
Academic Editor: Frank Werner

Received: 28 November 2024

Revised: 30 December 2024

Accepted: 14 January 2025

Published: 17 January 2025

Citation: Leal, H.M.; Barbosa, R.S.;

Jesus, I.S. Control of a Mobile

Line-Following Robot Using Neural

Networks. Algorithms 2025, 18, 51.

https://doi.org/10.3390/a18010051

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Control of a Mobile Line-Following Robot Using Neural Networks
Hugo M. Leal 1, Ramiro S. Barbosa 1,2,* and Isabel S. Jesus 1,2

1 Department of Electrical Engineering, Institute of Engineering—Polytechnic of Porto (ISEP/IPP),
4249-015 Porto, Portugal; 1190660@isep.ipp.pt (H.M.L.); isj@isep.ipp.pt (I.S.J.)

2 GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and
Development, ISEP/IPP, 4249-015 Porto, Portugal

* Correspondence: rsb@isep.ipp.pt

Abstract: This work aims to develop and compare the performance of a line-following
robot using both neural networks and classical controllers such as Proportional–Integral–
Derivative (PID). Initially, the robot’s infrared sensors were employed to follow a line using
a PID controller. The data from this method were then used to train a Long Short-Term
Memory (LSTM) network, which successfully replicated the behavior of the PID controller.
In a subsequent experiment, the robot’s camera was used for line-following with neural
networks. Images of the track were captured, categorized, and used to train a convolutional
neural network (CNN), which then controlled the robot in real time. The results showed
that neural networks are effective but require more processing and calibration. On the
other hand, PID controllers proved to be simpler and more efficient for the tested tracks.
Although neural networks are very promising for advanced applications, they are also
capable of handling simpler tasks effectively.

Keywords: AGV; robot; Raspbot; PID; LSTM; CNN; AI; deep learning; line-follower

1. Introduction
In recent years, artificial intelligence techniques, such as machine learning and

deep learning, have revolutionized various fields of science and engineering, including
robotics [1–4]. These techniques have shown significant potential to enhance the autonomy
and intelligence of robots, enabling them to perform complex tasks with greater efficiency
and precision. One of the promising fields where these techniques are currently applied is
the control of mobile robots, including Autonomous Guided Vehicles (AGVs).

Traditionally, techniques such as PID control and trajectory planning algorithms
have been used in mobile robot control. However, these approaches face limitations in
dynamic and unstructured environments. Deep learning (DL) techniques offer a data-
driven approach that can enhance the adaptability and intelligence of these control systems.
Inspired by recent advances in artificial intelligence, modern alternatives like LSTM and
CNN networks have emerged, offering potential solutions to these challenges.

In this context, the development of a line-following robot control algorithm using DL
techniques was chosen. This practical and relevant application enables one to demonstrate
the effectiveness of neural networks in robot control, providing solid validation for new
control approaches. By comparing traditional and modern techniques, this work aims to
identify the advantages and limitations of DL, contributing to the development of smarter
and more efficient robotic systems. On the other hand, the use of DL algorithms such as
LSTM and CNN does not inherently require a mathematical model of the robot for its
control. The need for a mathematical model depends on the specific application and the role

Algorithms 2025, 18, 51 https://doi.org/10.3390/a18010051

https://doi.org/10.3390/a18010051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7410-8872
https://orcid.org/0000-0002-7545-5822
https://doi.org/10.3390/a18010051
https://www.mdpi.com/article/10.3390/a18010051?type=check_update&version=2


Algorithms 2025, 18, 51 2 of 26

of neural networks in the control system. In the present case, the LSTM or CNN models are
trained to predict control actions directly from sensor data, and the robot can be controlled
using only the sensor inputs. This data-driven approach relies on neural networks to learn
the relationships between sensor input and control output during training. Thus, LSTM is
used to process sequential data, such as time series sensor readings, while CNN is used
to handle spatial data such as camera images. The results obtained are very promising,
showing that the quality and quantity of the training data used were sufficient to provide
satisfactory control of the robot in a real scenario. Therefore, the main contributions of this
work can be summarized as follows:

• Introducing the LSTM and CNN architectures for the control of a mobile robot.
• Providing detailed insights into the implementation of various control algorithms,

with a particular focus on the LSTM and CNN networks.
• Comparison of artificial intelligence algorithms with the classical PID controller.
• Evaluating and comparing the performance of different control algorithms using

various metrics.

The article is structured as follows. Section 2 presents the robot architecture and its
main components. The control methods are described in Section 3. Section 4 discusses
the details of the implementation of the three control strategies used, PID, LSTM, and
CNN. The results are provided in Section 5, while Section 6 includes a discussion of the
real experiments. Finally, Section 7 draws the main conclusions and outlines the future
developments of the presented work.

Literature Review

In recent years, the use of artificial intelligence and deep learning for autonomous ve-
hicle control has attracted a great deal of interest. In [5], the authors developed a Bluetooth-
and vision-controlled AGV for COVID-19, capable of carrying 10 kg and following a la-
beled user at an optimal distance of 80 cm and a 55° detection angle. The AGV reduces
contact risk, aids seniors by eliminating the need to push heavy loads, and operates via a
mobile app or autonomous tracking within a 10 m range. The work by [6] introduced an
AI-driven AGV for factory automation, using magnetic tape for navigation to handle goods.
The limitations include misjudgment when tape breaks and an inability to change routes
around obstacles. The study explored divergence-wheeled robots for smoother navigation
in crowded environments. In [7], an AGV was presented for seamless indoor and outdoor
navigation, utilizing a self-evolving free space detection (FSD) framework with online
active machine learning and sensor data fusion. The framework outperforms DeepLabV3+
by self-learning from real-time multimodal data, reducing the need for large datasets
while improving robustness in unstructured environments. In [8], an obstacle avoidance
system was implemented for AGVs using deep action learning (DAL) to enhance visual
navigation, object recognition, and decision-making. By integrating YOLOv4, SURF, and
kNN, the system achieves real-time obstacle avoidance and navigation, meeting Industry
4.0 standards for speed, accuracy, and robustness in unstructured environments. In [9],
the authors proposed an AGV obstacle avoidance system combining deep learning object
detection and grid-based path planning for dynamic industrial environments. Tested in
a simulated tobacco production workshop, the system achieved a 98.67% success rate in
obstacle avoidance and improved task efficiency by 27.29%, offering a reliable solution for
industrial AGVs. In [10], a deep-reinforcement-learning-based method for automatic PID
adjustment to ensure smooth AGV movement was presented. Using the Deep Q-Learning
Network (DQN), the approach transforms PID tuning into an action–value optimization
problem. Simulations and tests demonstrate the method’s effectiveness in achieving opti-
mal PID settings without manual intervention. Another study [11] introduced a two-wheel



