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Abstract: Unmanned aerial vehicle (UAV) vision-based sensing has become an emerging
technology for structural health monitoring (SHM) and post-disaster damage assessment
of civil infrastructure. This article proposes a framework for monitoring structural displace-
ment under earthquakes by reprojecting image points obtained courtesy of UAV-captured
videos to the 3-D world space based on the world-to-image point correspondences. To
identify optimal features in the UAV imagery, geo-reference targets with various patterns
were installed on a test building specimen, which was then subjected to earthquake shaking.
A feature point tracking-based algorithm for square checkerboard patterns and a Hough
Transform-based algorithm for concentric circular patterns are developed to ensure reli-
able detection and tracking of image features. Photogrammetry techniques are applied
to reconstruct the 3-D world points and extract structural displacements. The proposed
methodology is validated by monitoring the displacements of a full-scale 6-story mass
timber building during a series of shake table tests. Reasonable accuracy is achieved
in that the overall root-mean-square errors of the tracking results are at the millimeter
level compared to ground truth measurements from analog sensors. Insights on optimal
features for monitoring structural dynamic response are discussed based on statistical
analysis of the error characteristics for the various reference target patterns used to track
the structural displacements.

Keywords: unmanned aerial vehicle (UAV); vision-based sensing; earthquake; target
tracking; world point reconstruction; structural displacement monitoring

1. Introduction
Vision-based sensing has emerged as a cost-effective and non-destructive evaluation

technique, capable of supplementing and advancing conventional data collection practices
for the monitoring and life-cycle health assessment of civil infrastructure. Image data
collected using vision-based sensing systems can be interpreted by image processing and
computer vision algorithms. These interpretations can provide insights to support struc-
tural risk assessment during construction [1–3], damage detection during operation [4–6],
and structural safety evaluation after disasters [7–9]. Similarly, evaluation of the state of
civil infrastructure is also important for structural assessments. Dynamic loads due to
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earthquakes and other natural hazards pose a significant challenge to the safety of civil
infrastructure. To evaluate post-earthquake structural safety and functional recovery, sig-
nificant efforts have been spent on earthquake-induced structural displacement tracking
using images. In conventional practice, stationary cameras, such as surveillance cameras,
have been used to monitor structural motion during earthquakes [10]. With stationary
cameras, structural motions including displacements, accelerations, and inter-story drift
ratios, can be extracted from images or a series of images (videos) recorded by a regular
red-green-blue (RGB) camera or other vision-based sensors [11].

While the conventional practice of using stationary cameras has proven to be useful
for displacement tracking of infrastructures, the emergence of commercial unmanned aerial
vehicles (UAVs) equipped with on-board cameras offers significantly enhanced flexibility
and efficiency for image data collection. These aerial platforms are especially advantageous
when it is inconvenient or unsafe to obtain the required camera view from ground-based
(stationary) cameras (e.g., the roof of the building [12–14]). In addition, the motions of a
structure in all six degree-of-freedoms (DoFs) can be extracted by combining synchronized
video data recorded by multiple UAV platforms obtained from locations surrounding the
structure [14].

Although the promise of UAV-based methods is recognized, the accuracy and robust-
ness of UAV vision-based methods to monitor structural displacements are significantly
affected by (a) the correction of UAV drift-induced camera movement and (b) the robustness
of detection for representative image features for tracked objects. Unlike ground-based
cameras, which can be assumed to be stationary, the movement of on-board cameras
caused by UAV drift cannot be neglected for UAV vision-based approaches. Therefore,
multiple methods have been deployed in practice for camera pose recovery to avoid possi-
ble image misalignment. Conventional non-learning-based methods include homography
transformation [12,15,16], direct linear transformation (DLT) [17], and embedded inertial
measuring unit (IMU) measurement [18]. Learning-based methods are also applied in
recent studies. For example, Zhang et al. [19] proposed a two-stage correction method to
eliminate UAV drift-induced measurement error using stationary points and variational
mode decomposition (VMD).

To enhance the reliable detection and tracking of objects, both reference target-based
and target-free methods have been utilized in UAV vision-based monitoring to improve the
tracking accuracy of structural displacements. Promising target-free approaches include
the work of Khuc et al. [20] who applied scale invariant feature transform (SIFT) and a
subsequent Hough Transform for detection and localization of feature points in circular
steel plate structures. Wang et al. [12] used Canny edge detection followed by linear
regression for straight-line feature detection on the roof of a full-scale six-story cold-formed
steel building. Researchers have noted that geo-reference targets on the periphery of the
structure could significantly enhance the accuracy and robustness of the UAV vision-based
tracking of structural displacements. Thus, different algorithms have been developed to
detect and track reference targets with various geometric patterns. Amongst the most
common target patterns, black-and-white checkerboards are widely adopted by researchers.
In a recent study, Wang et al. [13] developed a frame-by-frame analysis framework using a
sub-pixel edge detector followed by edge point clustering and line regression to localize the
target image point with sub-pixel accuracy. For applications of other target patterns, image
binarization can be applied for patterns with white dots on the black background [21,22].
In addition, color-pass filtering has shown robustness in detecting patterns with specific
colors [17].
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Although research has emerged to advance the use of UAV vision-based structural
displacement monitoring during earthquakes, prior studies have at least one of the follow-
ing limitations:

• The specimen used for monitoring structural displacements was a reduced-scale struc-
tural model rather than a full-scale structure. Compared to a reduced-scale structural
model, monitoring the responses of a full-scale structure requires a larger camera-to-
scene distance, which may compromise the resolution of the UAV-captured videos.

• The study was conducted in a controlled indoor environment, which is different from
actual field applications. Factors such as weather-induced UAV drift and additional
image noise caused by non-uniform lighting are therefore not able to be considered in
the study.

• Only one or two types of features and reference target patterns were selected for each
study. There is no direct comparison of the accuracy or robustness of different features
or patterns when conducting structural displacement monitoring.

To address these limitations and to advance the application of UAV vision-based
sensing, a framework is proposed for monitoring structural displacements occurring dur-
ing earthquakes by reprojecting the image points to the 3-D world space based on the
world-to-image point correspondences. The tracked structural displacements can provide
valuable information in post-disaster safety evaluation and functional recovery analysis
of a structure. To provide robust features in the UAV imagery, geo-reference targets with
multiple pattern types and colors are installed on a full-scale building specimen, along with
the stationary background region. To ensure reliable detection and tracking of multiple
image features, a feature point tracking-based algorithm for square checkerboard patterns
and a Hough Transform-based algorithm for concentric circular patterns are implemented.
Photogrammetry techniques are applied to reconstruct the 3-D world point and extract the
structural displacements.

Shake table testing, which has been widely adopted in earthquake engineering to
support investigations of structural response by physically simulating ground motion
excitations, provides a unique opportunity to explore and evaluate vision-based methods
for structural displacement monitoring under earthquakes. In this article, the proposed
methodology is validated by monitoring the displacements of a full-scale 6-story mass
timber building during a series of shake table test programs conducted at the 6-DoF Large
High-Performance Outdoor Shake Table (LHPOST6) [23] at UC San Diego. The building
specimen was subjected to a suite of real earthquake motion inputs at its base to emulate
a field scenario, with traditional analog sensors deployed on the specimen to measure its
dynamic responses. Reasonable accuracy is achieved when implementing the proposed
analysis method to capture the building specimen’s global behavior, with the overall root-
mean-square errors (RMSEs) of the tracking results at the millimeter level compared with
ground truth measurements from analog sensors. This study concludes by offering insights
on the optimal features for earthquake-induced structural displacement monitoring based
on statistical analysis of the error characteristics considering the various reference target
patterns used to track the structural displacements.

