33 s(i)← s(i)− di;
34 s(k)← s(k)− di;
35 Remove i from CANDIDATE list;
36 Add i to ASSIGNED list;
37 Remove k from PLANTS list;
38 Add k to ASSIGNED list;
39 end
40 i← NEXT(VERTICES);
41 end
42 return
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5. Computational Experiments
To test the performance of the proposed solution algorithms (EM, BRKGA, and PSO),

36 test instances from the literature were used. These test instances were proposed to the
LRP and can be found at http://prodhonc.free.fr/Instances/instances_us.htm (accessed on
16 January 2025). These instances were chosen because their characteristics are applicable
to the CLTPI. The size of the test instance ranged from 20 to 200 clients, and there were 5 to
10 potential facilities. The names of the test instances reflected the number of clients (first
number) and the number of potential facilities (second number). The EM was developed in
C++ Ubuntu 13.3.0 using GUROBI 9.1.1 as the solver. The BRKGA and PSO algorithms
were also developed in C++ Ubuntu 13.3.0.

All the experiments were run on a PC with an AMD Ryzen 9 3950 processor at 3.5 GHz
with 16 cores and 64 GB of RAM. Tables 2–4 show, respectively, the results of the exact
algorithm (Formulation), BRKGA, and PSO using the benchmark test instances. The EM
was run just once (the algorithm was deterministic), while the BRKGA and PSO were run
five times for each test instance. For the EM, a maximum solution time of 72,000 s was
defined. A comparison of the best solutions obtained by each solution algorithm and the
average time required to find it is presented in Table 5.

For the BRKGA, the following parameters were used:

• L = 50, the number of populations used;
• pe = 0.25, the percentage of elite elements in each population;
• pm = 0.10, the percentage of mutants introduced in each population after crossover;
• Th = 1.32 the number of threads to be used (parallel computing);
• ItEx = 40, the number of iterations between exchanges of elite solutions among

populations;
• ElitetoEx = 1, the number of elite solutions to exchange;
• ρ = 0.65, the probability that offspring inherits the vector component of its elite parent;
• ItStop = 350, the number of iterations without improvement in the BRKGA

stopping criterion.

For the PSO, the following initial parameters were used:

• L = 224, the number of particles used;
• c1 = [2, 1.496], the acceleration coefficient towards the global best solution Gbest;
• c2 = [2, 1.496], the acceleration coefficient towards the particles’ best solution Pbest;
• w = [0.7928, 0.7578], the percentage of mutants introduced in each population after

crossover;
• ItStop = 350, the number of iterations without improvement in the stopping criterion.

Note that the parameters c1, c2, and w were modified every iteration when no new
best solution was found.

In Table 2, column Instance gives the name of the test instance, while columns UB
and LB show, respectively, the upper and lower bounds obtained by the EM. Column Gap
shows the percentage deviation between the UB and LB, and T16 shows the elapsed time
used by the EM. For Tables 3 and 4, column Instance gives the name of the test instance,
while columns Best, Mean, and Worst show, respectively, the best, the mean, and the worst
value found by the corresponding algorithm after five runs. Columns T1 and T16 show
the average time using one and sixteen CPU cores during five runs with the algorithms.
Column S(16) shows the speedup of the parallel program using 16 CPU cores. The speedup
was computed using

S(16) =
T1

T16
.

http://prodhonc.free.fr/Instances/instances_us.htm
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Finally, column σ shows the objective function’s standard deviation for each instance
after five runs.

Table 2. Exact method’s results.

