
Academic Editor: Grammati Pantziou

Received: 7 December 2024

Revised: 10 January 2025

Accepted: 17 January 2025

Published: 28 January 2025

Citation: Kamal, H.; Mashaly, M.

Enhanced Hybrid Deep Learning

Models-Based Anomaly Detection

Method for Two-Stage Binary and

Multi-Class Classification of Attacks in

Intrusion Detection Systems.

Algorithms 2025, 18, 69. https://

doi.org/10.3390/a18020069

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Enhanced Hybrid Deep Learning Models-Based Anomaly
Detection Method for Two-Stage Binary and Multi-Class
Classification of Attacks in Intrusion Detection Systems
Hesham Kamal * and Maggie Mashaly *

Networks Department, Faculty of Information Engineering and Technology (IET), German University in
Cairo (GUC), New Cairo 11835, Egypt
* Correspondence: hesham.khalil@student.guc.edu.eg (H.K.); maggie.ezzat@guc.edu.eg (M.M.)

Abstract: As security threats become more complex, the need for effective intrusion de-
tection systems (IDSs) has grown. Traditional machine learning methods are limited by
the need for extensive feature engineering and data preprocessing. To overcome this, we
propose two enhanced hybrid deep learning models, an autoencoder–convolutional neural
network (Autoencoder–CNN) and a transformer–deep neural network (Transformer–DNN).
The Autoencoder reshapes network traffic data, addressing class imbalance, and the CNN
performs precise classification. The transformer component extracts contextual features, which
the DNN uses for accurate classification. Our approach utilizes an enhanced hybrid adap-
tive synthetic sampling–synthetic minority oversampling technique (ADASYN-SMOTE)
for binary classification and enhanced SMOTE for multi-class classification, along with
edited nearest neighbors (ENN) for further class imbalance handling. The models were de-
signed to minimize false positives and negatives, improve real-time detection, and identify
zero-day attacks. Evaluations based on the CICIDS2017 dataset showed 99.90% accuracy
for Autoencoder–CNN and 99.92% for Transformer–DNN in binary classification, and
99.95% and 99.96% in multi-class classification, respectively. On the NF-BoT-IoT-v2 dataset,
the Autoencoder–CNN achieved 99.98% in binary classification and 97.95% in multi-class
classification, while the Transformer–DNN reached 99.98% and 97.90%, respectively. These
results demonstrate the superior performance of the proposed models compared with
traditional methods for handling diverse network attacks.

Keywords: Autoencoder–CNN; binary classification; data resampling; deep learning; IDS;
multi-class classification; Transformer–DNN

1. Introduction
With time, the internet has developed and grown, and it now provides a plethora

of beneficial services to enhance people’s lives. However, there are a number of security
hazards connected to these services, including a rise in network infections, eavesdropping,
and hostile attacks [1–3], all of which complicate detection and raise false alarms. A
growing number of internet users, including important businesses like banks, enterprises,
and governmental agencies, have network security as their top priority.

Cyber-attacks typically begin with reconnaissance to identify vulnerabilities, which
are then exploited to initiate damaging actions [4]. Unauthorized access to computer
systems poses threats to their confidentiality, integrity, and availability (CIA), leading
to what we term an “intrusion” [5]. In recent years, numerous innovative cyber-attack
techniques have emerged, such as brute force attacks, botnets, distributed denial of service

Algorithms 2025, 18, 69 https://doi.org/10.3390/a18020069

https://doi.org/10.3390/a18020069
https://doi.org/10.3390/a18020069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0009-1042-7503
https://orcid.org/0000-0002-8313-5554
https://doi.org/10.3390/a18020069
https://www.mdpi.com/article/10.3390/a18020069?type=check_update&version=1

Algorithms 2025, 18, 69 2 of 59

(DDoS), and cross-site scripting [6]. These attacks have raised significant concerns about
cyber security. Cybercriminals have increasingly utilized various platforms and infrastruc-
tures as vectors for malware and botnets, including for Bitcoin Trojans. According to the
internet security threat report (ISTR), malware is discovered every thirteen seconds on
average during web searches. Incidences of ransom ware, email spam, and other online
threats have seen substantial increases, as reported by CNBC [7]. Cybercrime continues
to escalate at an alarming rate, with the global cost of cyber-attacks projected to reach an
unprecedented $9.5 trillion annually by 2024 [8]. This sharp increase highlights the growing
complexity and sophistication of cyber threats. As organizations encounter higher stakes
in protecting sensitive data, the role of cyber security measures such as intrusion detection
systems (IDSs) becomes more critical. These systems help identify and mitigate potential
risks, offering proactive defense against the ever-evolving landscape of cyber threats. As
we approach 2025, cybercrime is expected to remain a top global concern, further driving
the need for advanced, real-time threat detection and mitigation strategies.

Real-time intrusion detection is critical for ensuring the security and integrity of net-
work systems. Deep learning models have proven effective in real-time analysis of network
traffic, enabling swift identification of intrusions [9]. Various machine learning approaches
enhance the responsiveness of IDSs, particularly in adapting to emerging threats [10].
Additionally, integrating real-time capabilities within IDSs significantly improves network
security by promptly detecting and mitigating attacks [11].

