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Abstract: Among the technologies for carbon neutral, CO2 geological sequestration is one
of the most promising. The mechanisms of CO2 behavior within pore space are complex
and influenced by multiple factors, with the geometric structure of porous formations
being particularly critical to the technology’s efficiency. Among several important and
challenging problems in geological sequestration, this work addresses the issue of selecting
lithologies based on their geometrical structure. This study proposes a mathematical
approach to characterize the geometric structure of porous rock and fluid flow using a
random walk (RW) method. Our approach simulates the time evolution of particle flow
through highly disordered and heterogeneous digital rock models under a pressure gradient
imposed between inlet and outlet surfaces. Through RW simulations, a probabilistic
model for mineralization via a clogging (pore-filling) model is introduced, to examine the
accumulation of particles within porous structures over time: single-phase clogging and
multiple-phase clogging. In single-phase clogging, the porosity decrease can be described
as a monotonically non-increasing function of the deposition probability. However, this is
no longer true in the multiple-phase strategy because large deposition probability blocks
the capillaries near the inlet surface, preventing the fluid from easily invading easily
the outlet. In this study, numerical studies conducted on four types of natural rocks—
Bentheimer, Doddington, Estaillades, and Ketton—revealed that Ketton exhibits the highest
permeability. Our results suggest that Bentheimer, Doddington, and Ketton formations
are suitable candidates for CO2 sequestration, while Estaillades is less favorable from
a geometric standpoint. The methods presented in this work contribute to effectively
identifying natural rocks with geometric structures advantageous for CO2 storage.

Keywords: carbon dioxide storage; digital rock model; random walk; particle flow;
transportation in porous media; clogging model

1. Introduction
Carbon capture, utilization, and storage (CCUS) is a process where a relatively pure

stream of carbon dioxide from large point sources, such as fossil fuel power plants or
industrial facilities (cement, iron, steel, etc.) is separated, treated, and transported to a long-
term storage location. Geological carbon dioxide sequestration is considered a promising
technology in CCUS for reducing carbon emissions into the atmosphere by injecting it into
natural geological formations, such as saline aquifers, oil and gas reservoirs, and deep coal
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beds, and storing it permanently and safely there. To achieve carbon neutral, furthermore,
we should also consider the negative emission scheme that captures CO2 directly from
the atmosphere and stores it in a geological formation. The security and the efficiency of
CO2 storage are ensured by several trapping mechanisms [1], including structural and
stratigraphic trapping geological storage [2], capillary trapping [3], solubility (dissolution)
trapping [4], and mineral precipitation (chemical reaction) [5,6].

The mechanisms of geological sequestration depend on the interplay between the
geomechanical, thermal, hydraulic, and geochemical processes occurring as injected CO2

migrates dissolve in formation fluid and react with formation bedrock. This is strongly
influenced by several different factors, such as the injection fluid flow (e.g., injection
rates, fluid topological characteristics), fluid properties (e.g., wetting or non-wetting, fluid–
fluid interfacial tension [7]), the characteristics of porous material (e.g., pore morphology
[8]), and wettability [9]. Even though advanced imaging technologies have been able to
provide detailed information on fluid distributions in pore spaces in experiments [10–12],
this process is time-consuming, costly, and effort-expensive. This is where mathematical
modeling shines. Effective mathematical models can simulate a broad range of reservoir-
relevant conditions within an acceptable period with the aid of the rapid improvement in
computational resources [6,13–15].

In digital rock modeling, a clogging model is a computational approach used to study
how fluid flow through porous rock formations becomes obstructed over time, due to
the accumulation of particles, minerals, sediments, or other materials. This process is
particularly relevant to applications such as geological sequestration, petroleum engineer-
ing, hydrogeology, and filtration systems. Clogging occurs when particles suspended in
the fluid accumulate within the pore spaces, reducing permeability and impeding fluid
flow. The clogging process involves two key components: particle transport and deposi-
tion mechanisms. Particle transport refers to the movement of particles within the fluid as
they navigate through the pore spaces, while deposition mechanisms model how parti-
cles become trapped, stick to pore walls, or aggregate within pores. Common deposition
mechanisms include mechanical trapping, surface adhesion, and bridging (where large
particles span pores). By simulating clogging behavior, the model helps predict how porous
formations evolve over time under fluid flow, allowing for improved reservoir management
and a deeper understanding of long-term permeability changes in natural porous media.

Investigating the influence of the geometric structure of porous space is crucial for un-
derstanding fluid flow and clogging dynamics in digital rock models. The shape, size, and
connectivity of the pores directly dictate how fluids move through the material, affecting
both permeability and the likelihood of clogging. Complex pore geometries, characterized
by varying pore throat sizes and irregular structures, create heterogeneous flow patterns,
leading to regions of high or low flow velocity. These variations can significantly influence
particle deposition and aggregation, which are primary drivers of clogging. By analyzing
how the intricate geometry of the porous space impacts flow resistance and clog formation,
it becomes possible to more accurately predict permeability reduction and develop opti-
mized strategies to mitigate clogging in geological sequestration. This geometric insight is
essential for lithology selection in CO2 storage technology, ensuring the long-term efficiency
and stability of storage reservoirs.

In this paper, we aimed to investigate the effect of the geometric structure of natural
rock formations on fluid flow through pore spaces and the clogging process. We began by
analyzing the geometrical characteristics of pore spaces in four types of natural rock models,
examining factors such as porosity, pore size distribution, and the degree of pore voxel
interconnection. We then proposed a random walk-based method to simulate the fluid flow
dynamics of particles in complex pore structures, driven by pressure applied between the
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inlet and outlet surfaces. We proposed a probabilistic clogging model based on the particle
transport algorithm, introducing two strategies: single-phase and multi-phase clogging.
In single-phase clogging, porosity decreases monotonically as a function of deposition
probability, whereas in multi-phase clogging, structural changes disrupt this monotonicity.
High deposition probabilities lead to rapid clogging, narrowing capillaries and hindering
particle transport. This method offers a valuable tool for selecting rock formations for
geological sequestration. A schematic diagram representing the workflow is depicted in
Figure 1:

Figure 1. A schematic diagram illustrating the workflow of the particle flow simulation-based
clogging model. Particle position tracking from fluid flow simulation is recorded in a passed-array,
which is then used to update the rock sample in a single-phase clogging process. Further fluid flow
is performed on updated rock. This process is repeated several times, generating a multi-phase
clogging process.

