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Abstract: Trajectory planning is essential for robotic polishing tasks, as the effectiveness
of this planning directly influences the quality of the work and the energy efficiency
of the operation. This study introduces an innovative trajectory planning method for
robotic polishing tasks, focusing on the development and application of quintic B-spline
interpolation. Recognizing the critical impact of trajectory planning on the quality and
energy efficiency of robotic operations, we analyze the structure and parameters of the ABB-
IRB120 robot within a laboratory setting. Using the Denavit–Hartenberg parameter method,
a kinematic model is established, and the robot’s motion equations are derived through
matrix transformation. We then propose a novel approach by implementing both fifth-
degree polynomial and quintic B-spline interpolation algorithms for planning the robot’s
spatial spiral arc trajectory, which is a key contribution of this work. The effectiveness
of these methodologies is validated through simulation in MATLAB’s robotics toolbox.
Our findings demonstrate that the quintic B-spline interpolation not only significantly
improves task precision but also optimizes energy consumption, making it a superior
method for trajectory planning in robotic grinding applications. By integrating advanced
interpolation techniques, this study provides substantial technological and environmental
benefits, offering a groundbreaking reference for enhancing the precision and efficiency of
robotic control systems.

Keywords: robot; grinding; trajectory planning

1. Introduction
With the development of modern science and technology, robots are widely used in

various production industries, which greatly improves the efficiency of industrial produc-
tion. In the realm of manufacturing, the precision and efficiency of grinding robots are
largely contingent upon the optimization of their trajectory planning. The core scientific
problem addressed in this study is the optimization of trajectory planning to enhance both
the precision and energy efficiency of robotic grinding operations. Trajectory planning is
a pivotal aspect of robot motion control, encompassing the generation and optimization
of motion paths for the robot’s end-effector (e.g., a grinding tool) to facilitate efficient and
precise grinding operations. This involves addressing the scientific challenge of optimizing
both the accuracy and the energy consumption of the robotic operations. The quality of
trajectory planning affects the movement effect of the robot and then affects the quality
of grinding. Trajectory planning is the prerequisite for achieving optimal performance in
grinding robots. Linear and arc trajectory planning are two basic trajectory planning meth-
ods. Because the planned trajectory is relatively simple, the application surface is narrow.
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Traditional trajectory planning techniques have many drawbacks, such as not finding a
global solution, requiring gradients, not being used for discontinuous functions, etc. [1].
More and more scholars adopt intelligent algorithms in path planning, such as the particle
swarm optimization (PSO) [2], genetic algorithm [3,4], ant colony algorithm [5], artificial
bee colony algorithm [6,7], and so on. These intelligent algorithms aim to overcome the
limitations of traditional methods and address the core scientific challenge of enhancing
trajectory precision while reducing energy consumption.

Fang et al. [8] use an improved B-spline interpolation method to optimize the joint
trajectory of the welding robot and verify the feasibility of this method through simulation
experiments. It effectively enhances the smooth continuity of the angular values and
angular velocity values of each joint’s trajectory, making the robot’s operation smoother
and more stable [9]. Feng [10] and Zhou [11] perform kinematic analysis on the joints of
the ABB IRB140 grinding robot, establish a robot model using an enhanced DH method,
and deduce both forward and inverse kinematic equations through the analysis of the
robot’s geometric relationships and joint variables. Trajectory planning is carried out using
the quintic polynomial function method, yielding improved joint trajectories and end-
effector trajectory curves through simulation. In reference [12], Alaa Saadah et al. applied
MATLAB to trajectory planning for the arc welding of a KUKA KR5 robot. The trajectory
planning and simulation of the robot operation were realized utilizing the Jacobian matrix
of linear paths and circular paths. The achievement of good results was tested through
experimental setups. Wang Lei and others used a beetle swarm optimization algorithm
for trajectory planning of robotic manipulators [3]. The beetle antennae search algorithm
has distinct advantages in dealing with low-dimensional trajectory optimization problems.
However, it may face efficiency issues in high-dimensional problems, such as trajectory
planning for a six-axis robot, and its universality and robustness still need to be verified.
Yunjeong and Byung Kook [13] propose a time-optimal trajectory planning algorithm for
differential drive-wheeled mobile robots. By segmenting the trajectory and employing
the bang-bang principle, it achieves rapid and safe mobility. The authors in [14–16] also
propose a time-optimal trajectory planning algorithm for robot applications, achieving
good results. Studies in the literature [6,11,17–20] made corresponding trajectory planning
or optimization research for different robots, which achieved certain expected results.

Our study aims to further these efforts by addressing the dual challenges of optimizing
trajectory precision and energy efficiency, particularly through the comparative study of
fifth-degree polynomial and B-spline interpolation algorithms. This paper, with spiral arc
trajectory as an example, through the simulation model in MATLAB R2021a/SIMULINK,
aims to design the ABB-IRB120 six-axis robot model, build the robot space arc grinding
trajectory motion model, take five polynomial interpolation algorithms and five B spline
interpolation algorithms for comparative study, select the trajectory planning method to
eliminate the grinding robot jitter in motion, and improve the quality of grinding.