IDSs are among the most widely used security solutions, designed to identify unau-
thorized access and safeguard devices and network infrastructure from malicious activities.
IDSs can be broadly categorized based on their detection approach into two main types.
The first type, signature-based IDSs, compare network traffic or host activity against a
database of known malicious patterns. While this method is effective for identifying known
threats, it requires frequent updates to remain effective and may struggle with unknown
or zero-day attacks as it relies on pre-existing signatures. In contrast, anomaly-based
IDSs identify potential threats by detecting deviations from normal behavior. Unlike a
signature-based IDS, this approach does not depend on known attack patterns, making it
particularly effective for identifying zero-day attacks that exploit previously unknown vul-
nerabilities. To achieve this, anomaly-based IDSs often leverage machine learning and deep
learning techniques to analyze large datasets, learn normal behavior patterns, and detect
anomalies with high accuracy. This approach not only enhances the system’s adaptability
to new threats but also reduces false positives and negatives. In our study, we adopted the
anomaly-based approach to effectively address these challenges.

This study introduces two advanced hybrid deep learning models for intrusion de-
tection, a transformer–deep neural network (Transformer–DNN) and an autoencoder–
convolutional neural network (Autoencoder–CNN). Both models effectively address class
imbalance using advanced techniques like enhanced hybrid adaptive synthetic sampling–
synthetic minority oversampling technique (ADASYN-SMOTE), enhanced SMOTE, and
edited nearest neighbors (ENN). On the CICIDS2017 dataset [12], both models achieved
high accuracy, with Autoencoder–CNN reaching 99.90% in binary and 99.95% in multi-class
classification, and Transformer–DNN achieving 99.92% and 99.96%, respectively. With
the NF-BoT-IoT-v2 dataset [13], Autoencoder–CNN attained 99.98% in binary and 97.95%
in multi-class classification, while Transformer–DNN achieved 99.98% and 97.90%, re-
spectively, demonstrating strong performance across both datasets. The following is an
overview of the principal contributions:

• An effective intrusion detection system was developed using two enhanced hybrid
deep learning models, Transformer–DNN and Autoencoder–CNN. The transformer
extracts contextual features for pattern analysis, while the DNN performs final clas-

Algorithms 2025, 18, 69 3 of 59

sification. The Autoencoder reshapes data, preparing it for precise classification by
the CNN.

• Enhanced hybrid ADASYN-SMOTE resampling is leveraged for binary classification,
while enhanced SMOTE resampling is applied for multi-class classification. These
techniques are combined with ENN to effectively address class imbalance and enhance
model performance.

• Integrating the enhanced local outlier factor (LOF) strengthens anomaly detection by
detecting and removing outliers, significantly boosting the model’s ability to identify
minority class attacks and improving overall detection performance.

• Evaluation on the CICIDS2017 and NF-BoT-IoT-v2 datasets demonstrated the superior
performance of the proposed models compared with state-of-the-art approaches.

This paper is structured as follows. Section 2 provides a comprehensive review
of the related literature. Section 3 describes the methodology employed in this study.
Section 4 presents the results obtained from the experiments, while Section 5 offers a
detailed discussion of the findings. Section 6 addresses the limitations of the proposed
approach. Section 7 concludes the study by summarizing its key contributions and insights.
Finally, Section 8 outlines potential directions for future research.

2. Related Work
IDSs now provide essential protection for national, economic, and personal security,

in the context of the exponential development of data collection and the growing inter-
connection of the global internet infrastructure. In an effort to reduce computer system
vulnerabilities and improve surveillance capabilities, James P. Anderson invented the no-
tion of intrusion detection in 1980 [14]. While security experts continue to work to improve
the effectiveness and precision of IDSs, these systems have been widely implemented over
time. This section reviews various machine learning and deep learning techniques used for
intrusion detection described in the literature. Since DL has so many uses and performs
so well in areas like image recognition and natural language processing, it has become
an obvious choice for traffic anomaly detection in IDSs. Deep learning approaches for
categorizing attack types in intrusion detection systems have been mostly described in
academic publications.

2.1. Binary Classification

Using the Transformer–DNN and Autoencoder–CNN technique for IDS binary classifi-
cation combines the strengths of advanced contextual feature extraction and spatial pattern
recognition. The transformer component excels at capturing contextual relationships in
network traffic data, enhancing the ability to discern intricate data dependencies essential
for effective classification. The DNN leverages these extracted features to perform accurate
final classifications, ensuring robust detection of attack types. Meanwhile, the Autoencoder
compresses and reshapes network traffic data, addressing class imbalance and enhancing
the representation of data characteristics. These optimized data are then passed to the
CNN, which specializes in identifying intricate spatial patterns crucial for distinguishing
malicious from legitimate activity. By integrating these methods, this hybrid approach
significantly enhances the effectiveness of cyber security defenses against dynamic and
evolving threats. The result is an IDS with improved accuracy, reduced false positives and
negatives, and superior real-time threat detection capabilities.

In ref. [15], the authors proposed a DNN model that achieved a binary classification
accuracy of 93.1%. This study explores the development of a versatile and efficient IDS
capable of detecting and categorizing unexpected and evolving cyber-attacks. The dynamic
nature of networks and the rapid evolution of attacks necessitate the evaluation of multiple

Algorithms 2025, 18, 69 4 of 59

datasets over time, using both static and dynamic techniques. This approach aided in iden-
tifying the most effective methods for detecting emerging threats, and provided a thorough
evaluation of DNN models alongside other traditional machine learning classifiers using
several publicly available benchmark malware datasets. The authors in ref. [16] introduced
a DNN-based intrusion detection model with a reported accuracy of 99%. The model was
applied to a recently available dataset that included packet-based and flow-based data
along with additional metadata. The dataset was labeled and imbalanced; it included
79 attributes, with some classes having significantly fewer training samples. The study
highlights the challenges of working with imbalanced data and the importance of using
deep learning models to address these issues. In ref. [17], the authors recommend the use
of principal component analysis (PCA) along with classifiers such as random forest (RF),
linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA), to achieve
99.6% accuracy. PCA can be employed as a feature dimensionality reduction method, and
the reduced features used to construct various classifiers for IDS development.