2. UAV Video Image Collection Program
The proposed UAV vision-based earthquake-induced structural displacement mon-

itoring method and target detection and tracking algorithms applied in the framework,
are developed and validated using UAV imagery and other measurements (point cloud
model from photogrammetry, analog sensor data) collected during Phase II of the Natural
Hazards Engineering Research Infrastructure (NHERI) Converging Design (CD) Project
conducted at the LHPOST6 [24–26]. In this section, an overview of the shake table test
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program for Phase II of NHERI Converging Design is presented (Section 2.1), followed by
the introduction of the adopted UAV vision-based monitoring plan and reference targets
layout (Section 2.2).

2.1. Case Study: NHERI Converging Design (Phase II) Shake Table Test Program

To prototype seismic design solutions for mass timber buildings, a series of shake
table tests were performed on a full-scale six-story mass-timber building with a seismic
lateral-force resisting system using post-tensioned (PT) mass timber rocking walls (Figure 1).
The 6-story building was deconstructed and reconstructed from a previous 10-story mass
timber building (referred to as the NHERI Tallwood Building [27]). The 6-story mass timber
building had a height of 20.73 m and a floor plan of 10.52 m × 10.46 m. The building used
a self-centering seismic lateral-force resisting system composed of cross-laminated timber
(CLT) rocking walls in the east-west direction and mass plywood panel (MPP) rocking
walls in the north-south direction. To dissipate seismic input energy, the CD Phase II test
series incorporated buckling-restrained boundary elements (BRBs) installed at the bottom
of the east and west MPP rocking walls. In all phases (10- and 6-story configurations), an
operable prefabricated stair tower was designed into the building [28].
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Figure 1. The 6-story mass timber building specimen for the shake table test program of NHERI
Converging Design Project (Phase II) at the LHPOST6.

Instrumentation of the test building specimen included 602 channels of analog sensors
to record various dynamic responses during shake table testing. All analog measurements
were synchronized at a sampling rate of 256 Hz. In the present study, the motion of the roof
was recorded using 22 uniaxial micro-electro-mechanical system (MEMS) accelerometers,
which served as the ground truth measurements to evaluate the accuracy of the proposed
UAV vision-based method. Detailed processing steps for the ground truth measurements
and a comparison plan are discussed in Section 5.1.

A total of 18 tests were conducted during the CD phase II test series, corresponding
to 18 input ground motions identified with motion identification 1 through 18, i.e. MID
1-18. Among these tests, nine were captured by UAV imagery. Four earthquake events
are used to generate the earthquake motion inputs used for these nine tests, namely the
1994 Northridge Earthquake, the 2004 Niigata Earthquake, the 2010 Ferndale Earthquake,
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and the 2010 Maule Earthquake. These earthquake motion inputs are scaled to different
intensity levels, where each intensity level corresponds to a specific percentage of the Risk-
Targeted Maximum Considered Earthquake (MCER) that was referenced for the design of
the building specimen based on the approach described in Section 21.2.1 in ASCE 7-22 [29].
The MCER refers to the earthquake that leads to a 1% probability of structural collapse
within a 50-year period [29]. Table 1 shows detailed information of the earthquake motion
inputs used in the present UAV-based analysis, including input directions, intensity levels,
and achieved peak input accelerations (PIAs), which is a subset of the earthquake motion
inputs used in the CD Phase II shake table test program.

Table 1. Earthquake motion inputs used within the present UAV-based analysis. For additional
details regarding the test protocol, scaling, and resulting achieved motions, see McBain et al. [25].

Earthquake MID 1 Input
Direction

Intensity
Level

Achieved Peak Input Acceleration (PIA)

X [g] Y [g] Z [g]

1994 Northridge, USA (Crustal 2)
Station: Sun Valley—Roscoe Blvd

7
XYZ

67% MCER
3 0.38 0.52 0.45

8 100% MCER 0.59 0.83 0.73
18 110% MCER 0.65 0.92 0.75

2010 Ferndale, USA (Intraslab)
Station: 89486

12
XYZ

67% MCER 0.38 0.41 0.75
15 100% MCER 0.59 0.63 1.16

2010 Maule, Chile (Interface)
Station: CSCH

13
XY

67% MCER 0.42 0.34 0.02
16 100% MCER 0.64 0.52 0.03

2004 Niigata, Japan (Crustal)
Station: NIGH11

14
XYZ

68.9% MCER 0.58 0.40 0.30
17 100% MCER 0.79 0.55 0.45

1 MID: Motion identification. 2 The content in parentheses represents the source type of each earthquake. 3 MCER:
Risk-Targeted Maximum Considered Earthquake.

The measured peak responses of the building specimen under the nine monitored
tests are summarized in Table 2. It is noted that structural responses (accelerations and
displacements) discussed in this article are the absolute (total) structural responses, which
include the shake table movement. For brevity, the term ‘absolute’ is omitted in subse-
quent presentation. In addition, the peak responses presented in Table 2 are the peak
absolute valued responses in X or Y direction (regardless of +/− in the given direction)
calculated based on the measurements from the MEMS accelerometers near the estimated
location of the center of mass of the floor plan at roof level. Roof displacement is the
total roof movement determined by twice integrating the filtered acceleration time se-
ries (details on the displacement calculation are presented in Section 5.1.1). During the
nine tests considered, the largest peak roof acceleration (1.32 g) and peak roof displace-
ment (36.28 cm) were both in the Y-direction during MID 18. Although not presented
herein, the modal properties of the building are determined using the Frequency Response
Function (FRF) [30], as this serves to characterize the transfer function between the in-
put signal on the shake table platen and the output signal on the test specimen (roof
level). For this specimen, the fundamental periods for the first three modes of the building
are determined from the peaks in the FRF as 1.14 s (X-flexural), 0.95 s (Y-flexural), and
0.71 s (torsional).
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Table 2. Summary of structural responses of the building for the tests captured by UAV imagery.

MID Intensity Level
Peak Roof Acceleration 1,2 [g] Peak Roof Displacement 2 [cm]

X Y X Y

7 67% MCER 0.64 0.89 13.94 22.36
8 100% MCER 0.89 1.10 19.72 33.71

12 67% MCER 0.74 0.83 20.84 15.99
13 67% MCER 0.58 0.85 9.26 17.14
14 68.9% MCER 0.77 1.07 19.05 15.99
15 100% MCER 0.91 1.11 29.16 24.19
16 100% MCER 0.72 1.16 11.61 22.64
17 100% MCER 1.01 0.99 28.16 24.46
18 110% MCER 0.91 1.32 24.46 36.28

1 Peak responses are the peak absolute valued response in X or Y direction (regardless of +/− in the given
direction). 2 Both roof acceleration and displacement responses are absolute (total) values, i.e., including the shake
table movement.