Theoretically, the fluid dynamics in porous materials can be modeled by different
mathematical formulas, depending on the characteristics of the fluid and the porous
media. For example, Darcy’s law governs the slow flow in a fully saturated porous
medium, and Richard’s equation governs the flow in a variably saturated porous medium.
Traditional computational fluid dynamics (CFD) methods [16,17], which numerically solve
macroscopic properties conservation equations, are highly accurate for macroscopic systems
and complex dynamics but require significant computational resources and are less intuitive
for stochastic or microscopic systems. In the lattice Boltzmann method (LBM) [13,18],
instead of solving Navier–Stokes equations directly, fluid density on a lattice is simulated
with flow and collision (relaxation) processes. The LBM has been used widely to simulate
single- and multi-phase flow behavior within the true pore geometry of porous media [19–
22]. The LBM is a versatile mesoscopic approach that balances accuracy and computational
cost but can struggle with extreme heterogeneity.

Unlike these CFD approaches, the random walk method models transport processes
as the movement of individual particles or agents. This discrete and probabilistic ap-
proach offers new possibilities for simulating complex systems with inherent stochasticity.
Diffusion is naturally represented through Brownian motion within the random walk
framework, providing a direct and intuitive alternative to the discretization of partial
differential equations (PDEs). Moreover, the method eliminates the need for computational
grids, avoiding challenges such as mesh generation and grid resolution, particularly in
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heterogeneous structures like porous rocks. In other words, the random walk method oper-
ates directly on the digital rock models without requiring manual approximations. Notably,
the concept of using random walk to simulate the clogging process within pore formations
was first introduced in [23]. However, this approach was previously implemented in a
free, two-dimensional environment. To our knowledge, no comprehensive study of real
three-dimensional natural porous rocks has been explored yet.

Like LBM, our random walk approach also effectively simulates the fluid flow within
a real pore medium, thanks to its three advantages: all calculations are local, there is no
need for complicated procedures for interface tracking, and the scheme is explicit. The
main difference between our approach and the approach using LBM in [13] is that in the
mentioned work the LBM is used to simulate the displacement of a wetting liquid fluid, e.g.,
H2O, by a non-wetting liquid fluid, e.g., CO2. In our random walk approach, we cannot
consider pressure information on fluid flow calculation directly. Therefore, we cannot
evaluate fluid displacement characteristics that are available in the LBM approach [24].
On the other hand, the random walk approach allowed us to easily model the clogging
process (i.e., mineralization modeling) and use larger digital rock models, due to fewer
computations compared to LBM. We simulated the particle fluid flow in the porous space
of different types of rock formations, to choose the most geometrically favorable porous
formation among the candidates for geological storage. We performed the simulations
on three-dimensional natural porous rock samples (of 1000 × 1000 × 1000 voxels), which
were 15 times larger than those in [13] (320 × 320 × 640), in the sense of the number of grid
points.

Based on the particle transport results, we developed a stochastic clogging model to
capture the probabilistic nature of the particle deposition and accumulation. The likelihood
of a void voxel becoming clogged during fluid transport depends on the number of times
that the void voxel has been visited by particles and on a predefined parameter known as
the deposition probability. As the clogging process advances, fewer pathways remain open
for fluid flow, leading to a gradual change in the geometric structure of the pore space.
This, in turn, results in a progressive reduction in both the formation’s overall permeability
and the efficiency of the fluid injection. The impact of deposition probability on clogging
processes is quantified by modeling the decrease in porosity as a function of deposition
probability, using the curve-fitting method. The coefficient of the fitted curves for different
rock types highlights the potential of certain rocks for carbon storage, particularly from a
geometric standpoint.

The outline of the paper is as follows. Section 2 describes the four digital rock models
used in this study and introduces a graph-based representation approach to analyze the
important geometrical properties of pore spaces—including porosity, degree of pore voxels,
and connectivity—that are critical for transport in porous media. In Section 3, we present
the random walk rule for simulating particle movement within the pore spaces of rock
formations under the pressure gradient imposed between the inlet and outlet surfaces.
Section 4 introduces our proposed stochastic clogging (pore-filling) model, which simulates
particle accumulation in pore spaces over time. Section 5 presents the numerical results
and interpretation for the particle transport (Section 5.1) and clogging models (Section 5.2).
The paper concludes with our conclusions and future perspective in Section 6.

The simulations in this work were implemented in Python with the aid of several
third-party libraries, such as Numpy [25], Scipy [26], Matplotlib [27], and Porespy [28].
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2. Digital Porous Rock Models and Graph-Based Representation
2.1. Materials

The process of obtaining the sample data is described as follows. After a rock sample
was collected, a microcomputer tomography (CT) scanner was used to take pictures of
multiple slices of the rock. The CT image then went through a Gaussian smoothing process,
in order to reduce high-frequency noise and adjust the contrast, resulting in a gray-scale
image. The third step was the segmentation process: a single gray-scale threshold was
chosen, so that the porosity of the sample matched the experimental porosity of the rock
type under investigation, transforming the gray-scale image into a binary image, illustrated
in Figure 2:

Figure 2. The three-dimensional binary rock samples we used in this study were Bentheimer,
Doddington, Estaillades, and Ketton [29]. The rock samples were of size 10003, where each point
was represented by either 1 (white for the grain voxels) or 0 (black for the pore voxels), with a
resolution/voxel size of 3.2 µm. Each sample represented a physical rock volume of approximately
3.2 × 3.2 × 3.2 mm3.