To provide a clearer outline of our work, this paper is organized as follows: In Section 2,
we detail the establishment of the kinematic model for the ABB-IRB120 robot and describe
our approach to modeling the spatial spiral curve trajectory. In Section 3, we discuss the
application of quintic polynomial and B-spline interpolation algorithms, present the simulation
results assessing their effectiveness and efficiency, and rigorously validate these methods
through detailed comparative analyses. Finally, in Section 4 we summarize the findings and
discuss the implications of our work, highlighting potential areas for future research.
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2. Materials and Methods
2.1. The Establishment of the Robotic Arm Kinematics Model and the Spatial Spiral Curve Model
2.1.1. Robot Kinematics and Modeling

The ABB-IRB120, as a compact six-axis industrial robot, has been widely adopted in
the manufacturing industry due to its high precision, exceptional flexibility, and reliability.
Figure 1 illustrates the planar schematic diagram of the ABB-IRB120 six-axis robot, which
provides a clear visual representation of the robot’s structural composition and relationship
between its various links. This schematic serves as a foundational basis for understanding
the robot’s kinematic and dynamic characteristics.
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Figure 1. Planar schematic of the ABB-IRB120 six-axis.

The link parameters of the ABB IRB120 robot are critical in defining its motion ca-
pabilities and performance. The link parameters for the ABB IRB120 polishing robot are
referenced in the literature [8,21]. These parameters, such as link lengths, twist angles, and
offset distances, are essential components of the robot’s kinematic model and are used to
calculate its forward and inverse kinematics.

Table 1 presents the comprehensive DH (Denavit–Hartenberg) parameter table for the
ABB-IRB120 six-axis robot. By using these parameters, it is possible to accurately determine
the position and orientation of the robot’s end-effector relative to its base frame.

Table 1. The D-H parameters table for the ABB-IRB120 six-axis robot.

Link Rod i Twist Angle
αi−1/Rad

Link Length
ai−1/mm

Joint Angle
θi/rad

Link Offset
di/mm Other

1 0 0 θ1 l1 1l = 290 mm
2 −π/2 0 θ2−π/2 0 —
3 0 l2 θ3 0 l2 = 270 mm

4 −π/2 l3 θ4 l4
l3 = 70 mm
l4 = 302 mm

5 π/2 0 θ5 + π 0 —
6 π/2 0 θ6 l5 l5 = 72 mm
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In this setup, the coordinate system for the robotic arm’s links is established using
the modified DH parameters method. When studying a generalized linkage system with
n joints, the homogeneous transformation matrix between adjacent links is considered,
considering the neighboring links and joint Axisi−1, Axisi, and Axisi+1, as shown in Figure 2.
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The transformation matrix for the linkage of the improved DH coordinate system is as
follows [10]:

i−1T i =

∣∣∣∣∣∣∣∣∣
cosθi −sinθi 0 ai−1

cosαi−1sinθi cosαi−1cosθi −sinαi−1 −disinαi−1

sinαi−1sinθi sinαi−1cosθi cosαi−1 dicosαi−1

0 0 0 1

∣∣∣∣∣∣∣∣∣ (1)

where αi, ai, and θi are the linkage parameters. Then, the positive kinematic equation of the
robot is obtained from the pose transformation matrix of each joint of the robot [22]:

0T6 = 0T1(θ1) · 1T2(θ2) · 2T3(θ3) · 3T4(θ4) · 4T5(θ5) · 5T6(θ6)

=


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 (2)

Here,

nx = sθ6[cθ1sθ4s(θ2 + θ3)− cθ4sθ1]− cθ6[cθ5sθ1sθ4 + cθ1sθ5c(θ2 + θ3) + cθ1cθ4cθ5s(θ2 + θ3)]

ny = sθ6[cθ1cθ4 + sθ1sθ4s(θ2 + θ3)]− cθ6[sθ1sθ5c(θ2 + θ3)− cθ1cθ5sθ4 + cθ4cθ5sθ1s(θ2 + θ3)]

nz = cθ6[sθ5s(θ2 + θ3)− cθ4cθ5c(θ2 + θ3)] + sθ4sθ6c(θ2 + θ3)

ox = cθ6[cθ1sθ4s(θ2 + θ3)− cθ4sθ1] + sθ6[cθ5sθ1sθ4 + cθ1sθ5c(θ2 + θ3) + cθ1cθ4cθ5s(θ2 + θ3)]

oy = cθ6[cθ1cθ4 + sθ1sθ4s(θ2 + θ3)] + cθ6[sθ1sθ5c(θ2 + θ3)− cθ1cθ5sθ4 + cθ4cθ5sθ1s(θ2 + θ3)]

oz = cθ6sθ4c(θ2 + θ3)− sθ6[sθ5s(θ2 + θ3)− cθ4cθ5c(θ2 + θ3)]

px = cθ1[lsθ2 + cθ1cθ4s(θ2 + θ3)]
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py = cθ1cθ5c(θ2 + θ3)− sθ5[cθ4sθ1s(θ2 + θ3)− cθ1cθ4]