Algorithms 2025, 18, 51 3 of 26

AGV platform utilizing sensor fusion and neural networks for intelligent path planning
and navigation in dynamic unknown environments. The neural network processes sensor
inputs to determine safe paths while avoiding arbitrarily shaped and moving obstacles,
with simulations validating the approach for Industry 4.0 applications. The work in [12]
reviewed recent applications of deep learning in UAVs for tasks like security, disaster
rescue, and warehouse management, highlighting the key techniques, their performance,
and limitations while discussing the challenges and future directions for UAV-based deep
learning solutions. The work in [13] presented an AI algorithm for platform autonomy,
enabling navigation without human intervention. Using cameras, LIDAR sensors, and a vi-
sion system, the platform employs convolutional neural networks for environment analysis
and path optimization. Transfer learning trains the network, with the results demonstrating
its effectiveness. In [14], a deep reinforcement learning approach for mapless AGV navi-
gation using LiDAR and RGB cameras was presented. The NavACL-Q method combines
curriculum learning with soft actor–critic to address challenges like sparse samples and
partial observability. The results demonstrated a 40% performance gain over random starts
and a 60% boost with a pre-trained feature extractor, outperforming map-based navigation.

2. System Architecture
This section describes the robot platform, its architecture, and the software tools used

for the project.

2.1. Mobile Platform

The robot chosen for this study was the Raspbot AI Vision Robot Car from Yah-
Boom [15]. It is equipped with the necessary sensors for implementing a line-follower,
including infrared sensors and a camera. Table 1 lists a summary of the main characteristics
of the Raspbot AI Vision Robot Car. It integrates vision functions based on open-source
computer vision (CV) via Python programming. This enables the robot to be controlled via
an app, infrared remote (IR), and the JupyterLab web interface.

Table 1. Main characteristics of Yahboom Raspbot AI Vision Robot Car.

Parameter Yahboom

Sensors Camera Lower and lateral
infrared Ultrasound

Infrared module 4

No. of wheels 4

No. of motors 4

Microcontroller Raspberry Pi 4B

Camera
5 Megapixels 1080P@30FPS/

720P@60FPS/480P@90FPS
interface CSI

Camera Gimbal Yes

Ultrasound NoGimbal

2.2. Robot Architecture

The Raspbot is equipped with interconnected components, including sensors, micro-
controllers, drivers, and motors. This setup enables the robot to perform several tasks
necessary for the realization of this project. Figure 1 presents a block diagram of the system’s
architecture, highlighting the main components of the system and their connections [15].



Algorithms 2025, 18, 51 4 of 26

Figure 1. Block diagram of the robot architecture.

The green blocks represent the system’s controllers, the main one being the Raspberry
Pi 4 model B. The Raspberry will be responsible for controlling all the system’s components.
The robot is equipped with six motors: 4 generic TT DC gearbox motors from TTmotors
in China [16] and 2 TS90A servo motors from TianKongRC, China [17]. In addition, it
has a Raspberry Pi Camera Rev 1.3 [18] (Figure 2a), capable of recording still images at
a resolution of 2592 × 1944 pixels. For line tracking, the robot employs a lower tracking
module equipped with four tracking probes in an optimized spacing layout. The two inner
probes accurately detect the black line, while the two outer ones assist the inner probes by
providing additional detection and early warnings. This configuration enables the robot to
navigate complex tracks, including 90◦ curves (Figure 2b) [15].

This setup provides remote access to the Raspberry Pi operating system through the
JupyterLab environment [15].

(a) (b)

Figure 2. (a) Raspberry Pi Camera Rev 1.3 [18] and (b) Yahboom’s 4-channel infrared tracking
sensor [15].

2.3. Software and Tools

For this work, an operating system (OS) distributed by the robot’s manufacturer (based
on Raspbian 5.10.63-v7l+) was used, which enables the user to connect the Raspberry Pi to
a Wi-Fi network without having to connect it to a monitor or keyboard afterwards. Once
connected, remote access to the system is also available through a JupyterLab 6.1.4 server
(Figure 3).



Algorithms 2025, 18, 51 5 of 26

Figure 3. JupyterLab environment.

The data collected by the robot for training the neural networks were transferred to a
more powerful computer equipped with an NVIDIA RTX 3060 GPU [19], a Ryzen 7 3700X
AMD CPU (3.6 GHZ base clock speed) [20], and 32 GB of DDR4 RAM. This setup enabled
faster neural network training and testing of different network configurations. The Python
language (version 3.7.4) was selected because of the greater degree of familiarity already
present and its powerful data visualization, which also helped the debugging process
during the development of the work. The main tools included the Anaconda environment,
the Jupyter Notebook, and libraries such as TensorFlow 1.14.0 and Keras 2.2.4 [21,22].

3. Control Strategies
The objective of this work was to develop, implement and test multiple control meth-

ods to assess their performance in the control of a line-following robot. For that purpose,
classical and deep learning methods were studied. During execution, sensor data from the
infrared sensors or camera are sent to the Raspberry Pi and then the controller implemented
in the software will calculate the new motor speed values and send these new values to the
motors, as illustrated in Figure 4. The control is created with two values, where a single
value will be updated for both right motors (front and rear), and the other value will be
updated for the left motors.

Figure 4. Schematic of the system with the software controller.



Algorithms 2025, 18, 51 6 of 26

3.1. PID

For the classical methods, the PID (Proportional–Integral–Derivative) controller was
selected. The PID is the most common controller in industry and is widely used in
all control applications. It also represents an essential element of more sophisticated
controllers [23–26]. Figure 5 presents a block diagram of a PID-controlled system [27,28].

Figure 5. PID-controlled system.