Instances LB UB Gap T16

coord20-5-1.dat 21,327.37 21,327.68 0.00 10.92
coord20-5-1b.dat 15,638.81 15,638.81 0.00 4.97
coord20-5-2.dat 22,893.29 22,893.29 0.00 5.08
coord20-5-2b.dat 14,050.44 14,051.02 0.00 3.15
coord50-5-1.dat 15,219.37 15,262.86 0.29 7200.64
coord50-5-1b.dat 15,065.81 15,098.14 0.21 7200.64
coord50-5-2.dat 29,563.77 29,582.63 0.06 7200.64
coord50-5-2b.dat 29,520.52 29,580.44 0.20 7200.64
coord50-5-2BIS.dat 16,845.06 16,869.25 0.14 7200.63
coord50-5-2bBIS.dat 17,836.50 17,879.67 0.24 7200.64
coord50-5-3.dat 11,099.39 11,135.09 0.25 7200.64
coord50-5-3b.dat 10,973.95 11,005.12 0.28 7200.64
coord100-5-1.dat 133,473.45 133,544.83 0.05 7200.72
coord100-5-1b.dat 133,255.56 133,320.51 0.05 7200.71
coord100-5-2.dat 97,292.59 97,352.20 0.06 7200.69
coord100-5-2b.dat 97,075.44 97,114.30 0.04 7200.70
coord100-5-3.dat 86,829.41 86,878.30 0.06 7200.71
coord100-5-3b.dat 86,630.17 86,683.47 0.06 7200.70
coord100-10-1.dat 155,463.85 155,564.86 0.06 7200.72
coord100-10-1b.dat 155,299.63 155,357.72 0.04 7200.72
coord100-10-2.dat 141,492.96 141,570.05 0.05 7200.74
coord100-10-2b.dat 141,354.23 141,416.36 0.04 7200.68
coord100-10-3.dat 136,552.56 139,911.96 2.46 7200.84
coord100-10-3b.dat 136,412.67 136,486.56 0.05 7200.84
coord200-10-1.dat 232,017.92 338,024.89 45.69 7212.86
coord200-10-1b.dat 231,458.68 318,817.21 37.74 7201.71
coord200-10-2.dat 261,216.53 339,855.34 30.10 7201.61
coord200-10-2b.dat 260,206.20 410,000.40 57.57 7202.89
coord200-10-3.dat 226,295.97 469,606.39 107.52 7201.38
coord200-10-3b.dat 225,896.31 497,752.47 120.35 7210.48
coordGaspelle21-5.dat 318.06 318.06 0.00 2.85
coordGaspelle22-5.dat 447.09 447.09 0.00 2.62
coordGaspelle29-5.dat 374.23 374.23 0.00 41.69
coordGaspelle32-5.dat 359.10 359.10 0.00 118.17
coordGaspelle32-5b.dat 383.41 383.41 0.00 529.44
coordGaspelle36-5.dat 399.37 399.37 0.00 14.89

Average 11.21 5221.63

The results in Table 2 show that the exact algorithm could find near-optimal solutions
with gaps of less than 1% for instances with up to 100 clients except for the instance
“coord100-10-3.dat”. However, for instances with 200 clients, the results were poor, with
gaps between 23.14% and 54.62%. This was expected since exact algorithms struggle with
large test instances because the number of possible solutions grows exponentially. The
average solution time for all test instances was 5221.63 s. For instances with 36 clients or
fewer, the exact method found the optimal solution in less than 2 min except for the instance
“coordGaspelle32-5b.dat”, which required 529.44 s. For instances with 50 or more clients,
the EM could not find the optimal solutions in 7200.00 s, although it found near-optimal
quality solutions for instances with up to 100 clients. The EM sometimes surpassed the
7200.00 s limit due to the nature of the branch-and-bound procedure and the required time
to retrieve the final LB and UB solutions.
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Table 3. BRKGA with local search results.