In ref. [18], the authors introduced a long short-term memory (LSTM) model that
achieved 92.2% accuracy in binary classification. This approach incorporates attention
mechanisms with LSTM networks to effectively capture both temporal and spatial patterns
in network traffic data. The model was tested on the UNSW-NB15 dataset, containing
diverse patterns and notable differences between training and testing data, creating a
challenging evaluation setting. In ref. [19], a CNN–bi-directional long short-term memory
(BiLSTM) model was proposed, attaining 97.90% accuracy in binary classification. This
hybrid approach integrated bidirectional LSTM with a lightweight CNN, applying feature
selection techniques to optimize model efficiency. The authors of ref. [20] proposed a
hybrid model combining LSTM, CNN, and SVM to achieve 98.47% accuracy. Their hybrid
semantic deep learning (HSDL) architecture incorporated word2vec embedding to capture
semantic information in network traffic, and AES encryption to enhance cloud storage
security. The crossover-based mine blast optimization algorithm (CMBA) was used to select
the optimal AES key. Additionally, ref. [21] proposed a two-stage deep learning structure
incorporating a gated recurrent unit (GRU) network in the first stage and a denoising
auto-encoder (DAE) in the second stage, which achieved an accuracy of 90.21% on Test+
for intrusion detection. Furthermore, ref. [22] tackled class imbalance by integrating CNN–
bidirectional long short-term memory (BiLSTM) with ADASYN, reaching an accuracy
of 90.73% on Test+. In ref. [23], the authors proposed a hybrid Transformer–CNN deep
learning model to overcome these challenges. The model utilized data resampling methods
like ADASYN, SMOTE, ENN, and class weights to address class imbalance, achieving an
accuracy of 99.71%.

In ref. [24], the authors proposed advancements for IDSs in cloud environments by
developing and evaluating two innovative deep neural network models. The first model
utilized a multi-layer perceptron (MLP) trained with backpropagation (BP), while the
second combined particle swarm optimization (PSO) with MLP training. Both models
achieved impressive accuracy of 98.97%, demonstrating significant improvements in IDS
performance and efficiency for detecting and mitigating intrusions. In ref. [25], the authors
demonstrated a notable reduction in the time required for traffic analysis and significant
success with their proposed model. Tested on the CSE-CIC-IDS2018 dataset, the model’s
effectiveness was confirmed. Experimental results revealed that using the ExtraTree al-
gorithm, the model achieved an impressive accuracy of 98.5% for binary classification.
In ref. [26], the authors utilized PySpark with Apache Spark in the Google Colaboratory
(Colab) environment, relying on the Keras and Scikit-Learn libraries. The training and
testing datasets included ’CICIoT2023’ and ’TON_IoT’. To enhance the feature set, the
datasets were refined using the correlation method. The authors developed a hybrid deep

Algorithms 2025, 18, 69 5 of 59

learning algorithm combining one-dimensional CNN and LSTM, obtaining an accuracy of
98.75% for optimal performance.

In ref. [27], the authors introduced a new classifier algorithm designed to detect
malicious traffic in IoT environments using machine learning techniques. The approach
utilized a real IoT dataset that simulates actual traffic conditions, assessing the performance
of different classification algorithms to evaluate their effectiveness, achieving an accuracy
of 99.2%. In ref. [28], the authors described three essential machine learning techniques
used for binary classification. These methods were applied within an IDS designed to
detect IoT-based attacks and classify them into two categories, benign and malicious. The
study utilized the IoT-23 dataset, a recent and extensive dataset, to create an intelligent
IDS capable of identifying and categorizing attack patterns in IoT environments for binary
classification, achieving an accuracy of 99%. In ref. [29], the authors examined the factors
influencing existing near-Earth remote sensing systems and introduced a spatio-temporal
graph attention network (N-STGAT) incorporating node states for application in network
intrusion detection in near-Earth remote sensing systems, obtaining an accuracy of 97.88%.
In ref. [30], the authors introduced a self-supervised graph neural network for network
intrusion detection systems, designed to effectively and thoroughly differentiate between
normal and malicious network flow associated with various attack types. To the best of
our knowledge, this represents the first graph neural network (GNN)-based method for
classification tasks in NIDS using an unsupervised approach, resulting in an accuracy
of 99.64%.

The Transformer–DNN and Autoencoder–CNN models outperformed existing meth-
ods, achieving 99.92% and 99.90% accuracy, respectively, in binary classification using
CICIDS2017. With the NF-BoT-IoT-v2 dataset, both models reach 99.98% accuracy. These
results represent significant advancements, with a comparison in Table 1.

Table 1. Related work for binary classification.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

R. Vinaya-Kumar
et al. [15] CICIDS2017 2019 DNN 93.1%

Investigated DNNs for a
versatile IDS to detect and
categorize novel cyber-attacks,
comparing their effectiveness
with traditional machine
learning classifiers using
benchmark datasets.

• Inadequate scalability and
performance analysis for
distributed systems and
advanced DNNs.

Kaniz Farhana
et al. [16] CICIDS2017 2020 DNN 99%

Presents a deep neural
network-based intrusion
detection model developed
using Keras within the Google
TensorFlow environment. The
model was applied to a recent,
imbalanced dataset containing
79 attributes including
packet-based, flow-based data,
and metadata, with some classes
having significantly
fewer samples.

• The model’s inability to
classify ‘Heartbleed’,
‘Infiltration’, and ‘Web
Attack Sql Injection’
highlights issues with
class imbalance due to the
low number of records for
these attacks.