2.2. Graph-Based Representation of Pore Space of Digital Porous Rock Models

We analyzed the geometric structural properties of the pore spaces within the sample
rock data, such as the porosity, distribution of pore sizes, degree of pore voxels interconnec-
tion critical to the particle flow, and the clogging process. Some statistical measurements of
the geometric structural properties of the pore spaces are given in Table A1 in Appendix A.

The degree of pore voxels interconnection can be quantified by pore-connected components.
A connected component is defined as a maximal subset of pore voxels, such that there is a
path through the pore spaces connecting any two voxels within that component.

To explain this precisely, we need some mathematical notations, as follows. We embed
the rock sample into the three-dimensional Euclidean space, having three standard basis
vectors, i⃗ = (1, 0, 0), j⃗ = (0, 1, 0), k⃗ = (0, 0, 1). Given a pore voxel x at the lattice position
(i, j, k) at time instant t, we define its lattice 6-neighbors as

N (xt) = {(i ± 1, j, k), (i, j ± 1, k), (i, j, k ± 1)}. (1)
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Let V be the set of all the pore voxels; we define the pore neighbors of a pore voxel as

Np(xt) = N(xt) ∩ V , (2)

where ∩ is the intersect operator on sets. Each pore voxel’s number of pore neighbors is
called its degree. By the above pore neighbors construction, pore voxels will take degree
values in the set {0, 1, 2, 3, 4, 5, 6}. A pore voxel having degree 6 lies in the inner part of
the pore space, while those with other values of degree lie on the boundary of the pore
space. The pore voxels with degree 0 are isolated: that is, a particle from this position
cannot go anywhere else, and a particle from anywhere else cannot arrive at this position.
There are quite a large number of isolated pore voxels in Bentheimer and Ketton. The pore
degree counts of the four rock samples are given in Table A2.

For each rock sample, we can construct a graph G(V , E) on the vertex set V of pore
voxels and the edge set E , each of which connects two pore voxels in V . We say that there
exists an edge (x, y) that connects two pore voxels x and y if x and y are in the pore neighbor
of each other. Note that if the pore voxel x is in the pore neighbor of the pore voxel y,
then y is also in the pore neighbor of the pore voxel x; therefore, the graph is undirected.
We say that there is a path connecting the two voxels x1 and xn if there exists a sequence
(x1, x2, x3, . . . , xn) ∈ Vn, such that (xi, xi+1) ∈ E for i = 1, 2, . . . , n − 1. Two pore voxels
x and y are said to be connected if there exists a finite path connecting them. From this
construction, the pore-connected components are the connected components of the graph
G(V , E). By definition, the connected components are disjoint and their union is the set V .
In our simulation, we developed a tree-based searching–tracking algorithm to classify the
pore spaces into disjoint connected components.

The number of pore-connected components varies for the four rock types. We observed
that only in Doddington were there quite a few pore-connected components while in the
other three samples the pore spaces were comprised of a large number of connected
components; see Table A1 in Appendix A.

In this study, we wanted to investigate the efficiency of particle transport and clogging
processes for different types of natural porous rock formations; it was, therefore, important
to know if the particle flow injected from the inlet surface could invade deep into the rock,
at least to the outlet surface. Therefore, we introduced the notion below.

A passable component is a pore-connected component containing points on the inlet
surface and points on the outlet surface.

By the above definition, the particles could only travel from the inlet surface to the
outlet surface through the passable components. Among many connected components, it
was interesting that each rock had only one passable component, which accounted for the
majority of the pore spaces in the rock data (see Table A1).

3. Particle Flow Through Pore Space Governed by Random Walk
This section proposes a method to investigate the particle flow through the pore

space of the rocks under the pressure gradient imposed between the inlet surface and
the outlet surface. To make the embedded coordinate specific, we put the samples into a
three-dimensional Euclidean space, so that the inlet surface is on the space k = 0, with four
corners, at (0, 0, 0), (1000, 0, 0), (0, 1000, 0), and (1000, 1000, 0), and the outlet surface is on
the space k = 1000, with four corners, at (0, 0, 1000), (1000, 0, 1000), (0, 1000, 1000), and
(1000, 1000, 1000).

3.1. Particle Injection

As initializing, a number, K, of particles are injected into the inlet surface of the rock
sample under the imposed pressure gradient toward the direction from the inlet to the outlet
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surfaces, which we also called the injection direction. These particles will invade deeply into
the pore space through the pore voxels on the inlet surface. In the simulation, the K pore
voxels in the inlet surface were randomly chosen following the uniform distribution, with
replacement, i.e., one pore voxel could be chosen several times to be the initial position of
particles. Note that in our simulations we allowed multiple particles located at a single
pore site, because the grid size was approximately 104 times larger than the diameter of the
particles.

The movement of the particles follows the random walk algorithm described in the
following subsection. The inlet surface only allows the particle to go in, not to go out, and
the injected particles can only escape through the outlet surface, as the other surfaces are
made impermeable. In order to simulate the impermeability on these surfaces, we add an
artificial grain layer adjacent to each of these surfaces outside of the rock sample. Because
of this, the size of the rock in the simulation was (1000 + 2)3 instead of 10003. With this
technical trick, the lattice 6-neighbors are well-defined for each particle in the pore voxels,
because the particle cannot go to the outermost layers where all the voxels are grains.

3.2. Random Walk Rule Governing Particle Movement

The random walk method is especially appropriate for describing particle movement
in highly disordered and heterogeneous, large-scale media, such as the natural porous for-
mation being studied in this work. The classical random walk particle schemes rely on the
equivalence between the Langevin equation and the advection–dispersion equation [30,31].
This method usually requires high computational costs when there exists low permeability
or low-velocity areas in the media when the particles remain trapped in low diffusion zones.
The efficiency of the particle-tracking algorithm can be enhanced drastically by moving a
particle over a fixed distance imposed by the computational mesh [32,33]. Variants of this
methodology are continuous time random walk (CTRW) and time domain random walk (TDRW).
It has been shown that the discretized advection–dispersion equation and the TDRW are
equivalent [34,35]. The TDRW in general moves particles on a lattice with jumps of fixed
distance, with the direction and transition time being determined by the local advection
and dispersion.