Instances Best Mean Worst T1 T16 S(16) σ

coord20-5-1.dat 21,410.21 21,410.21 21,410.21 1.43 0.44 3.26 0.00
coord20-5-1b.dat 15,734.84 15,734.84 15,734.84 1.37 0.67 2.05 0.00
coord20-5-2.dat 23,025.61 23,025.61 23,025.61 1.31 0.42 3.10 0.00
coord20-5-2b.dat 14,130.77 14,130.77 14,130.77 1.06 0.52 2.04 0.00
coord50-5-1.dat 15,474.99 15,495.23 15,513.15 10.13 1.43 7.07 14.77
coord50-5-1b.dat 15,291.78 15,293.18 15,295.27 6.67 0.83 8.05 1.91
coord50-5-2.dat 29,779.23 29,783.09 29,785.70 7.87 1.04 7.59 2.92
coord50-5-2b.dat 29,720.04 29,721.11 29,723.27 6.96 0.86 8.08 1.25
coord50-5-2BIS.dat 16,944.89 16,953.63 16,958.41 9.04 1.32 6.87 5.54
coord50-5-2bBIS.dat 17,949.03 17,950.48 17,952.82 6.97 0.88 7.88 1.75
coord50-5-3.dat 11,165.78 11,172.11 11,177.01 8.92 1.25 7.15 4.92
coord50-5-3b.dat 11,021.83 11,023.84 11,026.24 8.56 1.14 7.54 1.84
coord100-5-1.dat 133,855.86 133,875.58 133,896.73 38.92 4.19 9.29 15.43
coord100-5-1b.dat 133,568.12 133,574.26 133,587.49 36.58 3.68 9.94 7.66
coord100-5-2.dat 97,457.21 97,468.77 97,480.46 38.44 4.17 9.23 10.94
coord100-5-2b.dat 97,171.49 97,183.15 97,196.07 47.43 4.74 10.01 9.79
coord100-5-3.dat 87,090.96 87,112.36 87,126.43 38.57 4.01 9.62 15.75
coord100-5-3b.dat 86,825.72 86,839.26 86,845.09 38.91 4.04 9.62 7.84
coord100-10-1.dat 155,854.58 155,887.32 155,942.04 37.97 3.89 9.75 33.51
coord100-10-1b.dat 155,601.83 155,620.79 155,641.85 42.13 3.96 10.65 14.39
coord100-10-2.dat 142,170.27 142,201.14 142,223.77 40.23 4.08 9.85 21.26
coord100-10-2b.dat 142,005.11 142,016.26 142,027.49 39.94 3.81 10.48 10.05
coord100-10-3.dat 137,071.86 137,088.64 137,113.42 46.38 4.92 9.43 18.83
coord100-10-3b.dat 136,843.91 136,869.14 136,887.26 39.42 4.23 9.32 18.68
coord200-10-1.dat 238,467.66 238,514.61 238,570.86 190.47 17.78 10.71 38.00
coord200-10-1b.dat 237,804.70 237,834.71 237,858.06 191.86 17.67 10.86 27.15
coord200-10-2.dat 277,684.21 277,713.01 277,739.12 135.04 12.44 10.85 19.50
coord200-10-2b.dat 277,284.72 277,298.56 277,320.34 266.08 19.38 13.73 14.02
coord200-10-3.dat 236,137.19 236,182.69 236,271.29 150.35 15.02 10.01 52.61
coord200-10-3b.dat 235,591.97 235,614.08 235,635.44 172.30 15.47 11.14 17.26
coordGaspelle21-5.dat 368.49 368.49 368.49 1.58 0.31 5.05 0.00
coordGaspelle22-5.dat 491.39 491.39 491.39 1.53 0.29 5.27 0.00
coordGaspelle29-5.dat 395.37 395.37 395.37 1.99 0.34 5.94 0.00
coordGaspelle32-5.dat 384.76 384.76 384.76 3.48 0.51 6.85 0.00
coordGaspelle32-5b.dat 410.68 413.25 415.90 3.19 0.49 6.57 2.61
coordGaspelle36-5.dat 400.06 400.06 400.06 2.63 0.39 6.77 0.00

Average 46.55 4.46 8.10 10.84

The results for the BRKGA with a local search are presented in Table 3. The algorithm
was run using one and sixteen CPU cores, and the average running times are shown in
columns T1 and T16, respectively. A predefined group of seeds was used for each of the
five times the BRKGA was executed. Therefore, the result with one or sixteen CPU cores
was identical for the same seed. The results show that using multiple threads significantly
reduced the average elapsed time to solve the CLTPI instances. On average, using sixteen
CPU cores was 8.10 times faster than using one CPU core. The best reduction in the running
time achieved was 19.38, for instance, by “coord200-10-2b.dat”, where the BRKGA was
13.73 times faster when using sixteen CPU cores instead of one CPU core. The maximum
average running time using 16 CPU cores was 19.38, for instance, with “coord200-10-
2b.dat”. Therefore, it can be assumed that the computational effort used by the BRKGA was
reasonably low. On the other hand, the BRKGA showed good precision for all instances,
with an average variance of 10.84. The quality of the solutions, considering the best solution
found by the BRKGA, will be discussed after presenting Table 5.
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Table 4. PSO with local search results.