The PID controller can be described as

u(t) = Kp

(
e(t) +

1
Ti

∫ t

0
e(τ) dτ + Td

de(t)
dt

)
(1)

where u(t) represents the controller action output and e(t) is a control error input, which is
the difference between the desired reference value and the current value of the variable to
be controlled. The controller output is thus the sum of three terms: the P-term (which is
proportional to the error), the I-term (which is proportional to the integral of the error), and
the D-term (which is proportional to the derivative of the error). The parameters Kp, Ti, and
Td are, respectively, the proportional gain, the integral time constant, and the derivative
time constant [29].

The discrete PID controller can be obtained as

u[n] = Kp

(
e[n] +

T
Ti

n

∑
k=0

e[k] +
Td
T
(e[n]− e[n − 1])

)
(2)

where T is the sampling period and n is the sample instant. Since T is constant (T = 1/80 s),
the following simplified equation was used:

u[n] = Kpe[n] + Ki

n

∑
k=0

e(k) + Kd(e[n]− e[n − 1]) (3)

where Ki =
KpT

Ti
is the integral gain and Kd =

KpTd
T the derivative gain.

3.2. LSTM

LSTM (Long-Short Term Memory) is an advanced type of RNN (recurrent neural
network) developed by Hochreiter and Schmidhuber [30]. Traditional RNNs are charac-
terized by using the previous output as one of the inputs of the network, similarly to PID
controllers. However, RNNs have difficulty learning long-term dependencies due to the
vanishing gradient problem. LSTM solves this problem by introducing a memory cell that
can retain information over extended periods of time. Figure 6 shows the structure of an
LSTM cell [31].



Algorithms 2025, 18, 51 7 of 26

  

++

tanhtanh

ht

CtCt-1

ht-1

ft it ot

xt

tanhtanhs s s s s s 

CtCt

ht

 

+

tanh

ht

CtCt-1

ht-1

ft it ot

xt

tanhs s s 

Ct

ht

 

+

tanh

ht

CtCt-1

ht-1

ft it ot

xt

tanhs s s 

Ct

ht

Input gate Output gate

Forget gate

 

 
~

Figure 6. LSTM cell.

The equations for the forward pass of an LSTM cell are as follows:

ft = σ(W f · [ht−1, xt] + b f )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

where W terms denote the weight matrices, [ht−1, xt] the concatenation of the current input
and the previous hidden state, the b terms denote bias vectors, σ is the sigmoid activation
function, and i, f , o, and C are, respectively, the input gate, forget gate, output gate, and cell
activation vectors; ∗ is the elementwise multiplication, and tanh function is the activation
function.

The LSTM, by having the ability to capture long-term dependencies and process
sequential data efficiently, has revolutionized many fields, including natural language
processing, speech recognition, and time-series forecasting. Their advanced architecture,
which incorporates memory cells and gates, enables them to learn and retain complex
patterns over time, making them an essential tool in modern machine learning and artificial
intelligence applications, including image classification [32].

3.3. CNN

A CNN (convolutional neural network) is a widely used discriminative deep learning
architecture that learns directly from input data without the need for manual feature
extraction. As a result, CNN improves on the design of traditional ANNs (artificial neural
networks), such as regularized MLP (Multi-Layered Perceptron) networks. Each layer in
the CNN takes into account optimal parameters to produce a meaningful output, as well as
to reduce the complexity of the model [33].

They are specifically designed to handle a variety of 2D shapes, making them widely
used in visual recognition, medical image analysis, image segmentation, natural language
processing, and many other domains. The ability to automatically discover essential
input features without human intervention makes it more powerful than a traditional
network [34].



Algorithms 2025, 18, 51 8 of 26

Table 2 shows the CNN LeNet (LeNet-5) architecture to classify images [22]. LeNet-5
is characterized by having a total of 7 layers (3 convolutional layers, 2 pooling layers,
and 2 dense fully connected (FC) layers) and is a simple and efficient network generally
used for the categorization of handwritten letters and numbers. In the present work,
it was used for the classification of shapes of the black line in front of the robot. This
architecture was chosen primarily for its lightweight and computationally efficient design,
making it well suited for low-end hardware implementations, which is the case with
respect to the Raspberry Pi utilized. It also offers several advantages, including ease of
implementation, with fewer parameters than other CNNs, making it easier to train and less
prone to overfitting in smaller datasets.

Table 2. LeNet-5 architecture.

Layer Layer Feature Size Kernel Stride ActivationType Map Size

Input Image 1 32 × 32 - - -

1 Convolution 6 28 × 28 5 × 5 1 tanh

2 Average 6 14 × 14 2 × 2 2 tanh
Pooling

3 Convolution 16 10 × 10 5 × 5 1 tanh

4 Average 16 5 × 5 2 × 2 2 tanh
Pooling

5 Convolution 120 1 × 1 5 × 5 1 tanh

6 FC - 84 - - tanh

Output FC - 10 - - softmax

4. Implementation
This section details the various control methods used for the control of the line-follower

robot. The project will be divided into two experiments. The first one uses the track on the
wooden floor and the infrared sensors with an LSTM network, and the second one, on a
modified track, uses the camera and a CNN for robot control.

4.1. PID

The objective is to control the robot to follow a line drawn on the ground utilizing
neural networks through infrared sensors. To achieve this, in order to collect and classify
data to be used to train the LSTM network, a PID controller was first implemented. There-
fore, whilst the robot is being controlled by the PID, the infrared sensor data and right and
left speeds are saved for use in the next experiment. Figure 7 shows the main loop of the
PID-controlled system. This loop is executed 80 times per second.

While the user does not interrupt the program, the algorithm will start on each loop
by obtaining the new error value to be fed to the PID controller. This error is defined as the
approximate distance between the central position of the infrared sensor module and the
central position of the line. Consequently, the current position value is first calculated by
the following equation:

Position =
(0 × S1) + (2750 × S2) + (3550 × S3) + (6300 × S4)

S1 + S2 + S3 + S4
(5)

where S1 to S4 represent the binary logic values of each sensor. This estimate is completed
using a weighted average of the sensor indexes multiplied by a specified value. The values



Algorithms 2025, 18, 51 9 of 26

used can be chosen arbitrarily, so the controller gains would need to be adjusted accordingly.
However, since the four sensors are not spaced equally apart, the solution found was to
match the gains to the distance between the different sensors. By measuring this distance,
the values were set to 0, 2750, 3550 and 6300, with the first weight being 0, kept in the
equation for clarity of the weight used for each infrared sensor of the module, as shown in
Figure 8.

Figure 7. Main loop of the PID controller.