2.2. UAV Vison-Based Monitoring Plan and Reference Target Layout

The structural motion of the 6-story mass timber building was captured by monocular
cameras on three off-the-shelf commercial UAV platforms in three different views aimed
at capturing structural motions in all DoFs. Characteristics of these UAV platforms are
summarized in Table 3. The present article focuses on analyzing the plan-view videos,
where the DJI Matrice 300 UAV was consistently utilized to capture time-series imagery
with a frame rate of 59.94 frames per second (fps). An example camera view of the plan-
view videos (the first video frame from MID 15 test video) with a triple zoom-in view
for reference targets with various patterns is shown in Figure 2. For all plan-view videos,
the UAV was hovering at a position approximately 55 m above the shake table platen
(approximately 35 m above the roof of the building specimen) to maintain a similar pixel
resolution for all the videos.

Table 3. Characteristics of UAV platforms used for shake table test imagery [31].

Camera View UAV Platform Unfolded Size
[L × W × H-mm]

Battery Life
[min]

Frame Rate
[fps] Resolution

Plan view
(XY view)
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Figure 2. Example camera view of the plan-view videos (the first video frame from MID 15 test video)
and zoom-in view (3×) for reference targets with various patterns.

In the UAV vision-based monitoring plan, reference targets were installed on the
ground, safety towers, and the building specimen to provide robust image features for
detection and tracking. Targets on the ground and safety towers served as stationary
features, providing reference points for camera pose recovery and facilitating identification
of 3-D world coordinates extracted from the high-resolution point cloud model obtained
from photogrammetry (discussed in Section 4). In total, 10 stationary targets (8 on the
ground and 2 on the top of safety towers) and 28 moving targets (on the roof panel) were
used in the present study. It is noted that the targets installed on the top of the rocking
walls (within the yellow dash rectangles in Figure 2) are not considered since there was
an elevation difference between the roof panel and the top of the rocking wall; thus, the
pixel resolutions and monitored motions of these targets were different from the targets
installed on the roof panel. For the installation of targets, either high-strength Velcro tape or
high-tack adhesive was applied between each target and its attachment to ensure a reliable
installation. Targets were securely attached to the building specimen, ensuring movement
of the targets within the plane of the attachment.

Notably, advancing prior work [13], a wide range of reference target patterns were
investigated to evaluate the effectiveness of the proposed target detection and tracking
algorithm on different patterns and the robustness of different target patterns. Specifically,
three patterns were adopted for stationary targets, while seven patterns were adopted
for moving targets. A summary of the reference targets is presented in Table 4, with
their patterns and dimensions described in Figure 3. The seven patterns adopted for the
moving targets on the roof encompass various image features for detection and track-
ing, considering (a) the number of tiles (two, four, and five), (b) color (black-and-white
and red-and-white), (c) shape (square and concentric circles), and (d) dimension. A sta-
tistical analysis is conducted to investigate the optimal patterns (features) for structural
displacement monitoring under earthquakes by comparing the error characteristics of the
displacements extracted from the proposed methodology for each of the moving target
patterns. A detailed discussion of this statistical analysis is presented in Section 6.
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Table 4. Summary of reference targets used in this study.

Reference Target Target Pattern Type Target Dimension
[cm × cm] Number of Targets

Stationary Targets
(10 targets)

Type A 1 45.7 × 45.7 3
Type B 45.7 × 45.7 5
Type C 20 × 20 2

Moving Targets
(28 targets)

Type 1 20 × 20 4
Type 2 20 × 20 5
Type 3 20 × 20 7

Type 3R 20 × 20 4
Type 3M 15 × 15 2
Type 3S 10 × 10 2
Type 4 20 × 20 4

1 Type A and B targets were installed on the ground, and Type C targets were installed on the top of the
safety towers.
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3. Target Detection and Tracking Algorithm
The key approach adopted in the proposed UAV vision-based earthquake-induced

structural displacement monitoring framework is to reproject the image points to the 3-D
world space based on the world-to-image point correspondence. As such, reliable tracking
of certain image feature points is crucial to achieve reasonable accuracy and consistency
over all image frames. This section introduces two methods for tracking the movement
of the image feature points in the image frame coordinates, namely the feature points
tracking-based algorithm for square checkerboard patterns (Section 3.1) and the Hough
Transform-based algorithm for concentric circular patterns (Section 3.2).

For both methods presented in this section, there are three initialization steps before
applying the algorithms for target detection and tracking:

• Lens distortion correction is applied to each video frame to obtain distortion-free
image frames (see Section 4.2).
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• Coarse bounding boxes representing the initial regions of interest (ROIs) of each target
are manually defined in the reference video frame. The reference video frame is the
first frame of each test video, which corresponds to a state at 5 to 10 s before the testing
(and hence movement of the specimen) initiates. The pixel dimension of the coarse
bounding box in the image frame is 51 × 51 pixels.

• The colored video frames are converted into grayscale images since black-to-white
contrast is easier to identify using a single value threshold compared to a 3-value
threshold required with all RGB channels in a colored image. Moreover, grayscale
images are of reduced size; thus, the computational cost of the algorithm is reduced.

3.1. Feature Points Tracking-Based Algorithm for Square Checkerboard Patterns

The square checkerboard pattern consists of regularly arranged squares, forming a
highly symmetric two-dimensional pattern. The orthogonal geometric structure ensures
that each corner point in the pattern has a well-defined position. A square checkerboard
pattern usually contains multiple corner points, providing abundant feature points for
detection and tracking. A feature points tracking-based algorithm is developed to track
the corner points (feature points) and to determine the geometric center in each video
frame from the pre-defined initial ROI in the reference video frame for square checkerboard
patterns. Following detection of the corner points in the reference video frame, a Kanade-
Lucas-Tomasi (KLT) feature tracker [32,33] is initialized with the detected feature points to
track the movements of these points. The KLT algorithm aims to minimize computational
intensity by directing the search position, as guided by the initial corner points detected for
a particular pattern.

All patterns except Type 4 for both stationary and moving targets are square checker-
board patterns. Detection of the corner points based on the pre-defined ROI is successfully
implemented based on the four steps described in Figure 4, where a Type 2 target is selected
for illustration. Steps 1 to 3 aim to generate a refined ROI to filter out the background noise
in the pre-defined ROI. Corner points detection is performed within this refined ROI in
Step 4. The details of these analysis steps are presented as follows:

• Step-1: The grayscale initial ROI image (Figure 4a) is thresholded into a binary image
(Figure 4b) using the Otsu’s method [34]. Pixels representing white color in the pattern
are defined as foreground pixels. To remove the noise in the background, connected
components that have fewer than 10 pixels are removed in the binary image.

• Step-2: Edge detection with pixel level accuracy (Figure 4c) is performed on the binary
image using the Sobel operator [35]. Although the Canny edge detection method [36]
or other sub-pixel edge detection methods [37] may provide better localization of the
edge points, the edge detection using the Sobel operator is sufficient for the refined
ROI generation in step 3 with a lower computational cost, since this step only aims
to generate a refined ROI to filter out the background noise from the initial ROI. In
this step, both the edge points representing the edge of the squares (black against
white or red against white) and the boundary of the target (white, black, or red against
background) are extracted.