pz = −cθ5s(θ2 + θ3)− cθ4sθ5c(θ2 + θ3)

px = cθ1[l2sθ2 + l3s(θ2 + θ3) + l4c(θ2 + θ3) + l5cθ5c(θ2 + θ3)− l5cθ4sθ5s(θ2 + θ3)]− l5sθ1sθ4sθ5

py = sθ1[l2sθ2 + l3s(θ2 + θ3) + l4c(θ2 + θ3) + l5cθ5c(θ2 + θ3)− l5cθ4sθ5s(θ2 + θ3)] + l5cθ1sθ4sθ5

pz = l1 + l2cθ2 + l3c(θ2 + θ3)− l4s(θ2 + θ3)− l5cθ5s(θ2 + θ3)− l5cθ4sθ5s(θ2 + θ3)

In the formulas, cθ = cosθ, sθ = sinθ, [nx, ny, nz]T, [ox, oy, oz]T, [ax, ay, az]T, [px, py, pz]T

represent, respectively, the normal vector, orientation vector, approach vector of the end-
effector in the base coordinate system, and the position vector of the end-effector in the base
coordinate system [10]. After obtaining the above terminal pose matrix of the robot, we
analyze the inverse kinematics of the robot and solve the motion variables of each joint of the
robot, and the solution of θ is obtained by the inverse kinematics as follows:

The first joint variable θ1 can be obtained as follows:

θ1:θ1 = atan2(py− l5ay, px − l5ax) (3)

The 2nd joint variable θ2 can be obtained as follows:

θ2 = atan2(A2,±
√

1 − A2
2)− ϕ2 (4)

In this formula,

A2 =
l2
2 − l2

3 − l2
4 +

[
cθ1(px − l5ax) + sθ1(py − l5ay)

]2
+ (pz − l1 − l5az)2

2l2
,

ϕ2 = atan2(pz − l1 − l5az, cθ1(px − l5ax) + sθ1(py − l5ay))

The third joint variable θ3 can be obtained as follows:

θ3 = atan2(cθ1(px − l5ax) + sθ1(py − l5ay)− l2sθ2, pz − l1 − l5az − l2cθ2)− θ2 − ϕ3

in which
ϕ3 = atan2(l4, l3) (5)

The fifth joint variable θ5 can be obtained as follows:

θ5 = atan2(±
√

1 − A2
5, A5) (6)

In this formula,

A5 = (axcθ1 + aysθ1)c(θ2 + θ3)− azs(θ2 + θ3)

The fourth joint variable θ4 can be obtained as follows:

θ4 = atan2(A42, A41) (7)

In this formula,

A41 =
−(axcθ1 + aysθ1)s(θ2 + θ3)− azc(θ2 + θ3)

sθ5
,

A42 =
aycθ1 − axsθ1

sθ5
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The sixth joint variable θ6 can be obtained as follows:

θ6 = atan2(A62, A61) (8)

In this formula,

A61 =
−(nxcθ1 + nysθ1)c(θ2 + θ3) + nzs(θ2 + θ3)

sθ5
,

A62 =
(oxcθ1 + oysθ1)c(θ2 + θ3)− ozs(θ2 + θ3)

sθ5

Taking the motion variables q = (π
6 , π

3 , π
4 , π

2 , π
3 , π

4 ) as examples, the pose matrix of the
end-effector can be obtained from Equation (2) as follows:

0T6 =


0.5520 0.6310 −0.5451 154.1186
0.7269 −0.0439 0.6853 160.9804
0.4085 −0.7745 0.4830 80.3997

0 0 0 1.0000

 (9)

Using the end pose result of Equation (9), the q = abb120_ikine(T) result is solved by
the inverse kinematics equation as shown in Figure 3:
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By comparing the above selection of kinematic variables q = (π
6 , π

3 , π
4 , π

2 , π
3 , π

4 ) in forward
kinematics, the results of inverse kinematics are not significantly different from the selection in
forward kinematics, indicating the correctness of the established kinematics equations.

The robot multi-axis linkage angle value can be obtained through the above formula.
The multi-axis linkage angle values are shown in Table 2.

Table 2. Multi-axis linkage angle values.

θ1 θ2 θ3 θ4 θ5 θ6

52.7652 21.8561 18.1634 −116.0455 62.3940 −10.7425
60.7978 29.3186 6.4654 −106.6156 65.5352 −18.9757
84.7266 6.5544 34.0268 −93.3423 85.9207 −22.0362
59.7385 −9.7148 49.1090 −112.4336 68.9605 −15.9549
52.7652 19.2235 15.5904 −113.4557 60.2128 −16.1320

Utilizing the robotics toolbox, a three-dimensional simulation model of the ABB-
IRB120 robot is constructed in MATLAB, and the simulation robot workspace is created
by the Monte Carlo method. The simulation model of the robot workspace and grinding
curve is shown in Figure 4. This integrated visualization offers an intuitive understanding
of the robot trajectory planning.
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2.1.2. Space Spiral Arc Curve Model

Suppose the radius of the spatial spiral circular arc curve is r = 100 mm, the pitch is
p = 60 mm, and the inclination angle is φ0.