Instances Best Mean Worst T1 T16 S(16) σ

coord20-5-1.dat 21,410.21 21,410.21 21,410.21 1.94 0.32 6.04 0.00
coord20-5-1b.dat 15,734.84 15,734.84 15,734.84 1.94 0.34 5.78 0.00
coord20-5-2.dat 23,025.61 23,025.61 23,025.61 2.08 0.31 6.66 0.00
coord20-5-2b.dat 14,130.77 14,130.77 14,130.77 1.85 0.30 6.08 0.00
coord50-5-1.dat 15,464.31 15,471.71 15,480.60 8.87 1.09 8.17 5.42
coord50-5-1b.dat 15,291.78 15,294.44 15,297.11 7.62 0.87 8.76 4.92
coord50-5-2.dat 29,777.33 29,779.52 29,781.82 10.55 1.13 9.32 5.93
coord50-5-2b.dat 29,720.13 29,720.48 29,720.58 7.00 0.80 8.69 3.85
coord50-5-2BIs.dat 16,937.74 16,943.61 16,948.93 7.76 0.95 8.15 4.74
coord50-5-2bBIS.dat 17,949.42 17,949.94 17,950.50 6.79 0.83 8.22 4.39
coord50-5-3.dat 11,157.09 11,166.28 11,172.70 9.34 1.13 8.30 5.20
coord50-5-3b.dat 11,021.20 11,023.84 11,024.77 7.76 0.93 8.31 4.45
coord100-5-1.dat 133,846.71 133,853.25 133,863.27 32.04 3.15 10.17 12.84
coord100-5-1b.dat 133,560.10 133,570.50 133,582.87 36.67 3.44 10.66 15.34
coord100-5-2.dat 97,429.58 97,450.19 97,477.21 26.69 2.78 9.60 11.77
coord100-5-2b.dat 97,171.09 97,175.50 97,178.91 34.88 3.75 9.31 15.10
coord100-5-3.dat 87,054.52 87,075.81 87,088.46 32.30 3.21 10.07 13.88
coord100-5-3b.dat 86,826.46 86,830.91 86,834.22 37.60 3.55 10.59 14.35
coord100-10-1.dat 155,835.28 155,860.79 155,886.41 40.04 5.46 7.33 14.64
coord100-10-1b.dat 155,575.83 155,603.82 155,624.14 33.39 4.42 7.55 18.69
coord100-10-2.dat 142,178.31 142,194.02 142,212.03 36.10 5.29 6.83 11.61
coord100-10-2b.dat 141,986.55 141,996.55 142,005.45 42.74 5.95 7.18 14.45
coord100-10-3.dat 137,060.42 137,078.48 137,094.14 26.42 3.83 6.91 18.30
coord100-10-3b.dat 136,837.49 136,857.38 136,866.61 30.72 4.15 7.39 18.89
coord200-10-1.dat 238,421.87 238,459.07 238,485.21 70.61 8.57 8.24 28.77
coord200-10-1b.dat 237,774.64 237,805.68 237,853.09 65.45 7.91 8.27 40.84
coord200-10-2.dat 277,667.09 277,681.84 277,701.03 100.86 12.09 8.34 33.35
coord200-10-2b.dat 277,229.42 277,248.71 277,261.81 103.84 12.20 8.51 43.35
coord200-10-3.dat 236,096.69 236,136.96 236,176.00 58.26 7.05 8.27 34.31
coord200-10-3b.dat 235,573.04 235,593.38 235,615.59 70.55 8.45 8.35 34.46
coordGaspelle21-5.dat 364.63 367.49 368.49 2.03 0.32 6.40 1.44
coordGaspelle22-5.dat 491.39 491.39 491.39 1.90 0.32 5.91 0.00
coordGaspelle29-5.dat 395.37 395.37 395.37 2.92 0.42 6.86 0.00
coordGaspelle32-5.dat 384.76 384.76 384.76 3.40 0.48 7.01 0.00
coordGaspelle32-5b.dat 410.68 414.12 417.63 3.46 0.50 6.97 2.19
coordGaspelle36-5.dat 400.06 400.06 400.06 4.11 0.56 7.39 0.00

Average 26.96 3.25 7.96 12.15

The PSO computational results are presented in Table 3. As with the BRKGA, the PSO
was run using one and sixteen CPU cores, and the average running times are shown in
columns T1 and T16, respectively. As with the BRKGA, the PSO results with one or sixteen
CPU cores were identical for each instance and the same seed. Again, the results show that
using multiple threads significantly reduced the average elapsed time needed to solve the
CLTPI instances. For the PSO, on average, using sixteen CPU cores was 7.96 times faster
than using one CPU core. The best reduction in the running time was achieved, for instance,
by “coord100-5-1b.dat”, where the PSO was 10.66 times faster when using sixteen CPU
cores instead of one CPU core. The maximum average running time using 16 CPU cores
was 12.20, for instance, with “coord200-10-2b.dat”. Therefore, it can be assumed that the
computational effort used by the PSO was lower than the BRKGA. On the other hand, the
PSO also showed good precision for all instances, with an average variance of 12.15. The
quality of the solutions, considering the best solution found by the PSO, will be discussed
later in this section.