Figure 8. Diagram of the weighted average used by the system and the error calculation.

Finally, with the distance calculated, the error can be determined by subtracting the
desired value (3150) from the current position, Error = 3150 − Position. In this way, if the
error is 0, the sensor is centered with the line; if it is negative, the line is to its right; and,
if it is positive, to its left. Furthermore, if the previous function returns −1, that is, the



Algorithms 2025, 18, 51 10 of 26

sensor ‘loses’ the line, the error will be adjusted taking into account the previous error. If
the previous error is negative, it will be changed to −6000, and, if positive, it will be set to
6000, as described in the implementation of Figure 7.

With the error determined, this value can be used as the parameter for the function
PID_Linefollow. Figure 9 illustrates the steps of this function:

Figure 9. Steps of the PID controller.

• Calculation of terms: proportional (P = error), integrative (I = I + error), and
derivative (D = Error − previousError), multiply by their respective gains, and add
them to calculate the PID value.
The gains were obtained experimentally, trying several combinations so that oscil-
lations were minimized and responsiveness optimized. In this case, the gains are
Kp = 0.04, Ki = 0.00002, and Kd = 0.035.

• Initial wheel speed adjustment: a default value is set for the motors to turn, in this
case 70, called the base speed. The adjustment will add the result of the PID to the
right-hand motors and subtract it from the left-hand motors so that the average value
of 70 is maintained in the forward direction of the robot.

• Apply the anti-windup mechanism to ensure that the integrative action does not
reach very high values, which could lead to the robot, when it loses the line, spinning



Algorithms 2025, 18, 51 11 of 26

indefinitely, unable to get back on track. In this way, if the wheel speeds exceed
the acceptable limit (less than −255 or more than +255), the amount by which these
speeds exceed the limits will be added to the anti-windup value.

• Recalculate the PID value: due to the fact that the anti-windup changes the value of
the integrative action, it is necessary to recalculate the output of the PID and the speed
of the wheels.

• Save data for analysis, debugging, and then training the neural network.
• Apply saturation to the motor speeds so that they do not exceed the limits (−255 to

+255), and finally apply these speeds to the motors.

The resulting scheme for the PID control is shown in Figure 10.

Figure 10. Block diagram of the implemented PID controller.

4.2. LSTM

With the data collected, it is now possible to train an LSTM neural network so that it
can simulate the behavior of the PID controller. To accomplish this, it is necessary to choose
a suitable model for this implementation.

Since the PID controller takes previous values to calculate the new output value, it is
important to consider a model that has the ability to use past values to calculate new motor
speeds. Therefore, an LSTM network was selected.

The implementation of an LSTM neural network involves several steps. First, the
training data are prepared by organizing the CSV data, identifying the inputs and outputs,
creating sequences, and splitting the data into training and test sets. The network is then
defined by determining the depth, type, and size of each layer. The following step is
the network training, which includes testing different configurations and depths while
comparing the errors obtained in each case. Finally, the trained model is saved and can be
transferred to the Raspberry Pi of the robot, where it will be used for control.

The LSTM model is designed to accurately deliver new left and right speeds to the
motors, striking a balance between complexity and regularization to optimize performance
while mitigating overfitting. Figure 11 illustrates the network model used in this imple-
mentation. Table 3 lists the network parameters.



Algorithms 2025, 18, 51 12 of 26

Figure 11. Diagram of the LSTM network used.

Table 3. Hyperparameters of the LSTM model.

Hyperparameter Value

LSTM Units (Layer 1) 50

Input Shape (n_steps, 1)

Return Sequences (Layer 1) True

Dropout (Layer 1) 0.1 (10%)

LSTM Units (Layer 2) 50

Return Sequences (Layer 2) False

Dropout (Layer 2) 0.1 (10%)

Dense Units (Hidden) 50

Activation Function (Hidden) ReLU

Dense Units (Output) 2

Optimizer Adam

Loss Function MSE (Mean Squared Error)

Batch size 32

Epochs 60

Validation Data (X_test, y_test)

The network was trained along 60 epochs, that is, the number of times the entire
training dataset is passed through the network; for that and to ensure that the model



Algorithms 2025, 18, 51 13 of 26

is trained correctly, the dataset was divided into training and test data, the split was
configured so that 80% of the data are used for training and 20% for testing. It was observed
that training with more epochs enables the model to learn better, but too many can lead to
overfitting. Figure 12 shows the evolution of the model error as it is trained.

Figure 12. Evolution of the LSTM network’s error during training.

The resulting controller is shown in Figure 13. Evidently, the PID controller and the
anti-windup system were removed and replaced by the LSTM network.

Figure 13. Block diagram of the implemented LSTM controller.

This approach enabled the robot to be controlled with a neural network using only
infrared sensors as input. Its control is very similar to the PID control, which is expected,
since data from that controller were used to train the neural network. However, existing
similarities validate that the LSTM network was able to learn the associated patterns and
temporal dependencies of the PID controller.

4.3. CNN

In the second experiment, the aim is to develop a platform for the robot to follow a
line drawn on the ground using neural networks, as in the previous experiment, but using
a camera. In this case, the Raspberry Pi camera mounted on the robot will point downward
so that it can take successive images of the ground in front of it. These images will then be
fed to a neural network that will control the robot movement along the path.

With this strategy, the use of an LSTM neural network would offer limited benefits
compared to a CNN since the LSTM network was chosen for the previous experiment to
simulate the behavior of the PID controller, which requires past information to calculate the
new output. However, the use of real-time images to control the robot does not involve the
temporal dependence found in the PID controller. However, the use of an LSTM network
could easily, if configured with an incorrect number of steps for each sequence, lead to



Algorithms 2025, 18, 51 14 of 26

the network memorizing the path it was trained to follow, capable of causing the robot to
behave abnormally or incorrectly if placed on a different track. For these reasons, a CNN
was chosen.

As in the first experiment, a large amount of data is required to train the neural
network. In this case, the data will be a large number of images taken by the robot itself, so
it is necessary to develop a method for obtaining these images.