In this work, we formulated a TDRW model to describe the particle flow within the
porous media under the pressure imposed between the inlet and the outlet surface in the
presence of the clogging process. Therefore, the model introduced here works in time-
dependent random environments, because the geometric structure of the pore space evolves
during the deposition process in a stochastic way. The proposed method, though simple,
is very powerful, and it has the potential to be applied to a variety of complex large-scale
disordered phenomena arising from physics, biology, and engineering; for example, the
propagation of heat or diffusion of matter through a medium that is highly irregular, due
to defects, impurities, or fluctuation.

At a given time instant t, suppose that a particle x is at the position (i, j, k), with the
increasing of the third coordinate (k) representing the injection direction from the inlet to
the outlet. In this case, we can identify xt ≡ (i, j, k). The particle can either stay still or
move to one of its pore neighbors defined in Equations (1) and (2).

Only when Np(xt) = ∅, with ∅ representing the empty set, i.e., xt has degree 0, will
the particle x stay still. Otherwise, it will randomly move to one of its pore neighbors in
Np(xt) in the next time instant t + 1, with the following transition probability:

p(xt → y) =
g(xt, y)

∑
z∈Np(xt)

g(xt, z)
, (3)

where
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g(xt, z) =

v + d if xt → z is injection direction

d otherwise.
(4)

Here, v is called velocity, which models the pressure gradient, and d is the dispersion.
Both v and d are chosen to be non-negative. The positive velocity v ensures that the particles
have more tendency to move in the injection direction than in any other direction. In this
sense, the parameter v can indirectly characterize for the strength of the pressure. The
probabilistic jumping rule specified in (3) and (4) models both the advective and diffusive
terms. Moreover, the transition probability is spatial-dependent, due to the heterogeneity
of the pore structure. From the above construction, the transition probability p(xt → y) of
the particle is specified as in Table 1:

Table 1. Transition probability of particles p(xt → y) at each random walk iteration t. Here, Np(xt)

denotes the pore neighbor set of the voxel in which a particle is located at time t, and ∅ denotes the
empty set.

Np(xt) = ∅ Np(xt) ̸= ∅

y = xt 1 0

y ∈ Np(xt) 0 specified as in (3) & (4)

There are several key assumptions commonly made in the random walk method:
independent particle motion, uniform medium properties, discretization of time and space,
neglect of convection or external forces, simplified boundary conditions, and neglect of
particle size and shape. Each assumption has its advantages and disadvantages; see Table 2.
For example, recall that the classical random walk relies on the Langevin equation, which
describes the movement of the non-interacting particle due to advection and uncorrelated
random velocity. Thanks to this independence, we can parallelize our algorithms; that is, we
can run a large number of particle movements simultaneously, which offers a remarkable
advantage in terms of computational time.

Table 2. Key assumptions in RW method, along with their advantages and disadvantages.

Assumption Advantage Disadvantage

Independent parti-
cle motion

Simple to implement, suitable for
particle-level simulations.

Ignores particle–particle interac-
tions, limiting applicability to
systems where interactions matter.

Homogeneity of
medium

Flexible for uniform media. Poor representation of spatial
heterogeneity without additional
modifications.

Discretization Simplified computation with ad-
justable step size.

Accuracy depends on step size; may
introduce artifacts when the physical
scale is not well aligned.

Neglect of convec-
tion/forces

Ideal for diffusion-dominated
systems.

Limited applicability to systems
with significant advection or exter-
nal forces.

Simplified bound-
ary conditions

Handles simple boundary condi-
tions well.

Struggles with complex or dy-
namic boundaries without extensive
customization.

Neglect of particle
size/shape

Simplified by treating particles as
point-like.

Does not account for finite size
or shape effects, affecting accu-
racy in systems with size-sensitive
phenomena.
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The above limitations are acceptable for the purpose of characterizing the geometric
structure of porous formation. For future research, several approaches could help ad-
dress these limitations and improve the accuracy of CO2 penetration prediction. These
include introducing rules for particle–particle, particle–medium interactions such as col-
lision dynamics and hydrodynamic forces, hybrid approaches that combine the random
walk method with continuum models to address multiscale and anisotropic effects, and
comparing the predictions of the random walk model with experimental data or more
detailed simulation, to identify when its assumptions hold.

4. Clogging Models
Clogging refers to the process in which particles suspended in the fluid (e.g., fine

particles, minerals, or sediments) accumulate in the pore spaces, reducing permeability and
impeding fluid flow. This process can be driven by size, shape of particle, concentration,
and the velocity of the fluid. In this section, we propose a new clogging (pore-filling)
model to elucidate the effect of geometry structure on the fluid flow through the pore space
of media.

In the literature, there are a few works that propose clogging models, e.g., [6,36–38].
Keehm et al. determined the four classes of pore-filling mechanisms: grain–pore boundary,
low-flux, high-flux, and random filling. This pore-filling mechanism is controlled by fluid
rates. In [6], the authors introduced the CT image threshold adjustment model and the
reactive transport clogging model to estimate the pore structure changing due to carbonate
precipitation. The latter model uses chemical reaction theory to evaluate the local volume
variation of the precipitate, with the assumption of CO2 equilibrium conditions; that is,
the authors considered the divalent cations’ concentration that is derived by solving the
reactive transport model.

In this work, to elucidate the role of geometric structure, we address the dynamics of
particle deposition—the spontaneous attachment of particles to surfaces by means of the
probabilistic clogging model.

At the initialization step, a total of K particles are injected into the inlet surface of
the rock samples. They invade through the pore spaces in the rock formation, under the
pressure imposed between the inlet and the outlet surface, following the random walk rule
introduced in Section 3.2. During the particle flow process, we construct the passed array,
as described below.

The passed array is a one-dimensional array of length equal to the total number of pore
and grain voxels in the rock sample, which keeps track of the number of times the particles
have passed through each voxel during the random walk process.