Assuming that the z-axis of the spatial coordinate system w for the space spiral line
to be polished coincides with the axis of the helix [9], and the spatial coordinate origin is
(xt,yt,zt) = (0,0,0), the parametric equations of the spiral in three-dimensional space are as follows:

x = xt + r ∗ cos( 2π
p ∗ ϕ)

y = yt + r ∗ sin( 2π
p ∗ ϕ)

z = zt + ϕ

(10)

Spiral inclination angle φ0 = atan2( p
2π∗r ), where φ is the variable parameter in

Formula (10), φ increases from 0 equal step distance to 2p, and the parameter Equation (10)
can generate the spatial spiral arc curve of the corresponding pitch p.

Suppose that the spatial coordinate system w of the spatial helix to be polished is
relative to the base coordinate frame o:

o
wT =


1 0 0 200
0 1 0 300
0 0 1 400
0 0 0 1

 (11)

In the spiral parameter equation given in Equation (10), the parametric variable φ is
assigned every p/n, starting from 0 and ending when the final value is 2p. Then, obtain the
junction position coordinates on the spatial spiral curves of the two pitches (xw(i), yw(i), zw(i)).
The total number is 2n + 1, and we can obtain the following position matrix for the 2n + 1 nodes:

Tw(:, :,i) =


1 0 0 xw(i)
0 1 0 yw(i)
0 0 1 zw(i)
0 0 0 1

 (12)
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Given o
wT and Tw(:, :, i), the position matrix of selected nodes on the spatial helix in the

actual workpiece coordinate system can be obtained from the formula o
wT and Tw(:, :, i).

To(:, :,i) =


1 0 0 xo(i)
0 1 0 yo(i)
0 0 1 zo(i)
0 0 0 1

 (13)

Through Formula (13), obtain the position of each node, connect the end position, and
form the model of the spatial helical curve.

Then, solve the joint trajectory q (position),
.
q (velocity), and

..
q (acceleration) of the

robot when passing through each node of the spatial solid curve.
In this paper, we solve the problem of mapping the velocity of a robot in Cartesian space

to the velocity in joint space using the vector product method. The displacements of the robot
in Cartesian space x and joint space q can be represented by the following equations:

x = x(q) (14)

After taking the derivative of both sides of Equation (14) concerning time, the relation-
ship between the velocity of the robot in Cartesian space x and the velocity in joint space q
is obtained as follows:

•
x = J(q)

•
q (15)

In the above formula,
.
x represents the velocity of the robot’s end-effector in Cartesian space;
.
q is the joint velocity of the robot in the joint space;
J(q) represents the Jacobian matrix for robots.
Multiplying the left-hand side of both sides of Equation (15) by J(q)−1, we can obtain

the formula for solving the joint speeds of the robot as follows:

•
q = J(q)−1 •x (16)

The velocity of the robot’s end-effector in Cartesian space is a 6-dimensional column
vector, which is

•
x =

[
vx, vy, vz, wx, wy, wz

]T . Assuming that the velocity of the robot’s
end-effector in the z-axis direction is uniform and the velocity value is vz = 2 mm/s, the
remaining velocity components of the i-th node can be expressed as

vx(i) = wz(i) ∗ r ∗ sin((i − 1) ∗ αc)

vy(i) = wz(i) ∗ r ∗ cos((i − 1) ∗ αc))

wx(i) = 0
wy(i) = 0
wz(i) = (2 ∗ π)/( p

vz
)

(17)

Here, αc represents the step angle.
Thus, the operational speed of the robot, x, has been determined. Furthermore, from

Equation (16), we can obtain the joint speed.
By taking the derivative of both sides of Equation (15), we can obtain the robot joint

acceleration equation:
••
x = J(q)

••
q +

•
J(q)

•
q (18)
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The following equation can be obtained from (18):

••
q = J(q)−1

[
••
x −

•
J(q)

•
q
]

(19)

Because the above assumes that the end speed of the robot is uniform in Cartesian
space, it can be obtained as follows:

••
x = [0, 0, 0, 0, 0, 0]T (20)

By combining Equations (18)–(20), we can solve for
..
q. Through the calculations above

and by using MATLAB for programming, we can obtain the waveforms of displacement,
velocity, and acceleration for each joint, as shown in Figure 5.

   

(a) (b) (c) 

Figure 5 

 

 

 

Figure 5. The waveforms of displacement, velocity, and acceleration for each joint. (a) Simulation curves
of each joint displacement. (b) Simulation graphs for the velocity of each joint. (c) The acceleration
simulation graphs for each joint.