As mentioned, the first step is to take several images of the path and save them for
use in neural network training. This will be completed following the steps outlined in the
flowchart of Figure 14:

• Camera initialization and positioning: During initialization, the camera is configured
to capture images and is positioned correctly for the task. Additionally, the positions
of the servos connected to the camera are adjusted to ensure that the camera is aligned
pointing straight down for accurate image capture;

• Taking a new image: In each iteration of the loop, a new image is captured from the
camera (Figure 15). This continuous image acquisition is crucial for real-time image
processing;

• Image processing for line detection: The process begins by converting the color
image to grayscale (Figure 16), which simplifies the complexity of the image and
improves the effectiveness of binary thresholding. Binary thresholding is then applied
(Figure 17), where a threshold value transforms the image into a binary representation,
highlighting the relevant pixels in black and white. To optimize processing, the image
is then cropped to keep only the top part (Figure 18), thus reducing unnecessary areas
and improving the detection of the desired line near the robot, which is essential for
the control operation;

• Save image: After processing, the final image is saved to a file. The file path is
generated dynamically and the image is saved in .jpg format.

Figure 14. Process of capturing, processing, and saving images.



Algorithms 2025, 18, 51 15 of 26

Figure 15. Example of a raw image.

Figure 16. Example of a grayscale image.

With this procedure, several images of the track are taken at different locations, posi-
tions, and angles to ensure that the neural network is trained to handle any situation the
robot may encounter. The dataset has a size of 1800 images.

Figure 17. Example of an image with binary thresholding.



Algorithms 2025, 18, 51 16 of 26

Figure 18. Example of a cropped final image.

With the dataset obtained, the next step is to classify the images so that they can be
used to train the neural network. For this, each image will be assigned the action that the
robot will have to complete. These actions will be divided into the categories listed in
Table 4.

Table 4. Speed of the right and left motors for each category.

Category Right
Speed

Left
Speed

forward 60 60

soft_left 50 70

soft_right 70 50

hard_left 30 90

hard_right 90 30

spin_left −50 70

spin_right 70 −50

lost_line - -

The wheel speed values are between −255 and +255, where negative values cause the
wheel to spin backward and positive values spin forward. Additionally, in the last category
(‘lost_line’) corresponding to when the robot loses the line, the robot will move accordingly
to the previous reading. So, if the vehicle was turning to the left on the previous reading,
the robot, when losing the line, will spin to the left and vice versa to the right.

For the classification task, eight different folders were created, one with the name
of each category, where all images taken in the previous step were manually classified.
Although this classification method is simpler, it requires considerably more time. With
this method, the robot will have eight different modes of operation. However, using more
categories would lead to greater difficulty in classifying the dataset due to the greater
ambiguity in distinguishing these categories.

With the dataset obtained and classified, it can finally be used to train the CNN
network, as depicted in Figure 19:

• Configure model: In the first step, the CNN network is configured using the LeNet
architecture, which is suitable for image classification tasks. The model is configured
to receive 36× 36-pixel grayscale images and classify them into one of eight categories,
each representing a different driving command;

• Load categorized images and assign labels: The dataset containing images is loaded
from the specified directories. Each image is read and resized to 36 × 36 pixels to
match the input dimensions of the CNN. The images are stored in a list for further
processing. The labels are derived from the directory structure: each folder corre-
sponds to a driving command (e.g., ‘forward’ or ‘soft_left’), which is then converted
into numerical label;



Algorithms 2025, 18, 51 17 of 26

• Divide the dataset into training and test data: To ensure a good generalization of
the model, the dataset is split into training and test sets. The split is configured so
that 75% of the data is used to train the model and the remaining 25% are reserved
for testing. This split enables the model’s performance to be assessed on data not
observed after training;

• Train the model: The CNN is trained using the training data. To avoid overfitting,
early stopping is implemented. This technique monitors validation loss and stops
training if the model stops improving after a certain number of epochs, ensuring that
the model does not overfit the training data and generalizes better;

• Model evaluation: After training, the model performance is evaluated by plotting the
training and validation loss over iterations. These plots provide information on how
well the model has learned to generalize. If the validation loss continues to decrease,
this indicates that the model is improving;

• Save the model: Finally, after the model has been successfully trained, it is saved to
disk. This enables the model to be used in the future.

Figure 19. Process of training the CNN.

The CNN model used is shown in Figure 20, and its hyperparameters are provided in
Table 5.



Algorithms 2025, 18, 51 18 of 26

Figure 20. Structure of the CNN used.

Table 5. Hyperparameters of the LeNet model.

Hyperparameter Value

Input Format (height, width, depth)

Number of Convolutional Layers 2

Filters in First Convolutional Layer 20

Filters in Second Convolutional Layer 50

Filter Size (Both Convolutional Layers) (5, 5)

Activation Function ReLU

Pooling Size (2, 2)

Pooling Stride (2, 2)

Dropout (After Pooling Layers) 0.25

Dropout (Before Classification Layers) 0.5

Number of Dense Layers 2

Units in First Dense Layer 500



Algorithms 2025, 18, 51 19 of 26

Table 5. Cont.

Hyperparameter Value

Units in Second Dense Layer 500

Units in Output Layer Number of classes

Output Activation Function Softmax

As mentioned, an early stopping method has been set up during the training of the
model, which will automatically evaluate the model’s performance. If the validation error
rises during three successive epochs, the model’s training will be interrupted. The evolution
of the model performance can be observed in Figure 21.

Figure 21. Evolution of the CNN error over the training.

Figure 22 shows the confusion matrix of the trained model, where each label value
corresponds to the class indicated in Table 6. This shows how many times the model was
able to correctly categorize the test data. Thus, the main diagonal shows the number of
times the model correctly predicted the class, while the off-diagonal shows the number
of times the model was incorrect, classifying one class as another. The performance of
the system is satisfactory as it is able, in most cases, to correctly categorize the data with
an accuracy (the ratio of correctly predicted instances (both positive and negative) to the
total number of predictions) of 79.17%, precision (the ratio of correctly predicted positive
observations to the total number of predicted positive observations) of 74.92%, recall
(the ratio of correctly predicted positive observations to all actual positive observations)
of 0.7375, and F1-score (the harmonic mean of accuracy and recall, providing a balance
between the two) of 0.7360.

It should be noted that an accuracy target was not defined, as the objective was to
strive for the highest accuracy possible within the scope and limitations of the project.
Ultimately, the objective is that the robot is capable of navigating the track effectively and
efficiently, which was met with an accuracy of 79.17%. Some ways to further improve this
value would require more careful classification and a larger dataset.



Algorithms 2025, 18, 51 20 of 26

Figure 22. Confusion matrix of the CNN model.