• Step-3: The boundary point set of all edge points is extracted to form the bounding
box of the target, representing the exact target region with pixel level accuracy (blue
solid lines in Figure 4d). The approximate center of this bounding box is calculated as
the mean of the boundary point set. A scaling operation expanding the bounding box
by a factor of 1.1 relative to its approximate center is applied to obtain the refined ROI
(red dash lines in Figure 4d), ensuring comprehensive inclusion of all feature points
within the refined ROI.
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Figure 4. Procedure to detect corner points and extract the target center in the first video frame for
square checkerboard patterns (example shown for a Type 2 target).

• Step-4: The Harris-Stephens feature detection algorithm with quadratic interpola-
tion [38,39] is applied to detect the corner points within the refined ROI in the grayscale
image (red dash lines in Figure 4e). The Harris-Stephens feature detection algorithm
runs a 3 × 3 window over the refined ROI in the grayscale image and computes the
spatial gradient matrix M at each pixel (x, y) in the refined ROI [38]:

M(x, y) =

[
∑x ∑y Ix(x, y)Ix(x, y) ∑x ∑y Ix(x, y)Iy(x, y)
∑x ∑y Ix(x, y)Iy(x, y) ∑x ∑y Iy(x, y)Iy(x, y)

]
(1)

where Ix(x, y) and Iy(x, y) are the intensity gradients with respect to x and y (pixel coordi-
nates) at location (x, y) of the grayscale image. Then, a response function Γ(x, y) is defined
at each pixel based on its spatial gradient matrix [M] [38]:

Γ(x, y) = det(M(x, y))− 0.04(Tr(M(x, y)))2 (2)

Nonmaximal suppression with a 3 × 3 window is applied to the calculated response func-
tion values to avoid double detection of the corner points. It is noted that the conventional
Harris-Stephens feature detection algorithm can only achieve pixel level detection. There-
fore, a quadratic interpolation is applied to obtain the sub-pixel coordinates (u, v) of the
corner points [39]: [

u
v

]
=

[
u0

v0

]
−

[
Ixx Ixy

Ixy Iyy

]−1[
Ix

Iy

]
(3)

where (u0, v0) are the coordinates of corner points with pixel level accuracy from the
conventional Harris-Stephens feature detection; Ix and Iy are the spatial gradients calculated
at (u0, v0); and Ixx, Iyy, and Ixy are the derivatives of the spatial gradients calculated at (u0,
v0). The 16 detected corner points with sub-pixel level accuracy for a Type 2 target are
plotted with the yellow crosses in Figure 4e. The geometric center of the target in the image
frame, which is plotted as the red cross in Figure 4e, is determined by the mean coordinates
of all detected corner points.

Given the sub-pixel coordinates of the detected corner points in the reference video
frame, a Kanade-Lucas-Tomasi (KLT) feature tracker [32,33] is initialized with these corner
points to track their movements in the remaining video frames. With the tracked corner
points in each video frame, the geometric center of the target is computed. The algorithm
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can then return to a time series of the located geometric center of each target with sub-pixel
level accuracy.

Sample corner point detection and target center extraction results for various square
checkerboard patterns are shown in Figure 5. Good visual alignments are observed for
both the bounding box extraction (blue boxes) and the corner points detection (yellow
crosses). It is worth mentioning that the number of extracted corner points is different for
each pattern. Type 1 (5-tile) and Type 2 (4-tile) targets have 16 corner points, while the other
2-tile targets have only 9 corner points. During the implementation, some unidentified
points are noted for Type 3R and Type 3S targets. As a red-and-white pattern, Type 3R has
less contrast between the red square pattern and background after converting the colored
image into grayscale. Therefore, detection of the two corner points between the red squares
and the background becomes less reliable. For the Type 3S target, the side length of the
black square in the pattern is 5 cm, corresponding to only four to five pixels in the video
frame. This small size reduces the values in the spatial gradient matrix of the corner point
because of the lower contrast between the pattern region and background, leading to a
reduction in the value of the response function Γ(x, y) for the corner point. As a result, the
proposed algorithm provides less reliable detection for the two corner points between the
black squares and the background. Since these unreliable detections are associated with
small response function values, only the corner points corresponding to the seven largest
response function values after nonmaximal suppression are selected as the detected corner
points for Type 3R and Type 3S targets. Two corner points between the colored square and
the background are excluded in the detection. This operation ensures the robustness of
each detected corner point.
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3.2. Hough Transform-Based Algorithm for Concentric Circular Pattern Targets

Different from square checkerboard patterns, the concentric circular pattern does not
have any corner-like feature points. Therefore, methods based on the image spatial gradi-
ent, including the Harris-Stephens feature detection algorithm and KLT feature tracking
algorithm, are no longer suitable for identifying and tracking concentric circular patterns.
Rather, the Hough Transform [40] is a common technique for circular shape detection
and localization. In 2-D space, a circle with a center point at (a, b) and radius of r can be
represented as follows:

(x − a)2 + (y − b)2 = r2 (4)

If a point (x0, y0) is given to be on a circle with unknown center point (a, b) and
unknown radius r, the point can be mapped to the parameter space (a, b, r) using the
following equations:

a = x0 − r · cos(θ) (5)

b = y0 − r · sin(θ) (6)

where θ is an angle ranging from 0 to 2π. For each r value within a given radius range, a
series of candidate (a, b) values can be computed as θ varies from 0 to 2π. Therefore, a series
of (a, b, r) parameter sets can be obtained. A 3-D accumulator array A(a, b, r) is developed to
record the counts of each parameter set for all points (x0, y0) on the circle. Finally, the peak
value in the accumulator A(a, b, r) corresponds to the most likely circle parameters (a, b, r).

A Hough Transform-based algorithm is proposed to determine the geometric center of
the concentric circular pattern in each video frame based on the pre-defined initial ROI (in
the reference video frame). In this study, the Type 4 target is a concentric circular pattern
with three circles. Detection of the circular shapes and their center points is implemented
based on the following steps:

• Step-1: The Canny edge detection [36] is performed on the initial ROI grayscale image
to obtain sub-pixel coordinates for the edge points of circles.

• Step-2: The Hough Transform is performed in the ROI grayscale image. Because there
are three circles in each target, a heuristic clustering algorithm is applied to cluster all
circle parameters (a, b, r) into three clusters based on the radius value r. Each cluster
center represents the center point and radius of each circle.

• Step-3: The geometric distance between the center point of the inner circle and the
mean of the center points of the other two circles is determined. If the distance is
greater than one pixel, the center point of the inner circle will be suppressed for
the calculation of the target geometric center. This step aims to avoid the potential
inaccurate detection of circles with small diameters. During the implementation, some
unstable detections are observed for the center point of the inner circle in the pattern.
The diameter of the inner circle is 6 cm, corresponding to only five to six pixels in
the video frame. For circles with a small radius, the number of edge points on the
circumference is relatively small. Since the Hough Transform relies on accumulation
of the parameter set from edge points, the low number of edge points results in fewer
votes in the accumulator. Therefore, the inner circle is more difficult to detect and
localize than the other two circles.

• Step-4: The geometric center of the target (u, v) is computed as the mean of center
points of all the unsuppressed circles. An example of circle detection and target center
extraction for Type 4 target is shown in Figure 6.