2.2. Spiral Arc Trajectory Planning of Quintic Polynomial Interpolation Algorithm

Polynomial interpolation algorithms are frequently applied in trajectory planning,
especially in robotics and other fields requiring smooth and precise path control. As the
degree of the polynomial increases, the interpolation curve can approximate given data
points more accurately, but this also introduces higher computational complexity and po-
tential numerical instability. The quintic polynomial interpolation algorithm is a commonly
used method in robot trajectory planning, as it can maintain trajectory smoothness and
accuracy while relatively balancing computational complexity. It is particularly suited for
planning robotic joint trajectories with continuous position, velocity, acceleration, and jerk
(rate of change in acceleration), ensuring a smoother and more controlled movement. This
complex algorithm utilizes the ability of polynomial functions to effectively model the
complex relationship between joint displacement and time. By uniquely determining the
coefficients of the polynomial based on specified boundary conditions, including the initial
and final positions, velocities, and accelerations of the joint, corresponding trajectory plans
can be tailored to the specific requirements of the robot and its tasks.

In the context of the quintic polynomial approach, the relationship between the joint
displacement (which represents the change in position or angle of a particular joint over
time) and time is expressed mathematically through a polynomial equation of the fifth
degree. This equation encapsulates not just the instantaneous position of the joint at any
given time but also its rate of change (i.e., velocity) and acceleration, which is beneficial to
understanding the movement of the joint in its entire trajectory.
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In the five-degree polynomial algorithm, the relationship between joint displacement
and time is as follows:

θ(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (21)

For the motion trajectory of this design, for each node, only the first node, namely the
time t0 of the starting point, is zero, and the time t0 of the other nodes is not zero. Therefore,
the following equation can be obtained:

θ(0) = θ0 = a0 + a1t0 + a2t2
0 + a3t3

0 + a4t4
0 + a5t5

0
θ( f ) = θ f = a0 + a1t f + a2t2

f + a3t3
f + a4t4

f + a5t5
f

•
θ(0) =

•
θ0 = a1 + 2a2t0 + 3a3t2

0 + 4a4t3
0 + 5a5t4

0
•
θ( f ) =

•
θ f = a1 + 2a2t f + 3a3t2

f + 4a4t3
f + 5a5t4

f
••
θ (0) =

••
θ0 = 2a2 + 6a3t0 + 12a4t2

0 + 20a5t3
0

••
θ ( f ) =

••
θ f = 2a2 + 6a3t f + 12a4t2

f + 20a5t3
f

(22)

In the equations, θ(0),
•
θ(0),

••
θ (0) and θ( f ),

•
θ( f ),

••
θ ( f ), respectively, represent the joint

angle, angular velocity, and angular acceleration at the starting moment and ending mo-
ment. By computational solving, the values of polynomial coefficients a0, a1, a2, a3, a4, and
a5 can be obtained.

Figure 6 shows the trajectory plots for each joint of the robot, achieved using the
quintic polynomial interpolation algorithm.
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Figure 6 presents a visualization of the motion trajectories executed by the various
joints of a robotic system, employing the quintic polynomial interpolation algorithm as its
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methodology. This algorithm is renowned for its ability to generate smooth and continuous
motion profiles, making it a popular choice in robotics applications.

Subfigure (a) of Figure 6 specifically showcases the displacement plots for all six
joints of the robot over the course of its programmed movement. These plots offer a clear
overview of how each joint contributes to the overall motion of the robot, revealing the
interplay between them as they work in harmony to achieve the desired task.

To gain a deeper insight into the fine-grained behavior of specific joints, subfigures
(b) and (c) zoom in on certain segments of the displacement curves for joint 4 and joint 6,
respectively. While the quintic polynomial interpolation algorithm is designed to ensure a
smooth and seamless trajectory, upon closer inspection, one can observe minute fluctuations
in the form of a sawtooth pattern within these magnified segments.

These subtle fluctuations, though seemingly insignificant, can have a non-negligible
impact on the robot’s motion stability and precision. In precision-critical applications, such as
assembly lines, surgical robots, or any scenario where even the slightest deviation from the
intended path can lead to errors or damage, these fluctuations become a matter of concern.

Therefore, it is of great importance for us to study and formulate strategies to mitigate
or eliminate these sawtooth patterns. Potential solutions may include refining the boundary
conditions used in quintic polynomial interpolation, implementing additional smoothing
algorithms, or exploring alternative trajectory planning methods that are inherently more
stable and accurate. By solving these minor fluctuations, the overall performance and
reliability of the robotic system can be significantly improved.

2.3. The Trajectory Planning of the Spiral Arc Curve Based on the Quintic B-Spline
Interpolation Algorithm

The quintic B-spline interpolation algorithm is an advanced and versatile technique
for crafting precise polynomial curves in numerous applications, particularly in the realm
of robotics and computer-aided design. This sophisticated method employs a quintic
polynomial to meticulously interpolate through a predefined set of control points, allowing
for the creation of smooth and continuous trajectories.

One of the most noteworthy characteristics of the quintic B-spline interpolation is
its ability to ensure continuity up to the fifth-order derivatives of the generated curve.
This feature is crucial in achieving ultra-smooth transitions between segments, eliminating
abrupt changes or jerks that could otherwise compromise the precision and efficiency of
the system. The continuity of these higher-order derivatives also ensures that the overall
shape of the curve remains predictable and manageable, facilitating the precise control of
the trajectory.