For the BRKGA and PSO, the speedup results are presented graphically in Figures 5 and 6.
The BRKGA had a better speedup (8.10) than the PSO (7.96) when using 16 CPU cores.
However, the PSO still had shorter solution times than the BRKGA. The reason was that
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iterations in the PSO were faster than in the BRKGA. The BRKGA took more time in each
iteration due to the crossover operation. The efficiency of parallelization was around 50%
for both algorithms. This efficiency was low due to the repeatability feature included in
both algorithms. This means the algorithms had to return the same solution for a single
given seed. To achieve the repeatability feature, the random numbers used in each iteration
(in both algorithms) were generated using a single core, reducing the overall parallelization
efficiency. The repeatability feature was lost if the generation of random numbers in each
iteration was parallelized.

Figure 5. Speedup for instances with at most 50 vertices.

Figure 6. Speedup for instances with 100 vertices or more.

Table 5 compares the results of the three proposed solution algorithms. Column
BKS presents the best-known solution for each instance, while columns Gap present the
percentage of variation concerning the best solution found by each algorithm with the LB
found by the EM. Values in bold in these columns indicate that the corresponding algorithm
found the best-known solution. Finally, T16 shows the elapsed time when using 16 CPU
cores with the EM, PSO, and BRKGA solution algorithms. Regarding the best-known
solutions, the EM algorithm reached the best-known solutions for 29 of the 36 benchmark
instances, while the PSO reached the best-known solution for 7 of the 36 benchmark
instances. The BRKGA did not reach any best-known solution. The results show that
the EM algorithm found the best solutions for all instances with up to 100 clients (see
Figures 7 and 8), except for “coord100-10-3b.dat,” where the PSO obtained the best-known
solution. The PSO obtained all the best-known solutions in the group of instances with
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200 clients. The EM obtained poor results for instances with 200 clients with gaps between
30.10% and 120.35%, which were huge. The EM required much more computational effort
than the BRKGA and PSO. Its average time was 5221.63 s, far greater than the 4.46 and
3.25 s used by the BRKA and PSO, respectively. The PSO obtained the lowest average gap
with 1.50, the BRKGA’s was 1.54, and the EM’s was 9.96. The PSO and BRKGA found better
solutions for large instances than the EM because the complexity of the PSO and BRKGA
did not grow exponentially as it did for the EM.

Table 5. Comparison of best solutions between algorithms.