Razan
Abdulhammed
et al. [17]

CICIDS2017 2019
PCA, RF,
LDA and
QDA

99.6%

PCA was used for
dimensionality reduction and
the resulting features were
applied to build classifiers such
as RF, Bayesian networks, LDA,
and QDA for IDS development.

• Does not address the need
for updating training data
in real-time or for
developing IDS models
that can adapt and train on
the go for online network
intrusion detection.

Algorithms 2025, 18, 69 6 of 59

Table 1. Cont.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

Mohammad A.
Alsharaiah
et al. [18]

UNSW-NB15 2024 AT-LSTM 92.2%

Introduced a novel NIDS
approach combining LSTM with
attention mechanisms to analyze
temporal and spatial
characteristics of network traffic,
employing the UNSW-NB15
dataset, utilizing different sizes
for training and testing sets.

• Complicated architecture.
• Although the AT-LSTM

model achieved high
accuracy on the
UNSW-NB15 dataset, it
lacks techniques for
handling class imbalance
and has not been tested on
datasets like NSL-KDD,
potentially limiting its
adaptability and
performance across
various scenarios.

Mohammed
Jouhari et al. [19] UNSW-NB15 2024 CNN-

BiLSTM 97.90%

Presents an efficient IDS model
that combines BiLSTM with a
lightweight CNN and applies
feature selection to
reduce complexity.

• Complicated architecture.
• The research focused on

refining the IDS model for
computational efficiency,
which may have
constrained assessment of
other key factors like
generalization and
resilience across
different datasets.

Varun
Prabhakaran and
Ashokkumar Ku-
landasamy [20]

UNSW-NB15 2021 LSTM-
CNN-SVM 98.47%.

Developed the HSDL
architecture by combining SVM,
CNN, and LSTM for intrusion
detection, using word2vec for
semantic analysis and AES
encryption for cloud security
when no intrusion is found. The
CMBA selects the most secure
encryption key.

• Complex architecture.
• The study’s focus on the

NSL-KDD and
UNSW-NB15 datasets limits
the generalizability of the
proposed hybrid semantic
deep learning model to
broader applications, such
as IoT and Big
Data environments.

Ming-Tsung Kao
et al. [21] NSL KDD 2022

Combining
the models
of GRU
and DAE

90.21%

The proposed structure uses a
GRU model to analyze network
flow and generates a confidence
score via softmax. If the score
meets or exceeds a threshold,
the GRU directly classifies the
flow as positive. If not, the GRU
classifies it as negative and
forwards it to the DAE model,
which then evaluates typical
flow patterns and sets the
reconstruction error threshold.

• Binary classification only.
• Complex architecture.
• The proposed anomaly

detection structure
showed improved
accuracy but needs
validation with additional
datasets and
real-world data.

Yanfang Fu
et al. [22] NSL KDD 2022 CNN and

BiLSTMs 90.73%

Presents DLNID, a traffic
anomaly detection model that
combines an attention
mechanism with Bi-LSTM to
improve detection accuracy. A
CNN extracts sequence features,
then applies attention to adjust
channel weights, and Bi-LSTM
is finally used to learn the
sequence features.

• Binary classification only.
• Complex architecture.
• The proposed DLNID

model showed improved
performance on the
KDDTest+ test set but has
not been tested in
real-world environments
or for online
intrusion detection.

Algorithms 2025, 18, 69 7 of 59

Table 1. Cont.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

Hesham Kamal
and Maggie
Mashaly [23]

NF-UNSW-
NB15-v2 2024 Transformer-

CNN 99.71%

Introduces a hybrid
Transformer–CNN model that
addresses these challenges by
utilizing data resampling
methods such as ADASYN,
SMOTE, ENN, and class weights
to manage class imbalance.

• The study’s limitations
include the need for
broader dataset evaluation,
improved data
preprocessing, model
adaptation,
hyperparameter
optimization, and
enhanced scalability and
efficiency for larger
datasets and complex
network traffic.

Saud Alzughaibi
and Salim El
Khediri [24]

CSE-CIC-
IDS2018 2023 MLP-BP,

MLP-PSO 98.97%

Improved IDS in cloud
environments by developing
and testing two deep neural
network models: one using MLP
with BP and the other with PSO.
These models aim to enhance
IDS performance and efficiency
in detecting and responding
to intrusions.

• Low accuracy.
• Complex architecture.
• The study achieved high

accuracy with MLP-BP
and MLP-PSO models but
the method has yet to be
tested in real time or cloud
environments; could
benefit from
exploring different
optimization algorithms.

Recep Sinan
Arslan [25]

CSE-CIC-
IDS2018 2021 ExtraTree

algorithm 98.5%

Implementing the proposed
model achieved a substantial
reduction in traffic analysis time
while attaining remarkable
success rates. Extensive testing
on the CSE-CIC-IDS2018 dataset
has validated the model’s
advantages. Specifically, the
ExtraTree algorithm
demonstrated an impressive
99.0% detection rate in binary
classification tasks.

• The study showed that
tree-based classifiers
worked well on the
CSE-CICIDS2018 dataset
but did not explore the use
of fewer features, neural
networks, or unsupervised
learning methods for
better speed, accuracy,
and adaptability.

Sami Yaras and
Murat Dener [26] ToN-IoT 2024 CNN-

LSTM 98.75%

Study conducted in the Colab
environment using PySpark
with Apache Spark and the
Keras and Scikit-Learn libraries.
The ’CICIoT2023’ and ’TON_IoT’
datasets were utilized for both
training and testing the model.
The correlation method was
applied for feature reduction,
ensuring that only the most
pertinent features were included.
A hybrid deep learning
algorithm was designed by the
researchers, combining
one-dimensional CNN and
LSTM to optimize the
model’s performance.