Furthermore, the quintic B-spline algorithm boasts a remarkable property known
as local control. This means that adjustments made to individual control points directly
affect only the local segment of the curve around that point, without disturbing the global
shape significantly. This localized influence is invaluable in robot path planning, where
even minor modifications to the trajectory can have significant implications on the robot’s
movement and performance. By enabling fine-tuned adjustments without compromising
the integrity of the overall path, the quintic B-spline interpolation algorithm offers a high
degree of flexibility and adaptability in designing efficient and optimal robot paths.

As we know, the quintic B-spline interpolation algorithm is a powerful tool that
leverages the properties of a fifth-degree polynomial to construct smooth, continuous
curves with controlled higher-order derivatives. Its local control feature further enhances
its suitability for complex applications such as robot path planning, enabling precise and
efficient trajectory planning in dynamic environments.

In addition to its local control and continuity properties, the quintic B-spline also falls
into a broader category of B-spline curves characterized by their order. The k-th B-spline
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has the characteristics of order k−1, and the quintic B-spline curve has the characteristics of
fourth order. The k-th B-spline curve can be represented by segmented polynomials:

P(t) =
n

∑
i=0

PiFi,k(t) t ∈ [tk−1, tn+1] (23)

In the above equation,
Fi,0(t) =

{
1 ti ≤ t ≤ ti+1

0 others

Fi,k(t) =
t−ti

ti+k−ti
Fi,k−1(t) +

ti+k+1−t
ti+k+1−ti+1

Fi+1,k−1(t)
convention 0

0 = 0

Let the robot joint position point sequence be represented by (ti, Pi)i = 0, 1, . . ., n, and the
total movement time is t = tf – t0. To ensure the consistency between the starting end of the
B spline and its actual data point, the repetition degree at both ends was taken as k + 1 = 6.
Therefore, the corresponding knot value uk+I = u5+I (I = 0, 1, . . ., n) requires n + 5 control
vertices Qi (I = 0, 1, . . ., n + 4) and a corresponding junction point vector u = [u0, u1, . . ., un+10].

Follow the steps of the quintic B-spline interpolation for solving the trajectory of a spatial
spiral circular arc. First, calculate the knot vector u = [u0, u1,······, un+10]; then, find n + 5 control
points Qi. The Q value of the control vertices can be obtained according to He et al. [22].

Figure 7 shows the trajectory plots of each joint of the robot achieved by using the
quintic B-spline interpolation algorithm.
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Figure 7. The trajectory diagrams of each joint obtained using a quintic B-spline interpolation
algorithm. (a) Displacement Curve diagram for six join. (b) Enlarged view of displacement curve for
Join 4. (c) Enlarged view of displacement curve for Join 6.

Figure 7a displays the displacement diagrams of the robot’s six joints, which were
obtained using the quintic B-spline interpolation algorithm. In Figure 7b, by zooming in on
a specific segment of joint 4’s displacement, we can observe the remarkable level of detail
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in the joint trajectory planning. The curve exhibits an exceptional degree of smoothness,
devoid of any jagged edges or abrupt changes that could potentially compromise the
robot’s performance. This high level of precision ensures that the joint movements are not
only accurate but also fluid, contributing significantly to the robot’s overall effectiveness
and responsiveness.

Similarly, Figure 7c, which focuses on a portion of joint 6’s displacement, also demon-
strates the smoothness of the curve, further reinforcing the advantages of the B-spline
approach. The seamless transition between displacement points, without any abrupt
changes or distortions, showcases the algorithm’s ability to generate highly accurate and
predictable motion trajectories. This is crucial for effective robot trajectory planning.

Furthermore, the B-spline interpolation algorithm’s adaptability and flexibility make
it an ideal choice for handling complex robot motions. Its ability to approximate curves
with high accuracy and minimal computational overhead allows for real-time implementa-
tion, enabling robots to quickly respond to changes in their environment or adjust their
movements on the fly [23]. This capability is essential for robots operating in dynamic and
unpredictable environments, where swift decision-making and precise execution are of
utmost importance.

In conclusion, the displacement diagrams presented in Figure 7, particularly the
zoomed-in views of joints 4 and 6, serve as compelling evidence of the superiority of the
B-spline interpolation algorithm in achieving superior interpolation effects and generating
smooth, predictable motion profiles for robotic systems.

Using the B-spline interpolation algorithm, taking joint 6 as an example, the simula-
tion curves of joint displacement, angular velocity, and angular acceleration are obtained
through MATLAB programming, as shown in Figure 8d–f.
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Figure 8. Comparison of joint 6 motion characteristics using quintic polynomial and quintic B-spline
interpolation techniques. (a–c) depict the angular displacement, velocity, and acceleration profiles,
respectively, using a quintic polynomial interpolation. (d–f) show the same motion characteristics
using a quintic B-spline interpolation, demonstrating smoother and more continuous motion profiles.
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3. Comparison of Trajectory Planning Between Quintic Polynomial
Interpolation Algorithm and Quintic B-Spline Interpolation Algorithm

To accurately capture the dynamics of each robotic joint, MATLAB was used as the
primary tool to compute the crucial kinematic parameters: angular displacement, angular
velocity, and angular acceleration. These computations are essential for understanding the
behavior of the robotic system and ensuring smooth, predictable movements. We utilized
line charts to depict the relationships between these variables and time, providing a clear
and Intuitive representation of the data trends.