Table 6. Number corresponding to each class of the CNN.

Class Corresponding
Label

forward 0

soft_left 1

hard_left 2

spin_left 3

soft_right 4

hard_right 5

spin_right 6

lost_line 7

5. Results
This section presents the results of the implemented control methods using pre-built

tracks to assess their performance.

5.1. Tracks

For testing, experimentation, and validation of the control methods implemented, two
tracks were built, as illustrated in Figure 23. Each track was built in such a way as to fit the
control methods developed. Both tracks have the same length of 475 cm.

The second track (Figure 23b) was built on a white platform so that noise from the
camera feed could be reduced since the use of the camera for data collection during the
first experiment would be greatly affected by the dark color, texture, and shininess of
the wooden floor. The attempt to use the first track (Figure 23a) resulted in noisy post-
processing images, making it difficult to distinguish the black line from the image. Other
more advanced filters could have been implemented in the image processing step to avoid
this problem. However, adding these filters would increase the processing overhead of the
control loop, increasing the control loop execution time, and thus further decreasing the
sampling rate.



Algorithms 2025, 18, 51 21 of 26

(a) (b)

Figure 23. (a) Track used for the first experiment and (b) track used for the second experiment.

5.2. PID

The performance of the PID control method is shown in Figure 24. For this experiment,
the first track was used (Figure 23a). The figure illustrates the plots of the error, the output
value of the PID with its terms P, I, and D, and the antiwindup effect over one lap of
the track.

Figure 24. Plots of the error, PID terms, and corresponding output with the anti-windup scheme over
one lap of the track.

5.3. LSTM

Figure 25 shows the results of the control with the LSTM network and the motor
speeds on one lap of the track. The first plot displays the error in the infrared sensor
readings, while the second plot shows the predictions generated by the LSTM network.
Unlike the PID controller, where the new calculated value is added to or subtracted from
the wheel speeds, the LSTM network directly outputs the wheel speeds. To compare the
performance of both control methods, a reverse operation was performed: using the new
wheel speeds, an approximate equivalent of the PID value was calculated. However, it is
important to note that this approximation does not perfectly correspond to the actual PID
value as the LSTM network is trained to emulate the behavior of the PID controller rather
than replicate its calculations exactly. In fact, comparing the two control methods, we can



Algorithms 2025, 18, 51 22 of 26

see that both are quite similar, as shown in Figure 26. Although some similarities can be
observed, the differences in the initial conditions and variations throughout the experiment,
even when using the same path, lead to notable differences between the two experiments.

Figure 25. Plots of the control with the LSTM network and the motor speeds over one lap of the track.

Figure 26. Comparison of the output of the PID and LSTM controllers.

5.4. CNN

The performance of the previous model was influenced by environmental and opera-
tional factors, which required adjustments to optimize behavior. One of the first changes
was to replace the original track, placed on a shiny wooden floor that generated noise in the
images, with a high-contrast black and white track (Figure 23b), which increased accuracy.

The lighting was also crucial because good lighting helps with track detection, but
too much could cause excessive reflections. Adjusting the light intensity proved to be
essential for consistent performance. Other sources of uncertainty can be attributed to the
classification; as it was conducted manually, the ambiguity between classes led to some
inaccuracy while classifying. The dataset could also be larger, which could result in a more
accurate model with fewer errors.



Algorithms 2025, 18, 51 23 of 26

Due to the high computational load of real-time image processing, the sampling rate
was reduced to 24 frames per second, which required slowing down the robot to ensure
that it had time to react to the track.

Figure 27 shows the graphs of the motor speeds and the CNN output over one lap of
the track.

Figure 27. Plots of the motor speeds and the output of the CNN over one lap of the track.

6. Discussion
In general, all the methods used were able to efficiently control the robot along a line

drawn on the ground. Consequently, both the PID controller and the LSTM and CNN
networks proved to be feasible approaches for this type of control. However, due to the
simple nature of the proposed line-following robot, PID control was revealed to be the
most effective.

It was observed that, while the PID controller is the most efficient method, it is not
perfect as it cannot overcome some obstacles on the track, such as sharp angles, which the
CNN network can handle more easily. This shows that, although PID has more advantages
over the other methods in the line-following experiment, neural networks and deep learning
are powerful tools that can be used in more complex scenarios.

Since the control methods are quite different from each other, it is difficult to obtain
common metrics to compare the performance between them. Table 7 shows the error
performance indices of Mean Squared Error (MSE), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), the time taken for each method to cover one lap of the track
and the robot oscillations along the path. The sign “+” indicates the level of oscillations; the
higher the number of “+”, the greater the oscillation. These data were obtained by running
each method five times and obtaining the average values and standard deviations for
each of the control methods. As the values obtained in each test run were quite consistent
between each other, the somewhat arbitrary number of five test runs for each method was
chosen. This value represents a fair equilibrium between the execution time required to
execute each run and the variation in the standard deviation.



Algorithms 2025, 18, 51 24 of 26

Table 7. Performance results.

Method MSE MAE RMSE Lap Time (s) Oscillations

PID 10,684,111 ± 515,855 2257 ± 71 3267 ± 79 16.40 ± 0.22 +

LSTM 17,158,701 ± 1,598,305 3435 ± 242 4137 ± 192 20.53 ± 1.04 +++

CNN 21,040,166 ± 1,186,665 3857 ± 188 4585 ± 128 25.96 ± 0.29 ++

As mentioned, in a central position, the error of the sensor reading is 0, while when
it loses the line, the error becomes ±6000, with any value in this range defining an inter-
mediate position value. With this approach, the error values, especially the MAE, of the
PID controller are quite good compared to the other methods. Although the LSTM method
exhibits higher errors, it is still satisfactory when evaluated against the other controllers.

It should be noted that the indices for the CNN method do not accurately reflect the
network’s performance because it does not use the infrared sensors for control that were
used to calculate the error, but rather the camera, so the infrared sensors may not align
with the line. In addition, as the line in the second path is less wide, in a central position,
no sensor would detect the line, which will cause an increase in error.

Furthermore, the sample rate of each method was also measured, that is, how many
samples each method can evaluate from the sensors and return new motor speeds. The
sample rate was set to the highest value that the processor could handle. The PID method
had a sample rate of 80 Hz, LSTM 25 Hz, and CNN 24 Hz.