• A major limitation of this
study is that, while high
accuracy rates were
achieved, the large data
volumes used led to
increased training and
testing times, emphasizing
the need for future
optimization to strike a
balance between accuracy,
computational efficiency,
and cost.

Mohamed
ElKashlan
et al. [27]

IoT-23 2023 Filtered
classifier 99.2%

Presents a classifier algorithm
for detecting malicious traffic in
IoT environments using
machine learning. The proposed
system uses a real IoT dataset
that reflects actual traffic, and
several classification algorithms
are evaluated for
their performance.

• The limitation of the study
lies in its use of only the
IoT-23 dataset, which may
not capture all attack
scenarios in IoT EVCS
environments. Future
research should include
more datasets and
deep learning
techniques for a more
comprehensive evaluation.

Algorithms 2025, 18, 69 8 of 59

Table 1. Cont.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

Trifa S. Othman
and Saman M.
Abdullah [28]

IoT-23 2023 ANN 99%

Presents three key machine
learning techniques for both
binary and multi-class
classification, forming the
foundation of an IDS designed
to protect IoT environments.
These techniques are used to
detect various IoT-based
cyber-attacks and accurately
classify their types. Utilizing the
advanced IoT-23 dataset, the
research develops a
sophisticated intelligent IDS that
identifies malicious activities
and classifies attack vectors in
real-time, improving security for
IoT networks.

• A major limitation of this
study is the inability of the
SMOTE method to
enhance the accuracy of
the proposed IIDS model
on the IoT-23 dataset, even
though it is usually
effective for
imbalanced datasets.

Yalu Wang
et al. [29] NF-BoT-IoT-v2 2023 N-STGAT 97.88%

Investigated the factors affecting
existing near-Earth remote
sensing systems, presenting an
N-STGAT that integrates node
states for use in network
intrusion detection in near-Earth
remote sensing systems.

• A limitation of this study
is that it relies on a specific
dataset for evaluation,
which may limit the
generalizability of the
N-STGAT model to other
network environments
with different
characteristics.

Renjie Xu
et al. [30] NF-BoT-IoT-v2 2024 GNN 99.64%

Presents a self-supervised graph
neural network for network
intrusion detection systems,
aimed at efficiently
distinguishing normal network
flows from malicious ones
across different attack types. To
the best of our knowledge, this
is the first GNN-based approach
for multi-class classification in
NIDS using an
unsupervised method.

• A limitation of this study
is that it relies on
netflow-based datasets,
which may not fully
capture the complexities of
real-world network traffic,
and it does not address
data imbalance in
network intrusion
detection systems.

2.2. Multi-Class Classification

For multi-class categorization in IDSs, the combination of Transformer–DNN and
Autoencoder–CNN offers a powerful solution. The transformer effectively captures contex-
tual relationships within network traffic data, enabling the extraction of critical patterns
and features. These features are utilized by the DNN to perform precise classifications
of various attack types. Meanwhile, the Autoencoder reduces the dimensionality of the
data, enhancing its representation, and the CNN leverages these refined features to detect
intricate spatial patterns and anomalies. This integrated approach significantly enhances
the IDS’s ability to distinguish between multiple attack categories, improving detection
accuracy and fortifying the system’s overall performance.

Given the dynamic nature of network environments and the rapid evolution of attacks,
evaluating various datasets using both static and dynamic methods is crucial for identifying
the most effective algorithms for detecting future threats. In ref. [15], the authors recom-
mend a DNN model that achieved a multi-class classification accuracy of 95.6%. Their
aim was to develop a flexible and effective IDS capable of identifying and categorizing
unexpected and evolving cyber-attacks using a deep neural network, and the research
provided a comprehensive analysis of DNN and other conventional machine learning
classifiers using multiple publicly available benchmark malware datasets. The authors in
ref. [16] proposed a DNN model that achieved 99% accuracy. This model, tested on the lat-

Algorithms 2025, 18, 69 9 of 59

est publicly available dataset with packet-based, flow-based data, and additional metadata,
addressed the challenges of imbalanced and labeled datasets and used 79 attributes. The
research in ref. [17] reported that using PCA, RF, LDA, and QDA models achieved 99.6%
accuracy for multi-class classification. PCA was used for dimensionality reduction, and the
reduced features were utilized to construct several classifiers for IDS development.

In ref. [23], the authors introduced a hybrid Transformer–CNN deep learning model
designed to tackle these challenges. The model incorporates data resampling techniques
such as ADASYN, SMOTE, edited ENN, and class weights to mitigate class imbalance,
achieving an accuracy of 99.02%. In ref. [31], the authors present a conditional generative
adversarial network (CGAN) augmented by bidirectional encoder representation from
transformers (BERT), a powerful pre-trained language model, designed to enhance multi-
class intrusion detection. The approach uses CGAN to generate additional data for minority
attack classes, effectively tackling class imbalance. Moreover, BERT is integrated into the
CGAN discriminator, improving feature extraction and strengthening input–output depen-
dencies, thereby boosting detection performance through adversarial training, resulting
in an accuracy of 87.40%. In ref. [27], the authors propose a novel classifier algorithm
for detecting malicious traffic in IoT environments using machine learning techniques.
The method employs a genuine IoT dataset representing real-world traffic patterns and
evaluates the effectiveness of various classification algorithms to assess their performance,
achieving an accuracy of 99.2%. In ref. [32], an RNN and a DNN were utilized to achieve
accuracy rates of 98.68% and 98.95%, respectively. In ref. [33], the authors proposed a
multilayer CNN integrated with LSTM, which achieved remarkable accuracy of 99.5%.
This approach utilized CNN layers to extract and select features, followed by a softmax
classifier to categorize network intrusions. In ref. [34], the authors presented an RF model
that achieved an accuracy rate of 98.3%. The study extended its attack detection method to
the UNSW-NB15 dataset, reaching 98.3% accuracy in multi-class classification tasks.