Because the length of the passed array is the same as the flattened rock sample, it also
keeps track of the corresponding voxels’ positions in the rock sample. As the particles
cannot move to the grain voxels’ positions, the elements corresponding to grain voxels on
the passed array are always 0 s. By utilizing this, we reduce the memory usage by storing
the passed array in a sparse matrix.

At some given time instants, the pore voxels will become grain voxels, with the
probability given by

f (q, n) =
n

∑
i=1

(1 − q)i−1q ≡ 1 − (1 − q)n (5)

where q ∈ [0, 1] is the probability of deposition, and where n is the number of times that
particles have passed through the corresponding void position. The value of n is specified
by the corresponding element in the passed array. It is easy to verify that the expression in
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(5) satisfies the requirements of a probability measure as f (q, n) ∈ [0, 1] for any q ∈ [0, 1]
and that n = 1, 2, 3, ... and f (q, n) tends to 1 as n approaches infinity.

To understand the mathematical meaning of the expression (5), let us consider a
sequence of i Bernoulli experiments (X1, X2, . . . , Xi), which is also called a Bernoulli process.
The Bernoulli trials Xj, j = 1, 2, . . . , i take either the value 1 if the experiment succeeds with
probability q or 0 if the experiment fails with probability 1 − q. Then, the probability of the
output (0, 0, 0, . . . , 0, 1), i.e., that the experiment fails on all first i − 1 trials and succeeds
at the last trial i, is (1 − q)i−1q. Similarly, each element in the finite series (5) represents
the probability of a pore voxel being precipitated at the time instant when the number
of times a particle visits that position is exactly i and failing to be precipitated at all i − 1
previously visited times. Therefore, the probability of a pore voxel that has been visited
n times being precipitated is the sum of all the probabilities that it is precipitated at any
time i = 1, 2, . . . , n during the random walk process. This is equivalent to 1 minus the
probability that the pore voxel fails to be precipitated n times (the right-hand side in (5)).
In the following, we propose two clogging algorithms: single-phase and multi-phase.

4.1. Single-Phase Clogging

On the single-phase strategy, after the fluid flow simulations finish, either when the
prescribed number of the maximum simulation steps is reached or when all the particles
have escaped from the outlet surfaces, we apply the deposition rule (5) once to update
the states of the voxels on the rock, where some of the pore voxels change to grain voxels,
making the porosity decrease. This procedure is described in Algorithm 1:

Algorithm 1 Single-phase clogging

1: procedure SINGLE-PHASE CLOGGING(K, v, d, N, q)
Input: pore rock sample
Parameter setting:

2: K: number of injected particles,
3: v: velocity,
4: d: dispersion,
5: N: maximum number of random walk,
6: q: probability of deposition.

Initialize positions of K particles by uniformly random choosing from pore voxels on
the inlet surface.
Initialize the passed array whose elements are all 0s.
n = 0

7: while n < N and there exist particles in the pore space do
8: n = n + 1
9: Update particle positions according to (3) and (4).

10: Update passed array.
11: Remove particles that have reached the outlet surface.
12: end while

Perform deposition based on passed array according to (5).
Update rock sample.
return Updated rock data.

13: end procedure

4.2. Multi-Phase Clogging

Multi-phase clogging is a consecutive sequence of single-phase clogging. In parameter
setting, we predetermine the number of phases to perform. At the end of each phase, some
pore voxels become grain voxels because of the deposition; therefore, the porosity and the
geometric structure vary. During the simulation process, we use a one-dimensional array,
called the position array, to keep track of the position of the particles injected into the pore
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spaces, and we remove the element from the array when some particles escape from the
outlet surface. In addition, at the end of each phase i, the particles that are presented at the
precipitated pore voxels will also be removed from the array.

The updated rock data after the deposition process at the end of phase i will be used
as the domain for the simulation in phase i + 1. We count the number of particles that
are still present in the pore space of this new rock (the length of the array containing the
positions of particles in the last step); then, we inject new particles to the inlet surface of
the new rock, if necessary, to ensure that the number of particles in the position array at
the beginning of each phase is exactly K (predefined parameter). This is a variant of the
periodic boundary condition, which ensures the preservation of the number of particles at
the beginning of each phase. The passed array is also updated at the end of each phase.

The iteration process finishes when the predefined number of phases is reached. The
multi-phase clogging procedure is summarized in Algorithm 2:

Algorithm 2 Multi-phase clogging

1: procedure MULTI-PHASE CLOGGING(K, v, d, N, q, M)
Input: pore rock sample
Parameter setting:

2: K: number of injected particles,
3: v: velocity,
4: d: dispersion,
5: N: maximum number of random walks,
6: q: probability of deposition,
7: M: number of phases.

Initialize positions of K particles by uniformly random choosing from pore voxels on
the inlet surface.
Initialize the passed array whose elements are all 0s, and initialize the position array as
empty.

8: for m = 1:M do
9: if Number of particles within the pore space is less than K and there exist pore

voxels on the inlet surface then
10: Inject more particles to the inlet space, such that the number of particles

within the pore space is exactly K.
11: Update position array.
12: end if
13: n = 0
14: while n < N and there are particles within the pore spaces do
15: n = n + 1
16: Update position array according to (3) and (4).
17: Remove particles that have reached the outer surface.
18: Update passed array.
19: end while
20: Perform deposition based on passed array according to (5).
21: Remove particles at the position of precipitated points.
22: Assign values 0s to the elements in passed array corresponding to the precipi-

tated pore voxels.
23: Update pore rock.
24: end for

return Updated rock data.
25: end procedure
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5. Results and Interpretation
5.1. Fluid Flow Invading

A total of K = 100, 000 particles is injected into the inlet surface of each rock sample,
following the scheme described in Section 3.1. Under the pressure gradient imposed
between the inlet and the outlet, these particles will move deeper into the pore spaces.
The velocity and dispersion parameters were chosen as v = 1, d = 0.01 in this study. The
simulations are performed for a total of 5000 time steps. With this setting, as v > > d, the
particles have a much stronger tendency to move along the injection direction compared to
the others. In the free lattice—that is, without the grain voxels—the expected position of a
particle after 5000 simulation steps along the injection direction is[

(−1)× d
v + 6d

+ 1 × v + d
v + 6d

]
× 5000 =

5000v
v + 6d

≈ 4717.