Instances BKS EM PSO BRKGA

gap T16 gap T16 Gap T16

coord20-5-1.dat 21,327.68 0.00 10.92 0.39 0.32 0.39 0.44
coord20-5-1b.dat 15,638.81 0.00 4.97 0.61 0.34 0.61 0.67
coord20-5-2.dat 22,893.29 0.00 5.08 0.58 0.31 0.58 0.42
coord20-5-2b.dat 14,051.02 0.00 3.15 0.57 0.30 0.57 0.52
coord50-5-1.dat 15,262.86 0.29 7200.64 1.61 1.09 1.68 1.43
coord50-5-1b.dat 15,098.14 0.21 7200.64 1.50 0.87 1.50 0.83
coord50-5-2.dat 29,582.63 0.06 7200.64 0.72 1.13 0.73 1.04
coord50-5-2b.dat 29,580.44 0.20 7200.64 0.68 0.80 0.68 0.86
coord50-5-2BIs.dat 16,869.25 0.14 7200.63 0.55 0.95 0.59 1.32
coord50-5-2bBIS.dat 17,879.67 0.24 7200.64 0.63 0.83 0.63 0.88
coord50-5-3.dat 11,135.09 0.25 7200.64 0.44 1.13 0.52 1.25
coord50-5-3b.dat 11,005.12 0.28 7200.64 0.43 0.93 0.44 1.14
coord100-5-1.dat 133,544.83 0.05 7200.72 0.28 3.15 0.29 4.19
coord100-5-1b.dat 133,320.51 0.05 7200.71 0.23 3.44 0.23 3.68
coord100-5-2.dat 97,352.20 0.06 7200.69 0.14 2.78 0.17 4.17
coord100-5-2b.dat 97,114.30 0.04 7200.70 0.10 3.75 0.10 4.74
coord100-5-3.dat 86,878.30 0.06 7200.71 0.26 3.21 0.30 4.01
coord100-5-3b.dat 86,683.47 0.06 7200.70 0.23 3.55 0.23 4.04
coord100-10-1.dat 155,564.86 0.06 7200.72 0.24 5.46 0.25 3.89
coord100-10-1b.dat 155,357.72 0.04 7200.72 0.18 4.42 0.19 3.96
coord100-10-2.dat 141,570.05 0.05 7200.74 0.48 5.29 0.48 4.08
coord100-10-2b.dat 141,416.36 0.04 7200.68 0.45 5.95 0.46 3.81
coord100-10-3.dat 137,060.42 2.46 7200.84 0.37 3.83 0.38 4.92
coord100-10-3b.dat 136,486.56 0.05 7200.84 0.31 4.15 0.32 4.23
coord200-10-1.dat 238,421.87 45.69 7212.86 2.76 8.57 2.78 17.78
coord200-10-1b.dat 237,774.64 37.74 7201.71 2.73 7.91 2.74 17.67
coord200-10-2.dat 277,667.09 30.10 7201.61 6.30 12.09 6.30 12.44
coord200-10-2b.dat 277,229.42 57.57 7202.89 6.54 12.20 6.56 19.38
coord200-10-3.dat 236,096.69 107.52 7201.38 4.33 7.05 4.35 15.02
coord200-10-3b.dat 235,573.04 120.35 7210.48 4.28 8.45 4.29 15.47
coordGaspelle21-5.dat 318.06 0.00 2.85 14.64 0.32 15.86 0.31
coordGaspelle22-5.dat 447.09 0.00 2.62 9.91 0.32 9.91 0.29
coordGaspelle29-5.dat 374.23 0.00 41.69 5.65 0.42 5.65 0.34
coordGaspelle32-5.dat 359.10 0.00 118.17 7.14 0.48 7.14 0.51
coordGaspelle32-5b.dat 383.41 0.00 529.44 7.11 0.50 7.11 0.49
coordGaspelle36-5.dat 399.37 0.00 14.89 0.17 0.56 0.17 0.39

Average 9.96 5221.63 1.50 3.25 2.37 4.46
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Figure 7. Deviation to the best LB for instances with at most 50 vertices.

Figure 8. Deviation to the best LB for instances with 100 vertices or more.

6. Case Study
The CLTPI was inspired by the need to redesign an electrical network for an electric

public transportation system. The goal was to obtain a robust network capable of partial
functioning in case of substantial energy disruptions due to different causes. The network
requires connecting traction substations (clients) with the high-voltage electrical substations
(plants). The electricity transportation system serves more than 1,057,461,875 passengers
per year. The service is available from 5:00 a.m. to 11:59 p.m. during work days. On
Saturday, the service starts at 7:00 a.m. and ends at 11:59 p.m. Finally, on Sundays and
holidays, the service is available from 7:00 a.m. to 11:59 p.m. Failure to provide the service
would strand thousands of people per hour, resulting in work delays and a decline in the
local economy.

The network extends over 226.49 km, distributed around the city. Within these kilo-
meters, there are 174 traction substations. A traction substation converts electrical energy
from the general network into the appropriate voltage, current, and frequency so that it can
be used by the vehicles on the network. The power required by the traction substations is
provided by high-voltage electrical substations. In the context of the CLTPI, the traction
substations represent the clients, while the high-voltage electrical substations represent
the plants.

The problem of energy shortages in the transportation system lies in the growth of
the population using this kind of transportation to travel around the city. Their growth



Algorithms 2025, 18, 50 19 of 24

means that track substations require more energy consumption. Energy consumption is
increasing, causing the high-voltage electrical substations to be unable at some point to
supply track substations’ demand. This consumption by track substations and the capacity
of the high-voltage electrical substations being unable to provide what is requested leads
to a redesign of connections according to the capacities of each high-voltage electrical
substation and track substation’s demand. Track substation demand considers the peak
hours, allowing the network operator to know the maximum demand that produces the
highest energy consumption. The excess consumption produces energy shortages and,
in some cases, the shutdown of the transportation system, causing travel delays. After
a shutdown, the system needs to be restarted, leading to an excess demand for current,
which could heat the connections and cause power shortages again.