A hybrid model proposed by ref. [20], combining LSTM, CNN, and SVM, achieved an
accuracy of 98.47%. This approach created a HSDL architecture integrating SVM, CNN, and
LSTM to analyze semantic information from network traffic. The study also included AES
encryption for cloud storage security, optimized using the CMBA technique. In ref. [24],
the authors introduced enhancements for IDS in cloud environments by designing and
assessing two novel deep neural network models. The first model utilized MLP optimized
through BP, while the second combined MLP with PSO. These models significantly en-
hanced IDS effectiveness and efficiency, achieving accuracy of 98.41%. In ref. [35], the
authors underscore the critical importance of cyber security in monitoring and safeguard-
ing network infrastructures against vulnerabilities and intrusions. They emphasize that
advancements in machine learning, particularly deep learning, have significantly improved
the early detection and prevention of attacks through advanced self-learning and feature ex-
traction techniques. Their research utilized deep learning to analyze the CSE-CIC-IDS2018
dataset, which included both normal network behavior and various attacks. The evaluation
of the LSTM model demonstrated a remarkable detection accuracy of 99%. In ref. [29],
the authors analyzed the factors affecting existing near-Earth remote sensing systems and
proposed an N-STGAT that integrates node states for use in network intrusion detection in
near-Earth remote sensing systems, obtaining an accuracy of 93%. In ref. [36], the authors
propose a collaborative federated learning approach that facilitates the sharing of cyber
threat intelligence (CTI) between organizations, with the goal of developing a more efficient
ML-based network intrusion detection system (NIDS). By implementing LSTM on the
NF-BoT-IoT-v2 dataset, the model achieved an accuracy of 94.61%.

The Transformer–DNN and Autoencoder–CNN models achieved 99.96% and 99.95%
accuracy, respectively, in multi-class classification with CICIDS2017. With NF-BoT-IoT-v2,

Algorithms 2025, 18, 69 10 of 59

the Autoencoder–CNN reached 97.95% and the Transformer–DNN achieved 97.90%. These
results represent significant improvements over prior research, as detailed in Table 2.

Table 2. Related works on multi-class classification.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

R. Vinaya-Kumar
et al. [15] CICIDS2017 2019 DNN 95.6%

This research aimed to develop
a versatile IDS using deep
neural networks to identify and
classify emerging cyber-attacks.
It evaluated various datasets
and algorithms, comparing
DNNs with traditional
classifiers using benchmark
malware datasets to determine
the most effective approach for
detecting new threats.

• Insufficient scalability and
performance analysis for
distributed systems and
advanced DNNs.

Kaniz Farhana
et al. [16] CICIDS2017 2020 DNN 99%

This study introduces a deep
neural network-based intrusion
detection model tested on a
recent, imbalanced dataset with
79 attributes. The model,
developed using Keras and
TensorFlow, handles
packet-based, flow-based data,
and metadata.

• The model’s failure to
classify ‘Heartbleed’,
‘Infiltration’, and ‘Web
Attack Sql Injection’
underscores the challenge
of class imbalance caused
by the limited number of
records for these attacks.

Razan
Abdulhammed
et al. [17]

CICIDS2017 2019
PCA, RF,
LDA and
QDA

99.6%

This study used PCA to reduce
feature dimensionality and then
employed the low-dimensional
features to build several
classifiers, including RF, LDA,
and QDA, for an IDS.

• Fails to address the
requirement for real-time
training data updates or
the development of IDS
models capable of
adapting and training on
the go for online network
intrusion detection.

Hesham Kamal
and Maggie
Mashaly [23]

NF-UNSW-
NB15-v2 2024 Transformer-

CNN 99.02%

In this study, a hybrid
Transformer–CNN model is
proposed to tackle these
challenges, employing data
resampling techniques like
ADASYN, SMOTE, and ENN,
and class weights to effectively
handle class imbalance.

• The study’s limitations
involve the need for
broader dataset evaluation,
improved preprocessing,
model adaptation,
hyperparameter
optimization, and
enhanced scalability.

Fang Li et al. [31] NF-UNSW-
NB15-v2 2024 CGAN-

BERT 87.40%

This study introduces a novel
approach that merges a CGAN
with BERT to address
multi-class intrusion detection
problems. The method aims to
augment data for minority
attack classes, thus tackling class
imbalance. By incorporating
BERT into the CGAN’s
discriminator, the framework
strengthens input–output
relationships and boosts
detection performance through
adversarial training, leading to
enhanced feature extraction and
a more resilient cybersecurity
detection system.

• A major limitation of this
study is the challenge of
effectively differentiating
between attacks with
similar traits or high levels
of concealment, such as
Analysis, Backdoor, and
DoS, within the
NF-UNSW-NB15-v2
dataset.

Algorithms 2025, 18, 69 11 of 59

Table 2. Cont.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

Mohamed
ElKashlan
et al. [27]

IoT-23 2023 Filtered
classifier 99.2%

Introduces a new classifier
algorithm designed to detect
malicious traffic in IoT
environments using machine
learning techniques, utilizing a
real IoT traffic dataset and
evaluating the performance of
several classification algorithms.

• The study is limited by its
sole use of the IoT-23
dataset, which may not
cover all possible attack
scenarios in IoT EVCS
environments. Future
work should include a
wider variety of datasets
and employ advanced deep
learning methods for a
more thorough evaluation.