We focused on comparing the performance of two interpolation methods: the conven-
tional fifth-degree polynomial interpolation and the more advanced fifth-degree B-spline
interpolation algorithm. To illustrate the differences, we chose joint 6 as a representative
example and plotted its angular displacement, angular velocity, and angular acceleration
over time for both interpolation methods, as shown in Figure 8.

The simulated curve graphs in Figure 8a–c represent the joint displacement, angu-
lar velocity, and angular acceleration of joint 6, which were obtained using MATLAB
programming with a quintic polynomial interpolation algorithm.

Figure 8 presents a detailed comparison of two interpolation techniques, highlighting
notable differences in the motion trajectories’ smoothness and continuity. The quintic B-spline
interpolation algorithm notably provides a smoother and more natural motion profile for joint
6, affecting its angular displacement, velocity, and acceleration. This superior performance is
attributed to the B-spline curves’ inherent smoothness and local control capabilities, allowing
precise motion adjustments and reducing oscillations or discontinuities.

Consequently, we chose the quintic B-spline interpolation algorithm for planning the
spiral arc grinding trajectory, enhancing the robotic system’s precision, reducing vibrations,
and boosting overall performance. With these benefits, B-spline interpolation is ideal for
complex, high-precision tasks, improving the robotic grinding process’s reliability and
efficiency. Regarding the robot’s movement, the end-effector maintains a constant speed,
ensuring consistent time intervals between consecutive nodes. With a radius of 100 mm and
a pitch of 60 mm, we calculated an initial inclination angle of φ0 = 0.0952 and a maximum
step angle of αc ≤ 0.089. The spatial segmentation includes 71 nodes, with a set velocity of
2 mm/s along the z-axis, resulting in a time of 0.4258 s between nodes. Figure 9 shows the
corresponding end position values of the robot.
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Figure 9. Terminal trajectory of the robot. (a) Quintic polynomial interpolation for end-effector
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As shown in Figures 8 and 9, it becomes evident that the adoption of the quintic B-
spline interpolation algorithm for trajectory planning yields significant advantages in terms
of smoothness and stability. Specifically, Figure 8 not only showcases the joint trajectory but
also underscores the remarkable smoothness in the profiles of joint velocity and acceleration
along the trajectory. This absence of any sharp or abrupt changes is crucial as it ensures
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that the robot’s movements are not only precise but also free from any jarring motions that
could potentially damage the mechanical components or compromise the accuracy of the
task being performed.

Furthermore, the visualization in Figure 9 underscores the effectiveness of utilizing
B-spline interpolation for trajectory planning by demonstrating the smooth and continuous
motion path traced by the robot’s end-effector. This seamless progression, devoid of any
jerky movements, underscores the robustness and reliability of the planning method. The
end position values presented in this figure serve as concrete evidence that the trajectory is
not only well defined but also accurately executed, underscoring the high degree of control
and predictability achieved through this approach.

Additionally, the smooth motion trajectories generated by the B-spline interpolation
algorithm are particularly advantageous in applications requiring precise and delicate
manipulation, such as in surgical robotics, where even the slightest deviation or instability
can have significant consequences. By ensuring that the robot moves smoothly and without
any large vibrations, the use of this interpolation technique significantly enhances the
safety and effectiveness of such operations. Thus, we believe that integrating the quintic
B-spline interpolation algorithm into trajectory planning strategies serves as a valuable
tool for achieving smooth and stable robot movements. As demonstrated in Figures 8
and 9, this approach not only ensures precision in the execution of complex trajectories
but also minimizes the risk of mechanical stress and wear, thereby enhancing the overall
performance and longevity of the robotic system.