When considering the movement along the injection direction, only the position trans-
fer forward and backward along the k-coordinate needs to be counted, because movement
along the i, j- directions does not contribute. However, as the porous rock samples we
used in this study contained a large number of grain voxels, i.e., a small proportion of
pore voxels (see Table A1) the speed of fluid flow along the injection direction was much
lower. This is illustrated in Table 3, which represents the measurements of the average
propagation depths of the particles at the 5000th step of the random walk (RW) simulation.
As shown in the table, the average propagation depth in Ketton is twice that of Bentheimer
and Doddington, and three times of that of Estaillades.

Table 3. Average propagation depth after the 5000th step of the RW simulation. It was calculated
by taking the average of the z-coordinate of the particles at the 5000th time step. The corresponding
coordinates of the escaped particles were assigned a value of 1000.

Bentheimer Doddington Estaillades Ketton

Average propagation depth 108 114 72 212

Figure 3 shows samples of the evolution of fluid invading the pore spaces of the rock.
During the random walk movement, the particles that reached the outlet surfaces were
removed from the simulation for the next random walk step, as they were considered to
have escaped. At the end of the simulations, there were no particles escaping from the
outlet surface of Bentheimer and Estaillades, while in Doddington and Ketton the numbers
of escaped particles were 5 and 581, respectively. Comparing the invading evolutions, we
see that among the four rocks, the propagation of the particles along the injection direction
increased from Estaillades to Bentheimer to Doddington and, finally, to Ketton. We further
investigated the distribution of particles along the injection direction at the end of the
simulations, i.e., t = 5000. Figure 4 shows the kernel density estimates for the distributions.
The log scale was used to better distinguish the differences, especially in the long tails of
the distributions.

To quantify this propagation, we counted the number of particles present at several
slices along the injection direction (k = 50; 100; 150; . . . ; 1000) according to the simulation
time (t = 200; 400; 600; . . . ; 5000). As the random walk was stochastic, we used the aggregate
(average) results on multiple (10) trials to access the robustness of the propagation on each
rock sample. Figure 5 illustrates the flow propagation of the particles along the injection
direction in the the pore spaces of the rocks according to time. The values on the surfaces
were the average values taken on the 10 trials. Looking at the change along the space axis
(i.e., k), we observe that in Estaillades, the particles were almost concentrated near the
inlet surface (small k). This may have been caused by the existence of a “bottleneck” near



Algorithms 2025, 18, 68 13 of 25

k = 200 in Estaillades, indicated by the very low porosity at this location in the porosity
profile, according to the injection direction shown in Figure A2.
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Figure 3. Evolution of fluid invading four rock samples, each on one row. The injection direction is
the increasing direction of k, i.e., from the bottom to the top.
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Figure 4. Kernel density estimates for the distribution of particles after the fluid flow simulation
finished, i.e., at t = 5000.

Figure 5. The average flow propagation of the particles (taking from 10 independent trajectories)
along the injection direction k within the pore spaces of the rocks according to time t.

The particles spread wider in the k direction in Bentheimer, but over a smaller range
compared to Doddington; Among the four rocks, Ketton allowed the particles to spread
the widest: there were relatively large numbers of particles that were able to reach the
middle way to the outlet surface from time t = 2000 and more could reach there when time
increased (see the last sub-figure in Figure 5).

Next, we quantitatively investigated the ability of the particles to invade deeply the
pore spaces and the corresponding speed. During the long-term random walk simulation
processes with two distinct values of velocity, v = 1 and v = 10, we recorded the number
of particles that were able to escape from the outlet surfaces. The results are shown in the
left panel of Figure 6. In both cases, no particles were able to escape from the outlet surface
of the Estaillades sample within the allotted time t = 5,000,000. Out of the 100,000 particles
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injected into the pore space of each rock sample, only a small portion were able to escape
from the outlet surfaces of Bentheimer and Doddington. The number of particles that were
able to escape from Ketton was much larger than those from Bentheimer and Doddington.

Taking only the particles that were able to escape from the outlet surfaces, we defined
the travel time of a particle as the number of simulation steps it took for the particles to
travel from the inlet surface to the outlet surface in an allotted time.

Note that, in our simulation, when a particle reached the outlet surface it was not
able to come back, because we removed it from the particle moving system for the next
simulation steps.

The elapsed time for each rock was defined as the average travel time of its escaped
particles. The right panel in Figure 6 indicates that the elapsed time of the Ketton rock
was remarkably lower than those of Bentheimer and Doddington, despite the fact that
the porosity of the Ketton rock was lower than that of the other two (see Table A1). This
suggests that the geometric structure of the rock, rather than its porosity, appears to be the
factor that affects the transportation speed. The simulation result also reveals that, of the
four rocks, Ketton allowed the fastest and highest fluid flow through its pore spaces and
had high permeability.

Figure 6 also shows the effect of the velocity v on the number of escaped particles.
The simulation result reveals that increasing the value of the velocity by increasing the
pressure gradient between the inlet and the outlet surfaces did not necessarily increase
the invading process. This may be because as the velocity was too large, the particles
lost their flexibility to move in the dispersion direction so as to avoid obstacles in the
injection direction. In our simulation, when the velocity increased 10 times, the number of
particles escaping from the outlet surface of Ketton decreased by half. These phenomena
are similar to the multi-phase fluid displacement mechanisms associated with capillary
numbers. A high-velocity condition in our simulation is consistent with a high capillary
number condition. Because the injected fluid saturation at a high capillary number is lower
than that at a low capillary number [24], our results shown in Figure 6 agree with pore
fluid dynamic simulation (i.e., LBM simulation).
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Figure 6. Effect of velocity on particle invasion for four rock models. Two different values of velocity
were chosen for comparison. For each parameter setting (v, rock type), five independent simulations
were performed, to assess the reliability of the results. The left panel shows the average number of
particles that escaped from the outlet surfaces over the five simulations. The box plots in the right
panel display the distribution of the escaped particles’ travel time across five simulations. There is
no description for Estaillades in the right panel because no particle were able to escape during the
allotted time in Estaillades.