Arun Kumar
Silivery et al. [32] NSL KDD 2023 RNN and

DNN

98.68% and
98.95% re-
spectively.

Validated on the NSL-KDD
dataset, the model showed
superior detection rates,
accuracy, and lower rates of false
alarms compared with those
using the Adamax optimizer. It
was assessed against shallow
and deep learning models
incorporating RNNs,
LSTM-RNNs, and DNNs.

• Multi-class
classification only.

• The proposed RNN,
LSTM-RNN, and DNN
models show good
performance on KDD’99
and NSL-KDD datasets
but struggle with
UNSW-NB15, highlighting
limitations in handling
imbalanced datasets and
the need for improved
false positive rates.

Muhammad Basit
Umair et al. [33] NSL KDD 2022

Multilayer
CNN-
LSTM

99.5%

Due to the limitations of
traditional methods, the paper
proposes a statistical approach
for intrusion detection,
involving feature extraction,
classification with a multilayer
convolutional neural network
using softmax, and additional
classification with a multilayer
deep neural network.

• Multi-class
classification only.

• Complex architecture.
• The proposed IDS achieves

high accuracy and
performance metrics but
lacks testing on diverse
datasets and real-world
scenarios, which could
impact its generalizability.

Fuat Turk [34] UNSW-NB15 2023 RF 98.3%

Advanced ML and DL
techniques for attack detection
utilizing the UNSW-NB15 and
NSL-KDD datasets, achieving
98.3% in multi-class
classification on UNSW-NB15.

• Attack classes are
occasionally misclassified,
requiring better dataset
balancing and real-time
model updates to
enhance performance.

Varun
Prabhakaran and
Ashokkumar Ku-
landasamy [20]

UNSW-NB15 2021 LSTM-
CNN-SVM 98.47%

Combines SVM, CNN, and
LSTM into a HSDL architecture
for intrusion detection, using
word2vec for semantic analysis
of network traffic. The model
classifies attacks, encrypts
standard text with AES if no
intrusion is detected, and
employs CMBA for key
selection to enhance cloud
storage security.

• Complex architecture.
• The study’s emphasis on

the NSL-KDD and
UNSW-NB15 datasets
restricts the
generalizability of the
proposed hybrid semantic
deep learning model to
wider applications,
including IoT and Big
Data environments.

Saud Alzughaibi
and Salim El
Khediri [24]

CSE-CIC-
IDS2018 2023 MLP-BP,

MLP-PSO 98.41%

Development and evaluation of
two deep neural network
models: one with MLP and BP,
and the other with MLP and
PSO. These models are designed
to improve IDS performance
and efficiency in detecting and
responding to intrusions,
enhancing IDS in
cloud environments.

• Complex architecture.
• The study demonstrated

high accuracy with
MLP-BP and MLP-PSO
models but the system has
not yet been evaluated in
real time or cloud
environments and
may benefit from
investigating alternative
optimization algorithms.

Algorithms 2025, 18, 69 12 of 59

Table 2. Cont.

Author Dataset Year Utilized
Technique Accuracy Contribution Limitations

Baraa Ismael
Farhan and
Ammar D.
Jasim [35]

CSE-CIC-
IDS2018 2022 LSTM 99%

The increasing demand for cyber
security highlights the need for
robust network monitoring. The
study applied deep learning to
the CSE-CIC-IDS2018 dataset,
achieving 99% detection
accuracy with an LSTM model
for identifying network attacks.

• Multi-class
classification only.

• The proposed LSTM-based
intrusion detection system
achieves high accuracy but
faces challenges relating to
dataset imbalance and
large size, which may
impact accuracy and
complicate model design.

Yalu Wang
et al. [29]

NF-BoT-
IoT-v2 2023 N-STGAT 93%

Examines the factors influencing
existing near-Earth remote
sensing systems and introduces
an N-STGAT that incorporates
node states for application in
network intrusion detection in
near-Earth remote
sensing systems.

• A limitation of this study
is its dependence on a
single dataset for
evaluation, which may
restrict the N-STGAT
model’s ability to
generalize to
diverse network
environments with
varying characteristics.

Mohanad Sarhan
et al. [36]

NF-BoT-
IoT-v2 2023 LSTM 94.61%

A collaborative federated
learning approach is proposed
to enable the sharing of CTI
between organizations, aiming
to develop a more efficient
ML-based NIDS. The
implementation of LSTM on the
NF-BoT-IoT-v2 dataset achieved
an accuracy of 94.61%

• A limitation of this study
is the trade-off between
slightly reduced
classification performance
and maintaining privacy,
which may affect the
model’s ability to fully
match centralized learning
methods in terms
of accuracy.

2.3. Challenges

State-of-the-art IDSs leveraging deep learning models face several significant chal-
lenges. A key issue is achieving high accuracy, which is often hindered by the class imbal-
ance prevalent in benchmark datasets. These datasets typically contain a disproportionate
amount of normal traffic compared with attack traffic, making it difficult to detect rare
but critical attack types. This imbalance leads to elevated rates of false alarm and reduces
overall detection effectiveness. While deep learning holds promise for improving detection
capabilities, it also introduces substantial computational complexity and resource demands,
raising concerns about scalability and efficiency, particularly in large-scale, real-time opera-
tional settings. Another critical challenge is the limited generalizability of these models.
They often struggle to adapt to diverse network conditions or to identify novel attack
types not included in the training data, reducing their robustness in practical application.
Additionally, many studies have prioritized theoretical and experimental advancements
in deep learning, often neglecting practical deployment challenges such as data privacy,
system latency, and integration with existing security frameworks. A further limitation is
the tendency to focus narrowly on accuracy, potentially overlooking other essential perfor-
mance metrics such as precision, recall, F1 score, and the implications of false positives and
negatives. Addressing these interconnected challenges requires a holistic approach that
emphasizes balanced data handling, scalability, adaptability to evolving network threats,
and practical considerations for deployment in real-world environments.