Moreover, the calculated MATLAB data were used to simulate the planning of a spatial
spiral curve path for a space station polishing operation in RobotStudio 6.08, comparing
three methods: no interpolation, quintic polynomial interpolation, and quintic B-spline
interpolation. Enabling the simulation signal monitor in RobotStudio software, set up the
signal monitor to record the total motor power and cumulative motor energy. Export the
total motor power and cumulative motor energy for each of the three scenarios. Using
Origin as an analytical tool, these data are processed and plotted on line charts as shown
in Figures 10 and 11. Figure 10 compares the energy consumption of three interpolation
methods: no interpolation, quintic polynomial, and quintic B-spline interpolation. It is
observed that no interpolation consumes the least power, highlighting its efficiency de-
spite the potential compromise in motion smoothness. Quintic polynomial interpolation,
while providing smoother trajectories, requires significantly more power due to frequent
dynamic adjustments in motor control. In contrast, quintic B-spline interpolation offers a
balance, showing moderated energy consumption with improved trajectory smoothness.
The data from Figure 11 shows that the energy consumption of the no-interpolation and
quintic B-spline interpolation methods are comparable, highlighting that the advanced
quintic B-spline interpolation achieves enhanced motion smoothness and accuracy without
significantly increasing energy use compared to simpler or no-interpolation methods. This
underscores the quintic B-spline’s advantage of optimizing motion control while main-
taining energy efficiency, making it an ideal choice for precision-demanding applications
where both factors are crucial. In addition, we introduce a concise quantitative compar-
ison for Figures 10 and 11 for clear evaluation: (1) No Interpolation: The total energy
consumption for the no-interpolation method is 646.25275 watt-hours, which reflects the
most energy-efficient approach among the three methods evaluated; (2) Quintic polynomial
interpolation: This method shows the highest energy consumption at 805.16337 watt-hours,
indicating that while it may offer smoother trajectories, it does so at the cost of higher
energy use. (3) Quintic B-spline interpolation: The energy consumption for the quintic
B-spline method is 630.00482 watt-hours, positioning it as slightly more energy-efficient
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than the no-interpolation method, while potentially offering better control and smoothness
in trajectory planning.
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From the comprehensive analysis of the graphical results, it becomes evident that when
tasked with grinding a consistent spatial spiral curve, the quintic polynomial interpolation
algorithm, while effective, exhibits certain limitations. Specifically, it necessitates the
longest execution time, indicating a less efficient trajectory planning process. Furthermore,
the total motor power curve exhibits the most pronounced fluctuations, suggesting that
the robot’s motor system is subjected to increased stress and potentially higher wear
rates. Consequently, this algorithm consumes the greatest amount of total motor energy,
impacting operational costs and potentially reducing the robot’s overall energy efficiency.

In contrast, the quintic B-spline interpolation algorithm emerges as the optimal choice
for this specific application. By consuming the least amount of time for trajectory planning, it
significantly enhances the robot’s productivity and response speed. Moreover, the smooth
variation in the total motor power curve demonstrates the algorithm’s capability to minimize
stress on the motor system, promoting longer component lifespans and reduced maintenance
requirements. This smoothness also translates into reduced energy consumption, making the
robot’s operation more environmentally sustainable and cost-effective.

The planning effect of not using interpolation falls between the two algorithms. While
this approach may suffice for certain applications with less stringent requirements, it fails to
match the efficiency and precision offered by the quintic B-spline interpolation algorithm.

When the trajectory planning program derived from the B-spline interpolation algo-
rithm is integrated into the robot experimental platform, the results are truly remarkable.
The robot seamlessly follows the planned trajectory, executing the grinding task with
stability and precision. Figure 12 is a diagram demonstrating the robot’s operation, which
vividly illustrates the robot’s smooth and vibration-free operation and serves as a testament
to the algorithm’s effectiveness.
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In conclusion, the adoption of the quintic B-spline interpolation algorithm for trajectory
planning of robots engaged in spatial spiral curve grinding offers a trifecta of benefits: a
shortened running time, reduced energy consumption, and the elimination of vibrations.
These advantages not only elevate the robot’s performance but also contribute to a more
sustainable and cost-effective manufacturing process.

While our study focused exclusively on a spiral trajectory, we chose this due to its
complexity and relevance in precision-demanding applications such as 3D printing and
robotic assembly. To substantiate the choice and effectiveness of the interpolation methods
used—quintic polynomial and B-spline—across various trajectory types, we refer to several
studies that have successfully applied these techniques in broader contexts. For instance,
Ref. [24] demonstrates the efficacy of B-spline interpolation in creating smooth and precise
trajectories for industrial robots. Similarly, quintic polynomial interpolation’s applicability
and benefits across different trajectory shapes are well documented [25]. These references
underscore the robustness and versatility of the interpolation methods utilized in our
study, supporting their effectiveness beyond the specific case of spiral trajectories examined.
Although our paper currently presents results for a single trajectory type, the foundational
principles and previous successful applications of these interpolation techniques reinforce
the validity of our approach and findings within a broader context.

4. Conclusions
In this study, the application of quintic B-spline interpolation for spiral arc curve

trajectory planning in robotic systems was demonstrated to effectively enhance motion
smoothness and stability across various robot joints, leading to significantly improved
performance outcomes. Our results validate that this method not only minimizes energy
consumption but also effectively eliminates robot jitter, thereby enhancing the efficiency of
robot trajectory planning. The quintic B-spline approach has proven to be a robust solution
for maintaining high precision in complex tasks without compromising energy efficiency.
Future work will continue to optimize this approach by focusing on reducing execution
time, minimizing wear on robot joints to extend their lifespan, and enhancing obstacle
avoidance capabilities. Additionally, integrating advanced sensing technologies such as
vision systems and force sensors will enable dynamic adjustments to the trajectory in
response to real-time environmental feedback, further ensuring task success under variable
conditions. This comprehensive approach promises to significantly advance the field of
robotic trajectory planning, particularly for precision-demanding tasks like robot grinding.
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