• Step-5: Repeat steps 1 through 4 for all video frames. In each video frame, the ROI is
updated as a 51 × 51 pixel-sized region with the center point (u, v) as the target center
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detected in the previous video frame. The algorithm finally returns a time series of the
geometric center of the target with sub-pixel level accuracy.
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Figure 7 shows an example target detection result from the first distortion-corrected
plan-view video frame in MID 15. With the feature points tracking-based algorithm for
sqaure checkerboard patterns and the Hough Transform-based algorithm for concentric
circular patterns, 10 stationary targets and 28 moving targets are successfully tracked for
all test videos. The range of pixel resolution is 14–16 mm/pixel for stationary targets on the
ground, 9.5–11 mm/pixel for stationary targets on the safety tower, and 8–10.5 mm/pixel
for moving targets on the roof panel.

Algorithms 2025, 18, x FOR PEER REVIEW 13 of 29 
 

detected in the previous video frame. The algorithm finally returns a time series of 
the geometric center of the target with sub-pixel level accuracy. 

Figure 7 shows an example target detection result from the first distortion-corrected 
plan-view video frame in MID 15. With the feature points tracking-based algorithm for 
sqaure checkerboard patterns and the Hough Transform-based algorithm for concentric 
circular patterns, 10 stationary targets and 28 moving targets are successfully tracked for 
all test videos. The range of pixel resolution is 14–16 mm/pixel for stationary targets on 
the ground, 9.5–11 mm/pixel for stationary targets on the safety tower, and 8–10.5 
mm/pixel for moving targets on the roof panel. 

 

Figure 6. Detected circles with center points by Hough Transform and the final target center for the 
concentric circular pattern (Type 4 pattern). 

 

Figure 7. Target detection results in the first video frame (distortion corrected) from plan-view video 
of MID 15. Note that each cross represents the geometric center of the reference target. 

  

Figure 7. Target detection results in the first video frame (distortion corrected) from plan-view video
of MID 15. Note that each cross represents the geometric center of the reference target.



Algorithms 2025, 18, 66 14 of 28

4. Three-Dimensional World Point Reconstruction and Structural
Displacement Extraction

A flowchart for the proposed UAV vision-based earthquake-induced structural dis-
placement monitoring framework is shown in Figure 8. Given the sub-pixel coordinates of
the reference targets in each video frame from the target detection and tracking algorithms
described in Section 3, the 3-D world points are reconstructed based on the following
camera projection equation [41]:

s
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where s is an arbitrary scale factor; [u v 1]T is the homogeneous representation of the
image point coordinates; [X Y Z 1]T is the homogeneous representation of the world
point coordinates; K is the camera intrinsic matrix (fx and fy are the focal lengths of the
camera, u0 and v0 are the principal point coordinates in the image plane, and γ is the image
skew parameter); and [R|t] is the camera extrinsic matrix (R is a 3 × 3 orthogonal matrix
representing the camera orientation, and t is a 3 × 1 vector representing the camera position
in world coordinates).
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Figure 8. Framework adopted herein for UAV vision-based earthquake-induced structural displace-
ment monitoring.

To solve for the world coordinates of the reference targets, camera calibration is per-
formed first to obtain the camera intrinsics K (Section 4.1). The camera intrinsic parameters
are also used to remove the lens distortion effects from the raw video frames. Then, camera
pose recovery is applied to estimate the camera extrinsic matrix [R|t] (Section 4.2). The 3-D
world points are finally calculated by solving Equation (7) (Section 4.3).

4.1. Camera Calibration and Lens Distortion Correction

Camera lenses, especially wide-angle lenses, introduce radial and tangential distor-
tions in images. Radial distortion causes straight lines to appear as curved in the image,
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because light rays passing through the lens refract differently based on their distance from
the center of the lens. Tangential distortion occurs when the lens is not perfectly parallel to
the image plane, causing the image to be slightly skewed. These distortions lead to inac-
curate position and size of objects in the image. Lens distortion correction using accurate
camera intrinsics is required to remove this lens distortion effect, making the image more
representative of the real scene.

Camera intrinsics can be obtained during the camera calibration process. In the
proposed method, which is different from the checkerboard calibration procedure [42],
camera intrinsics are estimated from a self-calibration process as part of the bundle ad-
justment in the structure-from-motion reconstruction using Agisoft Metashape 2.0.2 [43].
Self-calibration of a camera does not depend on any known reference objects. Instead,
self-calibration relies solely on multiple images taken by the camera. Self-calibration uses
feature points from the images captured from multiple viewpoints, combined with geomet-
ric constraints to estimate the camera intrinsics. For more details on this camera calibration
procedure refer to Fraser [44] and Westoby et al. [45]. Given accurate camera intrinsics, lens
distortions are corrected based on the procedures illustrated in Bouguet [42].

4.2. Camera Pose Recovery

The 6-DoF camera pose is defined by the camera extrinsic matrix [R|t], where R is
a 3 × 3 orthogonal matrix representing the camera orientation and t is a 3 × 1 vector
representing the camera position in world coordinates. In the proposed method, the camera
pose in each video frame is recovered based on the Perspective-n-Point (PnP) method
followed by the Levenberg-Marquardt algorithm.

The Perspective-n-Point (PnP) method estimates the pose of a calibrated camera from
n 3-D world points with known positions and their corresponding 2-D image points.
Although the PnP method requires a minimum of only four non-coplanar world-to-image
point correspondences (three non-colinear correspondences if the points are coplanar) for
obtaining the unique camera pose, more point correspondences can enhance the robustness
and accuracy of the estimated camera pose due to the measurement noise in both world
points and image points. The proposed method adopts an accurate and scalable solution
to the PnP problem (ASPnP) [46] to estimate the camera-pose changes over time. The
image and world point coordinates of 10 stationary reference targets (8 targets on the
ground and 2 targets on the safety towers, which are identified as the blue crosses in
Figure 7) are used as the world-to-image correspondences in each video frame. The image
point coordinates are obtained as the target detection and tracking algorithm described
in Section 3. The 3-D world point coordinates are extracted from a geo-referenced point
cloud model of the building specimen and the background region of the test scene at the
LHPOST6 (Figure 9). The point cloud model is generated based on the photogrammetry
results from the same UAV and camera combination for the plan-view test video capture
(i.e., the DJI Matrice 300 UAV with the DJI Zenmuse P1 camera) using a preprogrammed
flight plan. The photogrammetry flight pattern is determined case by case in practice based
on the complexity of the scene [47,48]. For the present study, the image acquisition consists
of 209 images in a lawnmower pattern using nadir imagery and oblique imagery (40 degrees
off the vertical) with a target 75% overlap and sidelap at the roof level. Photogrammetric
processing is performed using Agisoft Metashape 2.0.2 [43]. The resulting point cloud
consists of around 480 million points with a nominal point spacing of 6 mm.
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Figure 9. Point cloud model of the test scene at the LHPOST6 from photogrammetry and illustration
of the 3-D world coordinates (the yellow dot represents the center of the shake table platen, which is
the origin of the world coordinates, and the blue lines represent the XYZ coordinate axes). Note that
Z = 0 is defined as the top of the shake table platen.