7. Conclusions
This paper investigated the use of neural networks in the control of a mobile line-

follower robot using the LSTM and CNN approaches.
Various control methods based on deep learning and PID were developed and tested

on the robot, resulting in a comparative analysis between the techniques. This comparison
demonstrated the advantages of neural networks for complex paths despite their greater
sensitivity to factors such as lighting and computational load, which required a reduced
sampling rate and limited speed.

The first approach, based on infrared sensors and using an LSTM model, proved to
be efficient for simple paths, with a higher sampling rate and reduced dependence on
environmental conditions. The second approach, which used a camera and a CNN, was
more effective for complex paths but revealed to be sensitive to noise and reflections from
the environment, requiring careful calibration. Another source of uncertainty was the
classification process, which, being performed manually, is not free from biases.

Compared to the PID controller, neural networks showed better adaptation to dif-
ficult paths but with high computational complexity. PID remains practical for simple
controlled paths, while neural networks offer great potential for AGVs in dynamic and
unpredictable scenarios.

For future work, we can consider creating a simulation environment that allows us
to test different scenarios, tracks, and configurations more quickly and under controlled
conditions, thus reducing time and resources. The use of non-linear controllers over the
traditional linear PID controllers could be an interesting research area. For better perfor-
mance and reliability, a hybrid approach could be used that combines the neural networks
of LSTM and CNN with the mathematical model of the robot. Another improvement
would be the use of pre-trained networks, such as those trained on large datasets for
autonomous navigation or path detection. To achieve this, the use of transfer learning
(adapting an already trained network for new tasks) could significantly reduce training
time and improve model accuracy under certain conditions. Testing the robot in more com-



Algorithms 2025, 18, 51 25 of 26

plex environments, simulating industrial or urban scenarios, would also make it possible
to validate the robustness of the models under more realistic and demanding conditions.

Author Contributions: Conceptualization, H.M.L. and R.S.B.; methodology, H.M.L. and R.S.B.;
software, H.M.L.; validation, H.M.L. and R.S.B.; formal analysis, H.M.L.; investigation, H.M.L.;
writing—original draft preparation, H.M.L.; writing—review and editing, H.M.L., R.S.B. and I.S.J.;
visualization, H.M.L.; supervision, R.S.B. and I.S.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original data presented in the study are openly available from
GitHub repository at https://github.com/HugoMLeal/TEDI1190660 (accessed on 13 January 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jain, N.; Kumar, R. A Review on Machine Learning and It’s Algorithms. Int. J. Soft Comput. Eng. 2022, 12, 399–406. [CrossRef]
2. Sarker, I. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN

Comput. Sci. 2021, 2, 420. [CrossRef] [PubMed]
3. LeCun, Y.B. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Moshayedi, A.; Li, J.; Liao, L. AGV (automated guided vehicle) robot: Mission and obstacles in design and performance. J. Simul.

Anal. Nov. Technol. Mech. Eng. 2019, 12, 5–18.
5. Wong, C.; Soon, C. A Bluetooth and Vision Controlled Automatic Guided Vehicle. Emerg. Adv. Integr. Technol. 2022, 3, 53–63.

Available online: https://publisher.uthm.edu.my/ojs/index.php/emait/article/view/11856 (accessed on 12 October 2024).
6. Lin, K.; Chen, H.; Li, G.; Tu, J.; Huang, S. Automatic Guided Vehicle with Artificial Intelligence Navigation. In Proceedings of the

2019 IEEE International Conference On Consumer Electronics—Taiwan (ICCE-TW), Taiwan, China, 20–22 May 2019; pp. 1–2.
7. Roche, J.; De-Silva, V.; Kondoz, A. A Multimodal Perception-Driven Self Evolving Autonomous Ground Vehicle. IEEE Trans.

Cybern. 2022, 52, 9279–9289. [CrossRef] [PubMed]
8. Aryanti, A.; Wang, M.; Muslikhin, M. Navigating Unstructured Space: Deep Action Learning-Based Obstacle Avoidance System

for Indoor Automated Guided Vehicles. Electronics 2024, 13, 420. Available online: https://api.semanticscholar.org/CorpusID:
267145921 (accessed on 12 October 2024). [CrossRef]

9. Li, X.; Rao, W.; Lu, D.; Guo, J.; Guo, T.; Andriukaitis, D.; Li, Z. Obstacle Avoidance for Automated Guided Vehicles in Real-World
Workshops Using the Grid Method and Deep Learning. Electronics 2023, 12, 4296. Available online: https://api.semanticscholar.
org/CorpusID:264328025 (accessed on 12 October 2024). [CrossRef]

10. Chen, Y.; Li, D.; Zhong, H.; Zhao, R. The Method for Automatic Adjustment of AGV’s PID Based on Deep Reinforcement Learning.
J. Phys. Conf. Ser. 2022, 2320, 012008. Available online: https://api.semanticscholar.org/CorpusID:251515556 (accessed on 12
October 2024). [CrossRef]

11. Simon, J.; Trojanová, M.; Hovsovská, A.; Sárosi, J. Neural Network Driven Automated Guided Vehicle Platform Development for
Industry 4.0 Environment. Teh.-Vjesn.-Tech. Gaz. 2021, 28, 1936–1942. Available online: https://api.semanticscholar.org/CorpusID:
243855693 (accessed on 12 October 2024).

12. Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A Review of Deep Learning Methods and Applications for Unmanned
Aerial Vehicles. J. Sens. 2017, 2017, 3296874. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/3296874
(accessed on 12 October 2024). [CrossRef]

13. Bałazy, P.; Gut, P.; Knap, P. Positioning algorithm for AGV autonomous driving platform based on artificial neural networks.
Robot. Syst. Appl. 2021, 1, 41–45. Available online: https://api.semanticscholar.org/CorpusID:237210213 (accessed on 12 October
2024). [CrossRef]

14. Xue, H.; Hein, B.; Bakr, M.; Schildbach, G.; Abel, B.; Rueckert, E. Using Deep Reinforcement Learning with Automatic Curriculum
earning for Mapless Navigation in Intralogistics. arXiv 2022, arXiv:abs/2202.11512. Available online: https://api.semanticscholar.
org/CorpusID:247058694 (accessed on 12 October 2024).