5.2. Random Walk-Based Clogging
5.2.1. Single-Phase Clogging

We set the parameter setting for single-phase clogging as follows: K = 100, 000,
v = 1, d = 0.01, N = 1, 000, 000, given a sequence of deposition probabilities
q ∈ [10−5, 10−4, 10−3, 10−2, 10−1]. To access the robustness of the results, we performed
10 one-phase clogging processes for each value q. The deposition process was based on
the final passed array obtained at the end of the random walk simulation. We counted the
number of clogged pore voxels after the deposition process and defined a new notation of
porosity decrease, as follows.

The porosity decrease after the single-phase clogging was the difference between the
porosity after the deposition process and that before the deposition, i.e.,

porosity decrease = porosity after deposition − porosity before deposition

= −number of mineralized pore voxels
10003 × 100%. (6)

The porosity decrease defined in (6) was non-positive. The simulation result is shown
in Figure 7. We can observe the fastest decreasing of the porosity when the deposition
probability increased for Bentheimer; the decreases for Doddington and Ketton were
almost at the same speed; the decrease was slowest in Estaillades. In addition, the standard
derivatives of the porosity decreases were very small, ranging in interval [2.2 × 10−11, 1.1 ×
10−8].
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Figure 7. Average porosity decrease taken from 10 independent simulations for each parameter
setting (q, rock) with respect to deposition probability q.

5.2.2. Multi-Phase Clogging

For the multi-phase clogging, we chose the simulation parameter setting as follows:
K = 100, 000, v = 1, d = 0.01, N = 5000, M = 500. Three different values of probability
of deposition, q = [0.0001, 0.001, 0.01], were performed, to investigate its effect on the
clogging process.

To visualize the clogging process through pore rock, we will show the voxel-to-grain
process on a slice in the middle of the rock that was perpendicular to the injection direction,
k = 200 of the Bentheimer rock with q = 0.0001 in Figure 8. In these sub-figures, the grain
voxels are in gray, the pore voxels are in white, and the precipitated voxels are in red. After
the 500th phase, the porosity in this two-dimensional slice reduced from 0.2488 to 0.1981;
that is, the porosity reduced approximately 20% after the 500th phase clogging process.

Next, let us consider the effect of the probability of deposition q on the clogging process
of the four types of rocks. In Figure 9, we depict the time evolution of porosities during
the multi-phase process on four rock samples with three different values of probability
of deposition, q = 0.0001, 0.001, 0.01. It is interesting that the larger the value of q, the
faster the porosities decreased at the beginning of the process, while with the smaller
the value of q, the more effective the deposition was in the long term. This behavior
was observed in all the rock samples. In the single-phase case, we see that the porosity
decrease can be described as a monotonically non-increasing function of q, which leads
to the conclusion that the larger the probability of deposition the more pore voxels were
precipitated. However, this was not so in the multi-phase case. The reason is that, during
the multi-phase process the geometric structure of the pore space evolved according to
time; as a result, the changes in permeability due to deposition affected the fluid behavior
within the geologic formations. When we set the value for q as large, then the deposition
happened rapidly at the beginning of the trajectories (see the slopes of the porosity curves
corresponding to q = 0.01 in Figure 9, from phase 0 to phase 25). However, at these
time intervals, most of the particles had not yet reached near enough to the outlet surface,
meaning that most of the precipitated voxels were near the inlet surfaces. This narrowed
down or obturated the capillaries and, therefore, prevented the particles from moving
toward the injection direction.
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Figure 8. Evolution of the multiple-phase clogging process according to time in the middle slice
along the injection direction, i.e., k = 200, of Bentheimer: grain voxels (gray), pore voxels (white),
mineralized pore voxels (red) with q = 0.0001.

Figure 9. Effect of deposition probability q on the multi-phase clogging processes of four types
of rocks.

Let us observe the distribution of the precipitated voxels along the injection direction at
the end of the multi-phase clogging process. Figure 10 shows a histogram of the precipitated
voxels on equal-length bins along the k direction. More precisely, we divided the rock
sample derived at the end of the multi-phase clogging into 50 disjoint, three-dimensional
blocks along the injection direction. Each block consisted of 20 consecutive layers, e.g., the
first block consisted of 20 layers, from k = 1 to k = 20, and the 50-th block consisted of 20
layers, from k = 981 to k = 1000. We counted the number of precipitated voxels on each
block and used the bar plot to visualize the distribution.

According to Figure 10, when the chosen probability of deposition q was quite large—
say, q = 0.01—it blocked the capillaries, which prevented the particles from approaching the
outlet surfaces, as seen in Bentheimer, Doddington, and Estaillades. When q was gradually
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decreasing, the particles reached closer and closer to the outlet surfaces. In Estaillades,
even with rather small q, i.e., q = 0.0001, there were no precipitated voxels after layer
k = 700. Therefore, Estaillades may not be an appropriate rock formation to use for
geological sequestration. Only in Ketton, even with q = 0.01, did the precipitated voxels
reach the outlet surface; this can be explained by its high permeability (see the sub-figures
in the last row of Figure 3. One of the reasons for the highest permeability being in
Ketton was its relatively high number of medium-size pores compared to the others, as
indicated by its right-most (compare to those of the other rocks) shown in Figure A2 in
Appendix A. It is observed that geometric properties, such as the physical size of pores,
are as important to fluid flow as topological properties like connectivity. Despite having
the highest permeability, the mineralized trapping efficiency in Ketton was lower than in
Bentheimer and Doddington (by comparing the decrease in porosities in Figure 9. The
reason for this may have been partly due to Ketton’s low porosity.

Figure 10. Distribution of clogged voxels along injection direction at the end of the multi-phase
clogging process with respect to different values of deposition probability q.

We also implemented the simulations with the additional assumption that the depo-
sition occurred only at the grain boundary. The derived results show behavior similar to
those without the above assumption; see Appendix B.