As a non-iterative method for camera pose recovery, ASPnP obtains the optimal camera
pose by solving a polynomial system derived from the first-order optimality condition for
the image-to-world reprojection error [46]. However, non-iterative PnP solutions can still be
improved by some iterative methods such as the Gauss-Newton algorithm or the Levenberg-
Marquardt algorithm [49,50]. In the proposed method, the Levenberg-Marquardt (LM)
algorithm [51,52] initialized with the ASPnP solution is applied as a nonlinear optimization
process for the camera pose. The 6-DoF camera pose can be accurately estimated based on
this ASPnP-LM process. Figure 10 shows the camera translational motion trajectory of the
onboard camera for plan-view video capture during MID 15. According to the estimated
camera motion trajectory, the UAV for plan-view video capture hovered at around 55 m
above the shake table platen. The UAV had a drift of less than 0.2 m in both horizontal
directions and a drift of less than 0.1 m in vertical direction.
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4.3. Three-Dimentional World Point Reconstruction and Structural Displacement Extraction

Given the reference target image coordinates [u, v]T, camera intrinsic parameters K,
and camera extrinsic parameters [R|t], the 3-D world point of the reference target can be
reconstructed based on the camera projection equation in Equation (7). The test video is
captured by a monocular camera mounted on the UAV. Therefore, scale ambiguity leads
to four unknown variables (world coordinates XYZ and the scale factor s) in Equation (7).
However, one may assume that the Z-coordinates of all moving targets remained constant
as Z0 during the test (i.e., zero vertical displacements for the targets). This assumption is
considered reasonable in the scope of this study because the displacements of the building
specimen in the vertical direction are much smaller than the displacements in the lateral
direction due to the extremely large self-weight of the structure. In addition, the change
in image point coordinates caused by the out-of-plane motion relative to the camera view
plane is small because of the large camera-to-scene distance (around 35 m between camera
and roof level) [53]. Based on this assumption, Equation (7) can be expanded into the
following form:

s

u
v
1

 = K

R

 X
Y
Z0

+ t

 (8)

To solve the world coordinates X and Y, Equation (8) is re-arranged as follows: X
Y
Z0

 = sR−1K−1

u
v
1

− R−1t (9)

The scale factor s can be calculated by solving the equation defined by the 3rd row of
Equation (9), where the scale factor is the only unknown variable. Then, world coordinates
X and Y can be calculated by back-substituting the scale factor into the first two rows of
Equation (9).

Based on the 3-D world point reconstruction procedures above, the world coordinates
X and Y of the reference target in each video frame can be solved. The displacement of the
reference target at a specific video frame is calculated as the change in the world coordinates
of the target relative to the reference video frame (the first frame in the test video). It is
noted that the calculated displacement is the absolute (total) displacement of the roof. The
motion of the shake table platen is also included in the displacement.

5. Structural Displacement Extraction Validation
In this section, the target detection and tracking algorithm described in Section 3

and the 3-D world point reconstruction and structural displacement extraction framework
presented in Section 4 are validated using a series of UAV-captured shake table test videos
from the Phase II test series of the NHERI Converging Design Project (refer to Section 2).
The proposed methodology is successfully implemented with the Image Processing and
Computer Vision Toolbox in MATLAB R2023b [54]. The displacements of all the reference
targets on the roof level are extracted, and they are further compared to the ground
truth measurement from multiple analog sensors installed on the building specimen to
characterize the measurement errors. The effectiveness of the proposed UAV vision-
based earthquake-induced structural displacement monitoring method is evaluated in
this section.
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5.1. Ground Truth Measurements and Comparison Plan
5.1.1. Processing Steps for Ground Truth Measurements

For each reference target, ground truth measurements are roof level displacements,
determined by double integrating the accelerations recorded by an accelerometer installed
close to the target. The processing steps for ground truth measurements include the
following [28]:

• Baseline correction: The raw acceleration time series is baseline corrected using the
mean value of the pre-event data (the first 100 data points for each test).

• Zero-padding: The baseline corrected acceleration data is tapered for the first and last
second, then the data is zero-padded for 20 s at both the beginning and the end of the
time series.

• Filtering: A fourth-order bandpass Butterworth filter with cutoff frequencies of 0.1
and 50 Hz is applied to remove measurement noise above and below those limits.

• Integration: The fourth-order Runge-Kutta method is applied to integrate the filtered
acceleration to obtain the velocity.

The baseline correction, filtering, and integration steps outlined above are repeated to
obtain the calculated velocity and then to obtain the displacement time series. The final
displacement result is obtained by baseline correcting, filtering, and truncating (removing
the zero-padded portions) of the time series.

5.1.2. Analog Sensor Plan for Results Comparison

Figure 11 shows the distribution of the reference targets and selected analog sensors,
which are the source of the ground truth measurements. In this analysis, the roof is
divided into five regions. Displacements extracted from targets within each region are
primarily considered to be compared with the measurements from the analog sensor
within that region, which is the closest sensor to these targets. Therefore, error caused by
the location difference between the ground truth measurements and reference targets is
minimized. However, large measurement noise or unreasonable discrepancies between
the UAV-based analysis results and the ground truth measurements are observed for a few
analog measurement channels (specifically, channels 121, 123, and 702) during several tests.
For these cases, where reasonable comparison cannot be achieved using measurements
from the closest sensor, measurements from another sensor (i.e., channel S433), which is
the second closest sensor to the target, are selected for comparison. Table 5 presents the
comparison plan of different regions on the roof for each test.

Table 5. Result comparison plan of different regions on the roof panel for each test.

Region
Number

Analog Sensors Assumed as Ground Truth for Each Test
MID 7 MID 8 MID 12 MID 13 MID 14 MID 15 MID 16 MID 17 MID 18

1⃝ C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

C048: X
C050: Y

2⃝ 121: X
122: Y

S433: X
122: Y

121: X
122: Y

121: X
122: Y

121: X
122: Y

S433: X
122: Y

121: X
122: Y

121: X
122: Y

S433: X
122: Y

3⃝ 702: X
S436: Y

702: X
S436: Y

702: X
S436: Y

702: X
S436: Y

S433: X
S436: Y

S433: X
S436: Y

S433: X
S436: Y

S433: X
S436: Y

S433: X
S436: Y

4⃝ C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

C047: X
127: Y

5⃝ 123: X
124: Y

S433: X
124: Y

123: X
124: Y

123: X
124: Y

123: X
124: Y

S433: X
124: Y

123: X
124: Y

123: X
124: Y

123: X
124: Y

Note: Channel numbers with bold italic font represent cases where another sensor instead of the closest
sensor to the target is selected for displacement result comparison (due to noisy or inadequate quality accelera-
tion measurement).
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Figure 11. Reference target distribution in five regions of the roof plan and the selected analog sensors
utilized as ground truth measurements.

5.2. Structural Displacement Tracking Results and Error Characteristics

In the proposed UAV vision-based earthquake-induced structural displacement mon-
itoring framework, the image points are reprojected to the 3-D world space based on
the world-to-image point correspondence at each video frame. Then, the displacement
of each reference target is computed as the coordinate changes with respect to its initial
world coordinates in the first video frame. The extracted displacements are compared to
ground truth measurements based on the comparison plan illustrated in Section 5.1.2. Since
the ground truth measurements are the filtered results as described in Section 5.1.1, the
same fourth-order bandpass Butterworth filter with cutoff frequencies of 0.1 and 50 Hz is
also applied to the extracted displacements to avoid the possible discrepancy caused by
the filtering.