Nine electrical substations were considered for the case study. Three are already
functioning (plants 0, 1, and 2), so their opening cost is zero. The other six have a specific
opening cost and a given capacity. As for the track substations, 174 were considered. As
previously mentioned, the idea was to redesign the network to obtain a robust one capable
of partial functioning in case of critical energy disruptions.

The strategy consisted of selecting high-voltage electrical substations that provide
enough energy to provide the required power to all the track substations; it was not
necessary to open all the high-voltage electrical substations, but all the track substations
needed to receive the required energy from the selected high-voltage electrical substations.
It was essential to maintain the system’s stability while operating the electrical network,
trying not to saturate the high-voltage electrical substations to prevent power outages
or shortages.

Table 6 presents the details for the high-voltage electrical substations. As previously
mentioned, plants 0, 1, and 2 are operational and have zero opening costs. The capacities
are expressed in MegaVolts-Ampers (MVA), and the opening costs are expressed in money
units. The opening cost for each potential facility considers building and grid connection
costs and other associated costs.

Table 6. Capacities and opening for high-voltage electrical substations.

Plant Location Capacity Opening Cost

Facility 0 240 USD 0
Facility 1 120 USD 0
Facility 2 120 USD 0
Facility 3 240 USD 4500
Facility 4 120 USD 2000
Facility 5 300 USD 5625
Facility 6 300 USD 5625
Facility 7 300 USD 5625
Facility 8 300 USD 5625

For every track substation, a demand of 4.4 MVA was considered. The location of
track substations over Mexico City and its Metropolitan area are shown in Figure 9.

Case Study Results

An instance file was created using the information presented in the previous section
to find a solution proposal for the case study. The instance was solved using the EM,
the BRKGA, and PSO. As expected, the EM algorithm could not find a solution since it
struggled with instances with more than 100 clients (track substations). On the other hand,
the PSO and BRKGA obtained very similar solutions. Both solutions showed that potential
facility (high-voltage substation) 8 had to be opened. The difference between the PSO
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and BRKGA solutions was the way some of the traction substations were connected. A
summary of the results is presented in Table 7.

Figure 9. Location of track substations for the electric public transportation system.

Table 7. Case study results using EM, BRKGA and PSO.

Algorithm Solution Cost Time (s)

EM No solution found 7200.00
BRKGA USD 5629.11 53.98
PSO USD 5629.13 94.62

7. Conclusions and Future Research
In this research paper, the Location Tree Problem with Interconnections was introduced.

The problem was inspired by the need to design robust networks for electric transportation
systems. This new combinatorial optimization problem is of the type NP-Hard, and a
valid MILP formulation was proposed. An exact solution method (EM) based on the
formulation was developed and used to solve benchmark instances of the problem. The EM
obtained excellent results for small- and medium-size test instances. For larger instances,
two heuristics (PSO, BRKGA) were also proposed and developed to solve instances of the
problem. The two metaheuristic algorithms used a cost-based decoder to obtain solutions
for the problem. The cost-based decoder always led to feasible solutions, avoiding the need
to implement a feasibility recovery procedure. One of the metaheuristic algorithms was
based on the BRKGA, while the second was based on a PSO algorithm. Computational
experiments were performed using the three solution approaches to solve 36 benchmark
instances of the problem. The results of the computational experiments show that the EM
solution approach obtained the best solutions for the benchmark instances with 100 or fewer
clients. In comparison, the PSO algorithm obtained the best solutions for the benchmark
instances with 200 clients. It is important to note that the computational effort required
by the EM algorithm was much larger than that of the PSO and BRKGA. Considering the
best-known solutions, the EM found 29 of them, while the PSO found the other seven.

Additionally, a case study regarding an existing electrical transportation system was
presented. The objective of the case study was to redesign the network so that it could
function partially in the event of critical failures in the power supply. For the case study, the
results show that a new electrical substation has to be opened to allow the grid to partially
maintain service in the event of critical failures in the power supply.

Finally, future research can include the use of hybrid-solution approaches. For example,
a metaheuristic (PSO, BRKGA, SA, ACO, GSA, etc.) with Tabu Search could be used. Other
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solution decoders and more complex local search neighborhoods should also be tried. Such
hybrid approaches could lead to better solutions with similar or less computational effort.
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EM Exact method
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