6. Conclusions and Future Perspective
The time domain random walk method is applied to describe the movement of par-

ticles within complex, highly disordered, and heterogeneous pore spaces of porous rock
formations under the pressure gradient imposed between the inlet and the outlet surfaces.
The scheme is explicit and can be easily upscaled for large volumes of porous media sam-
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ples. Based on numerical simulations, we investigated the particle fluid flow dynamics
in four different types of natural porous rocks: Bentheimer, Doddington, Estaillades, and
Ketton. The particle fluid flow dynamics were strongly affected by the geometric structure
of the rocks. Ketton had the highest permeability among the four samples, despite having
the lowest porosity.

Based on the particle transport algorithm, we propose a probabilistic clogging model
in two strategies: single- and multi-phase clogging. In the former strategy, the porosity
decrease can be approximated as a monotonically non-increasing function of the deposition
probability in the form of exponential functions. This monotonicity is no longer valid in the
latter strategy, because the geometric structure changes at every phase. When some large
probability of deposition is chosen, the fast clogging narrows the capillaries, preventing
the particles from invading easily in the injection direction. Our simulation results suggest
that Bentheimer, Doddington, and Ketton could potentially be used as rock formations for
carbon dioxide storage, while Estaillades could not. The method proposed in this study
could be useful in lithology selection for geological sequestration.

The simulation study revealed that the velocity v and deposition probability q are
critical parameters that characterize the efficiency of the clogging process. While v models
the pressure gradient imposed between the inlet and the outlet surface, q models the speed
of chemical reactions between CO2 and alkaline earth metals. Fine-tuning these factors
helps increase the efficiency of geological sequestration technology, and the optimal values
can be obtained from the simulation studies.

Once the target lithology has been chosen, the next step is to elucidate these formations’
trapping mechanisms. Mahmood et al. [39] utilized the kinetic Monte Carlo method to
model the carbonation front development in calcium–silicate–hydrate microstructures
under varying temperatures and then combine the simulation data with experimental
results from Fourier-transform infrared spectroscopy (FTIR) and impedance spectroscopy,
so as to provide insights into the carbonation process at different depths and temperatures.
Learning from Mahmood et al.’s idea, in our future work we will incorporate the kinetic
barrier of the chemical processes during the mineralized process, to define the rate constant;
that is, the state-to-state transition rates in the RW algorithm through Arrhenius formulas.
The simulation results will then be combined with atomic simulation and experimental
data to help understand the complicated trapping mechanisms in the chosen lithology.
Another important issue that needs to be addressed is the modeling of fracture systems. It
is critical to access the risk of injected CO2 leakage due to natural fault or fractures as well
as the presence of abandoned oil/gas wells. This problem involves both fluid flow through
aquifers and intensive fluid flow through fractures simultaneously. A hybrid approach
incorporating the random walk model with a continuum has the potential to solving this
challenging problem. For more details about the importance and challenges of this issue,
as well as current numerical methods to solve these systems, we refer the interested reader
to [40,41].
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Appendix A. Statistical Analysis of Geological Void Structure
In this subsection, we provide some geometric structural properties of pore spaces

within the sample rock data that are critical to the transportation of the fluid flow in the
porous space: porosity, permeability, distribution of pore sizes, degree of pore voxels
interconnection in Tables A1 and A2. The concrete definition of the degree of pore voxel
interconnection is given in Section 2.2.

Table A1. Statistics on pore structure.

Bentheimer Doddington Estaillades Ketton

Porosity 21.7% 19.6% 12.7% 13.3%

Number of connected components 33,920 280 14,832 39,190

Number of connected components having points on
inlet surface 159 10 98 123

Number of pore voxels on inlet surface 210,365 216,086 100,175 135,832

Number of passable components 1 1 1 1

The proportion of passable component’ voxels on inlet
surface over total pore voxels on inlet surface 98.262% 98.460% 69.169% 97.498%

Proportion of passable component over total
pore space 99.764% 99.484% 85.668% 99.002%

Table A2. Pore degree distribution of rock samples.

Degree Bentheimer Doddington Estaillades Ketton

0 18,423 0 1206 20,238
1 240,306 2226 15,185 84,971
2 150,7674 97,880 334,002 325,845
3 8,634,944 5,727,949 637,7542 3,846,226
4 11,366,579 7,120,937 7,501,411 4,657,615
5 17,306,204 11,974,797 11,766,153 7,362,755
6 177,699,440 170,884,266 101,316,974 116,745,140

In Figure A1, we depict the porosity profile along the injection direction:
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Figure A1. The porosity profile along the injection direction.

We further provide a comparison of the cumulative density function of the pore size
between four rock types in Figure A2 with the aid of porosimetry filter. The porosimetry
method performs a porosimetry simulation on the 3D image and returns another image
with voxel values indicating the sphere radius as invasion sizes. The results shown in
the figure were calculated using the Python library Porespy [28]. The result indicate high
concentrations of small pores in Estaillades. The CDFs become less steep in Bentheimer
and Doddington. In addition, we observed relatively high middle pore size (30–70 µm) in
Ketton, which was much fewer in other rocks.

Figure A2. Pore size distribution of the four rocks. The figures show the cumulative density function
(CDF) on the vertical axis with respect to the pore size radius (in µm) produced by the porosimetry
method.

Appendix B. Multi-Phase Clogging Process with the Deposition
Occurring only at the Grain Boundary

In this section, we demonstrate the result of the multi-phase clogging process when the
deposition happened only at the grain boundary. The effect of the deposition probability
on the clogging process of the four rocks is shown in Figure A3, and the distributions of
the clogged voxels along the injection direction after the multi-phase clogging finishes are
depicted in Figure A4:
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Figure A3. Effect of deposition probability on the multi-phase clogging processes of four types of
rocks when deposition occurred only on the grain boundary.

Figure A4. Distribution of clogged voxels along injection direction after the multi-phase clogging
processes, with the assumption that the deposition occurred only on the grain boundary.
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