For brevity, comparisons of the displacement results of a Type 2 target (4-tile black-
and-white checkerboard pattern) from two Ferndale earthquake tests (MID 12 and 15) and a
Type 4 target (black-and-white concentric circular pattern) from two Northridge earthquake
tests (MID 7 and 8) are presented in Figure 12. These results indicate an overall root-mean-
square error (RMSE) between the UAV vision-based analysis results and ground truth
measurements of less than 1 cm. In addition, the percentage error at the peak displacement
amplitude is also calculated as follows:

Error% =
∆UAV − ∆GT,max

∆GT,max
× 100% (10)

where ∆GT,max is the maximum displacement from ground truth measurement, and ∆UAV is
the displacement value at the timestamp corresponding to ∆GT,max. The overall percentage
error per this computation at the peak displacement amplitudes is less than 10%. The results
indicate that the displacements extracted from the proposed method show good alignment
with the ground truth measurements for both the overall trend and the peak displacements
regardless of locations of measurements, reference target patterns, displacement directions,
earthquake motion input intensities, and earthquake events.
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Figure 12. Displacement time series comparison between UAV-based video analysis and ground
truth measurements obtained from double-integrated accelerations using analog sensors. (a,b) are
results of a Type 2 target (black-and-white checkerboard) close to the center of mass of the building
for Ferndale earthquake tests. (c,d) are results of a Type 4 target (black-and-white concentric circles)
close to the northeast corner of the building for Northridge earthquake tests.

Figure 13 summarizes the average RMSEs for tracking the roof-level displacements
across the various reference target patterns for each test. Each light-colored data point in
this plot represents the average RMSE calculated from multiple displacement time series
comparisons in the X or Y direction of one test (results from each single target forms a
comparison) with a specific pattern. The average RMSEs from all seven patterns are also
presented as filled symbols within the plots. For earthquake inputs in the given direction
from a specific earthquake event (e.g., X-direction inputs of the Ferndale earthquake),
larger average RMSEs are observed in the test with a greater earthquake input motion
intensity, i.e., when the achieved peak input acceleration (PIA) is larger. To provide a
generalized quantitative illustration of the effect of earthquake input motion intensity
on structural displacement tracking errors, the PIAs in the X and Y directions for each
test, along with the corresponding average RMSEs over all reference target patterns, are
normalized by the achieved PIA and average RMSE values from the 100% MCER test in
the given direction of that specific earthquake event. Mathematical expressions of this
normalization are presented in Equations (11) and (12), where PIAMCER and RMSEMCER in
the denominator are the achieved PIA and average RMSE from the 100% MCER test for
the same earthquake event and input direction as the corresponding achieved PIA and
average RMSE in the numerator. The relationship between normalized average RMSEs
and normalized achieved PIAs are presented in Figure 14. Because all average RMSEs and
achieved PIAs are normalized by the results from the 100% MCER tests, the nomalized
data for the 100% MCER tests are exactly at (1, 1), which is indicated by the black filled
symbol within the plot. The normalized average RMSEs for the 67%, 68.9%, and 110%
MCER tests are all close to the normalized achieved PIAs of these tests. Therefore, the
average RMSEs are proportional to the achieved PIAs (i.e., proportional to earthquake
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motion input intensity), though this proportionality holds separately for each earthquake
event and input direction.

Normalized PIA =
PIA

PIAMCER
(11)

Normalized RMSE =
RMSE

RMSEMCER
(12)
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Figure 13. Average root-mean-square errors (RMSEs) of the tracking results for the roof-level
displacement for various reference target patterns under each test.
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6. Optimal Features for Earthquake-Induced Structural
Displacement Monitoring

As the proposed UAV vision-based earthquake-induced structural displacement mon-
itoring method is evaluated using the shake table test results of a full-scale 6-story mass
timber building, a statistical analysis of the error characteristics across various patterns is
conducted to aid in identifying the optimal features for structural displacement tracking
under earthquakes. As a metric, the statistical analysis uses the root-mean-square error
(RMSE) of the displacement tracking result from each individual target. Figure 15 presents
the statistics of RMSEs for tracking the displacements of the 6-story mass timber building
specimen, focusing on the comparison between the different reference target patterns. The
RMSEs of displacement tracking from three 67% MCER tests (i.e., MID 7, 12, and 13) and
four 100% MCER tests (i.e., MID 8, 15, 16, and 17) are included in this result. For a particular
test, every target provides two measurements (one in the X-direction and the other one
in the Y-direction), and each measurement leads to a data point in the RMSE statistics.
Therefore, the total number of data points n for each pattern in the RMSE statistics can be
calculated as follows:

n = 2 · ntarget · ntest (13)

where ntarget is the number of targets with a specific pattern, and ntest is the number of tests
with a specific earthquake motion input intensity level. Several insights are observed from
the RMSE statistics:

• Overall Tracking Accuracy Evaluation: RMSEs in these analyses are consistently less
than 8 mm for the 67% MCER tests and less than 10 mm in general for the 100% MCER

tests (only 6 data points have errors that exceed 10 mm among the 224 data points
in total for the MCER tests). Thus, the proposed structural displacement monitoring
method can achieve an overall tracking accuracy at the millimeter level.

• Feature Size: For a certain pattern shape (2-tile black-and-white checkerboard), sig-
nificantly larger RMSEs are observed for smaller pattern sizes (Type 3M and Type
3S) compared to a larger pattern size (Type 3). Smaller reference targets have less
pixel dimensions in the video frame. For example, the side length of the black square
in the Type 3S pattern is 5 cm, which corresponds to only four to five pixels in the
video frame. The intensity contrast between the target region and the background is
significantly reduced, leading to reduced performance on the refined ROI generation
with Otsu’s thresholding and edge detection. Additionally, as previously mentioned
in Section 3.1, the small pixel dimensions of reference targets reduce the values in
the spatial gradient matrix of the corner point in Harris-Stephens feature detection.
Therefore, it is observed that targets with smaller dimensions have larger RMSEs
for displacement tracking by comparing 2-tile black-and-white checkerboard targets
with different sizes. Aiming to investigate the minimum required feature (pattern)
size for reasonable displacement tracking under different intensities of earthquakes, a
statistical analysis on the normalized RMSEs for displacement tracking with respect
to normalized tile dimensions of targets is conducted for all the black-and-white
checkerboard targets (specifically, Type 1, 2, 3, 3M, and 3S) in all nine tests. For each
individual target during a specific test, both the tracking RMSE (in X/Y-direction)
and the tile dimension D (the side length of each black square) are normalized by the
peak displacement ∆GT,max (in the X/Y-direction) in each ground truth measurement.
Figure 16 presents a compilation of the statistical analysis results. Each data point
of the normalized RMSE with respect to the normalized tile dimension (D/∆GT,max)
is depicted with gray symbols. As previously presented in Table 2, a larger overall
peak roof displacement in the Y-direction is observed compared to the X-direction
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for the nine tests in this study. In addition, very large peak roof displacements in the
Y-direction are recorded during the 100% and 110% MCER Northridge earthquake
tests (MID 8 and 18). Therefore, both RMSEs and tile dimensions after normalization
(in the Y-direction) are less than the values in the X-direction. For each direction, data
points are divided into multiple bins based on the normalized tile dimension with a
fixed bin width of 10%, which are indicated by the red and white background in the
plot. The statistics of the data within each bin are presented by a box and whisker plot
in Figure 16. As the normalized tile dimensions (D/∆GT,max) increase, the normalized
RMSEs decrease from 5.78% to 3.56% in the X-direction and decrease from 2.68% to
1.46% in the Y-direction. For both X- and Y-direction, a relatively stable RMSE can be
achieved when the normalized tile dimensions (D/∆GT,max) are greater than 50% (i.e.,
the actual tile dimension of the target is greater than 50% of the peak displacement
during the earthquake).
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Figure 15. Root-mean-square error (RMSE) statistics for various reference target patterns in displace-
ment tracking of the 6-story mass timber building specimen under 67% and 100% MCER tests (n is
the number of RMSE data points for each pattern; numbers in red color indicate the median value of
each data group).
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• Intensity Contrast: In the proposed target detection and tracking algorithm, the
colored ROI image is converted into grayscale for the convenience of thresholding
and the reduced computational cost. Type 3 (black-and-white) and Type 3R (red-and-
white) targets are both 2-tile checkerboard patterns with the same geometric shape and
dimension but with different colors. Five pairs of contrasting colors involved in target
detection and tracking for these two patterns are listed below in descending order of
intensity difference within the color pairs in the grayscale image: (1) black and white,
(2) red and white, (3) white and background, (4) black and background, and (5) red and
background. As previously discussed in Section 3.1, the two corner points between
red squares and background are suppressed for the Type 3R pattern in feature point
detection and tracking. Therefore, displacement tracking for the Type 3R pattern relies
largely on the red-to-white and white-to-background contrast which have relatively
large intensity differences within each color pair. However, displacement tracking
for the Type 3 targets relies on black-to-white, white-to-background, and black-to-
background contrasts, where the intensity difference between the black region and
the background is relatively low and it may reduce the performance of feature point
localization. This insight is reflected by the slightly larger results in the RMSE statistics
for the Type 3 targets compared to the Type 3R targets.