15. Raspbot Repository. Available online: http://www.yahboom.net/study/Raspbot (accessed on 20 November 2024).
16. TTmotors. Available online: https://www.ttmotor.com/10-20mm/ (accessed on 13 January 2025).
17. Einstronic. Available online: https://einstronic.com/product/sg90-micro-servo-motor/ (accessed on 13 January 2025).
18. Raspberry Pi Hardware. Available online: https://www.raspberrypi.com/products/ (accessed on 20 November 2024).
19. NVIDIA. Available online: https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3060-3060ti/ (accessed on 13

January 2025).

https://github.com/HugoMLeal/TEDI1190660
http://doi.org/10.35940/ijsce.E3583.1112522
http://dx.doi.org/10.1007/s42979-021-00815-1
http://www.ncbi.nlm.nih.gov/pubmed/34426802
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://publisher.uthm.edu.my/ojs/index.php/emait/article/view/11856
http://dx.doi.org/10.1109/TCYB.2021.3113804
http://www.ncbi.nlm.nih.gov/pubmed/34623290
https://api.semanticscholar.org/CorpusID:267145921
https://api.semanticscholar.org/CorpusID:267145921
http://dx.doi.org/10.3390/electronics13020420
https://api.semanticscholar.org/CorpusID:264328025
https://api.semanticscholar.org/CorpusID:264328025
http://dx.doi.org/10.3390/electronics12204296
https://api.semanticscholar.org/CorpusID:251515556
http://dx.doi.org/10.1088/1742-6596/2320/1/012008
https://api.semanticscholar.org/CorpusID:243855693
https://api.semanticscholar.org/CorpusID:243855693
https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/3296874
http://dx.doi.org/10.1155/2017/3296874
https://api.semanticscholar.org/CorpusID:237210213
http://dx.doi.org/10.21595/rsa.2021.22109
https://api.semanticscholar.org/CorpusID:247058694
https://api.semanticscholar.org/CorpusID:247058694
http://www.yahboom.net/study/Raspbot
https://www.ttmotor.com/10-20mm/
https://einstronic.com/product/sg90-micro-servo-motor/
https://www.raspberrypi.com/products/
https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3060-3060ti/


Algorithms 2025, 18, 51 26 of 26

20. AMD. Available online: https://www.amd.com/en/support/downloads/drivers.html/processors/ryzen/ryzen-3000-series/
amd-ryzen-7-3700x.html#amd_support_product_spec (accessed on 13 January 2025).

21. Anaconda Enterprise 4 Repository. Available online: https://docs.anaconda.com/anaconda-repository/ (accessed on 18
December 2024).

22. Zhang, A.; Li, M.; Smola, A.J.; Lipton, Z. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023. Available
online: https://D2L.ai (accessed on 27 November 2024).

23. Abdullahi, Z.; Danzomo, B.; Abdullahi, Z. Design and Simulation of a PID Controller for Motion Control Systems. Iop Conf. Ser.
Mater. Sci. Eng. 2018, 344, 012016. [CrossRef]

24. Tehrani, K.; Mpanda, A. PID Control Theory. 2012. Available online: https://api.semanticscholar.org/CorpusID:9908243
(accessed on 13 October 2024).

25. Inc, M. AVR221: Discrete PID Controller on tinyAVR and megaAVR Devices. Available online: https://www.ni.com/docs/en-
US/bundle/labview/page/fuzzy-controllers.html (accessed on 12 March 2024).

26. Jesus, I.S.; Barbosa, R.S. Genetic optimization of fuzzy fractional PD+I controllers. In ISA Transactions; Elsevier: Amsterdam,
The Netherlands, 2015; Volume 57, pp. 220–230.

27. Dorf, R.C.; Bishop, R.H. Modern Control Systems, 14th ed.; Pearson Education: London, UK, 2022.
28. Aboelhassan, A.; Abdel-Geliel, M.; Zakzouk, E.; Galea, M. Design and Implementation of Model Predictive Control Based PID

Controller for Industrial Applications. Energies 2020, 13, 6594. Available online: https://api.semanticscholar.org/CorpusID:
230600853 (accessed on 13 October 2024). [CrossRef]

29. Åström, K.J.; Hägglund, T. PID Controllers: Theory Design and Tuning; ISA Press: Research Triangle Park, NC, USA, 1995.
30. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. Available online: https://api.

semanticscholar.org/CorpusID:1915014 (accessed on 13 October 2024). [CrossRef] [PubMed]
31. colah’s Blog: Understanding LSTM Networks. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

(accessed on 26 December 2024).
32. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling.

arXiv 2014, arXiv:1402.1128.
33. Alzubaidi, L.; Zhang, J.; Humaidi, A.; Al-dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.; Al-Amidie, M.; Farhan,

L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53.
Available online: https://api.semanticscholar.org/CorpusID:232434552 (accessed on 14 October 2024). [CrossRef] [PubMed]

34. Upreti, A. Convolutional Neural Network (CNN): A comprehensive overview. Int. J. Multidiscip. Res. Growth Eval. 2022, 3,
488–493. Available online: https://api.semanticscholar.org/CorpusID:251888217 (accessed on 14 October 2024). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.amd.com/en/support/downloads/drivers.html/processors/ryzen/ryzen-3000-series/amd-ryzen-7-3700x.html#amd_support_product_spec
https://www.amd.com/en/support/downloads/drivers.html/processors/ryzen/ryzen-3000-series/amd-ryzen-7-3700x.html#amd_support_product_spec
https://docs.anaconda.com/anaconda-repository/
https://D2L.ai
http://dx.doi.org/10.1088/1757-899X/344/1/012016
https://api.semanticscholar.org/CorpusID:9908243
https://www.ni.com/docs/en-US/bundle/labview/page/fuzzy-controllers.html
https://www.ni.com/docs/en-US/bundle/labview/page/fuzzy-controllers.html
https://api.semanticscholar.org/CorpusID:230600853
https://api.semanticscholar.org/CorpusID:230600853
http://dx.doi.org/10.3390/en13246594
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:1915014
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://api.semanticscholar.org/CorpusID:232434552
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
https://api.semanticscholar.org/CorpusID:251888217
http://dx.doi.org/10.54660/anfo.2022.3.4.18

	Introduction
	System Architecture
	Mobile Platform
	Robot Architecture
	Software and Tools

	Control Strategies
	PID
	LSTM
	CNN

	Implementation
	PID
	LSTM
	CNN

	Results
	Tracks
	PID
	LSTM
	CNN

	Discussion
	Conclusions
	References