• Pattern shape: Square checkerboard patterns and concentric circular patterns are
included for the structural displacement monitoring of the 6-story mass timber build-
ing specimen. The square checkerboard patterns provide orthogonal features with
explicit feature points, while the concentric circular pattern only provides circular
shapes without any explicit point for tracking. Slightly larger RMSEs are observed
for the concentric circular pattern (Type 4) compared to square checkerboard pat-
terns with the same geometric dimension and color (Type 1, 2, and 3). Furthermore,
additional oscillations are observed in tracking results from the concentric circular
pattern. Figure 17 presents the comparison of the displacement results between the
multiple reference targets at the northeast corner of the roof level (region 2) from the
67% MCER Ferndale earthquake test (MID 12). From the overlay of the displacement
time series, there are good visual alignments between the ground truth measurements
and UAV vision-based tracking results from all the reference targets in the region.
However, additional oscillations can be clearly observed in the tracking results of the
concentric circular pattern from the zoom-in view. These additional oscillations occur
within low-amplitude regions of the displacement time series (e.g., t = 7–8.5 s in the
X-direction and t = 4–5.5 s in the Y-direction for MID 12). These oscillations are not
observed in the tracking results from the square checkerboard patterns. This difference
is caused by the different algorithms applied in the detection and tracking of the two
different types of features (i.e., orthogonal features and circular features). Orthogonal
features (corner points) in the square checkerboard patterns are detected first in the
reference frame. Then, sub-pixel coordinates of the feature points in the previous video
frame are used as the input of the Kanade-Lucas-Tomasi (KLT) feature tracker in the
following video frame for displacement tracking. However, the KLT algorithm cannot
be applied to circular features since there are no explicit feature points. A Hough
Transform is applied to each video frame with a coarsely updated ROI for circular
features. The potential error in the ROI updating can be propagated in the Hough
Transform in the subsequent video frame. Therefore, compared to concentric circular
patterns, orthogonal-shaped patterns with explicit feature points that can be tracked by
the Kanade-Lucas-Tomasi (KLT) algorithm are observed to reduce error propagation
during the video sequence and reduce the displacement measurement noise.
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Figure 17. Displacement results comparing multiple reference targets at the northeast corner of
the roof level (region 2) from the 67% MCER Ferndale earthquake test (MID 12). Robustness of the
orthogonal-shaped patterns is readily revealed by comparing Type 1–Type 3 to Type 4 patterns.

7. Conclusions
Vision-based sensing, facilitated by unmanned aerial vehicle (UAV) platforms, has

emerged as an effective technology that can enhance life-cycle health monitoring and assess-
ment of civil infrastructures. Such remote, non-destructive measurement approaches offer
significant promise in capturing the displacements of structures during natural or manmade
hazards. This work aims to improve the robustness of UAV vision-based sensing, focusing
on applications of capturing the structural displacements of buildings during earthquakes.

In particular, a capture and analysis framework is proposed based on two target
detection and tracking algorithms, considering a variety of feature patterns. Patterns in
the scene of interest are either square checkerboards or concentric circles, with black-white
or red-white color schemes. Several photogrammetry techniques are applied to extract
structural displacements, including camera calibration, lens distortion correction, camera
pose recovery, and 3-D world point reconstruction. The proposed methodology is evaluated
using ground-truth sensor measurements from shake table tests of a full-scale 6-story mass
timber building. Geo-referenced targets with various patterns are placed on the building
specimen, along with the stationary background region, to provide robust features in the
UAV imagery. Statistical analysis of the error characteristics across the various reference
target patterns is conducted to investigate the optimal features for use in displacement
tracking during earthquakes. The main takeaways from this study include the following:

• The proposed UAV vision-based method demonstrates reasonable accuracy in tracking
structural displacements during a wide range of earthquake motion inputs, with
overall root-mean-square errors (RMSEs) at the millimeter level compared to the
ground truth measurements from analog sensors.

• Given a specific earthquake event and input direction, the average displacement
tracking RMSEs are proportional to the achieved peak input accelerations (PIAs).

• Based on the statistical analysis of the error characteristics across the various reference
target patterns, it is observed that the pattern sizes, pattern shapes, and intensity
contrast in the region of interest can affect the accuracy of structural displacement
monitoring. Orthogonal-shaped patterns (e.g., straight line intersections or squares)
with explicit feature points that can be tracked by the Kanade-Lucas-Tomasi (KLT)
algorithm are observed to reduce the error propagation during the video sequence
and reduce the displacement measurement noise.
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• To characterize the effect of pattern size on the robustness of structural displacement
monitoring, a relatively stable RMSE can be observed when the normalized tile di-
mension (D/∆GT,max) is greater than 50% for black-and-white checkerboard patterns.
Therefore, the actual tile dimension of the black-and-white checkerboard pattern is sug-
gested to be greater than 50% of the peak displacement expected during an earthquake
to ensure reasonable accuracy in tracking structural displacements.

In summary, this article proposes a methodology to utilize UAV vision-based sensing
for monitoring the displacements of full-scale structures during earthquakes. The tracked
structural displacements can provide valuable information in post-disaster safety evalu-
ation and functional recovery analysis of the structure. It is worth mentioning that the
analysis framework proposed requires post-processing of video data; therefore, the present
study does not achieve real-time monitoring during the earthquake event. Although the
UAV vision-based capture and analysis framework described herein are based on artificial
reference targets rather than natural features of a case-study building specimen, the frame-
work can also be advanced to incorporate target-free structural displacement monitoring
approaches. Insights gained from the investigation of optimal features in this article can
guide future analysis utilizing natural features of buildings or other structures of interest
subjected to dynamic loading.
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