The Transformer–DNN and Autoencoder–CNN models address key limitations in
existing intrusion detection systems, demonstrating superior accuracy and other perfor-
mance metrics compared with traditional methods. These models effectively tackle class
imbalance issues through advanced resampling techniques, including enhanced hybrid

Algorithms 2025, 18, 69 13 of 59

ADASYN-SMOTE for binary classification and enhanced SMOTE for multi-class classi-
fication, combined with ENN. The Autoencoder enhances the preprocessing of network
traffic data by improving feature representation and balancing class distributions, which
significantly boosts the CNN’s ability to classify and detect rare attack types. Meanwhile,
the transformer excels in capturing contextual relationships within data, enabling the anal-
ysis of complex patterns and dependencies, while the DNN leverages these insights for
precise classification. Both models are optimized for scalability and performance, efficiently
handling large-scale datasets while maintaining real-time processing capabilities. Their
robustness has been validated through extensive testing on the CICIDS2017 and NF-BoT-
IoT-v2 datasets, confirming their effectiveness across diverse network environments and
attack scenarios. Designed with real-world deployment in mind, these models minimize
false positives and negatives, ensuring their applicability in live network settings. More-
over, a focus on comprehensive evaluation metrics beyond accuracy provides a holistic
assessment of performance, addressing potential challenges in detection reliability and
practical application.

3. Methodology
The Transformer–DNN and Autoencoder–CNN architectures were selected after eval-

uating the limitations of traditional IDS approaches and through an iterative process of
testing and evaluation. The Transformer–DNN leverages the transformer’s self-attention
mechanism to capture long-range contextual relationships in sequential data, and the DNN
transforms these contextual features into accurate classifications. On the other hand, the
Autoencoder–CNN preprocesses network traffic data by reshaping and denoising through
the Autoencoder, enabling the CNN to classify enhanced features with precision. These
models demonstrated superior performance in handling imbalanced datasets during pre-
liminary evaluations. To further address class imbalance, the proposed models leverage an
enhanced hybrid ADASYN-SMOTE for oversampling in binary classification and enhanced
SMOTE for oversampling in multi-class classification. Additionally, ENN is applied for
undersampling to ensure the model learns from more challenging examples by removing
noisy or borderline instances, thereby maintaining a balanced class distribution.

This section provides a detailed overview of the model’s steps, including the extensive
preprocessing procedures applied to the CICIDS2017 dataset, followed by an evaluation of
its performance on both the CICIDS2017 and NF-BoT-IoT-v2 datasets. Figure 1 provides
a visual representation of the proposed architecture, showcasing its application for both
binary and multi-class classification tasks on the CICIDS2017 dataset.

3.1. Dataset Description

Certain aspects, such data structure and labeling, are critical for intrusion detection
in network-based datasets. Markus et al. [37] provide a comprehensive explanation of
these aspects for both supervised and unsupervised intrusion detection approaches. The
history of the CICIDS2017 dataset, which served as this study’s intrusion detection dataset,
is covered in this section. The Canadian institute for cybersecurity (CIC) provide a dataset
that is freely accessible to all scholars [38]. One of the most recent datasets for network
intrusion detection accessible in the literature includes 2,830,743 records with 79 network
traffic variables and 15 classes [12]. The dataset consists of eight files with five-day benign
and attack activities, each including a collection of real-world data [38]. Records with extra
metadata are mostly in packet-based and bifacial flow-based formats [37]. The dataset is
completely labelled. The focus of the dataset is on the classes listed in Table 3, because
its generation is intended for use in network intrusion detection. All attack types are

Algorithms 2025, 18, 69 14 of 59

categorized as ‘1’ in binary classification, whereas benign assaults are classified as ‘0’. All
assault types were taken into consideration for multi-classification as presented.

Algorithms 2025, 18, x FOR PEER REVIEW 15 of 61

Figure 1. Designed architecture using the CICIDS2017 dataset for binary and multi-class classifica-

tion.

3.1. Dataset Description

Certain aspects, such data structure and labeling, are critical for intrusion detection

in network-based datasets. Markus et al. [37] provide a comprehensive explanation of

these aspects for both supervised and unsupervised intrusion detection approaches. The

history of the CICIDS2017 dataset, which served as this study’s intrusion detection da-

taset, is covered in this section. The Canadian institute for cybersecurity (CIC) provide a

dataset that is freely accessible to all scholars [38]. One of the most recent datasets for

network intrusion detection accessible in the literature includes 2,830,743 records with 79

network traffic variables and 15 classes [12]. The dataset consists of eight files with five-

 Start

File 5 File 4

Combine
CICIDS2017 Dataset

Files

Data Cleaning

Removing Outliers
Using LOF

Numerical Columns
Normalization

MinMaxNormalizer

Split CICIDS2017

Dataset Files

 File 1 File 2 File 3 File 6 File 7 File 8

Input
CICIDS2017 Dataset

 Training

 File

Output Results

 Model Training

Model Validation
and Update

 Class
 Resampling

 Testing

 File

Test+

 Flow Between Steps

 Process or Operation Step

 Dataset

 Flow to Results

 Output Results

Figure 1. Designed architecture using the CICIDS2017 dataset for binary and multi-class classification.

The seven common attack families making up the assaults included the botnet, DoS,
DDoS, brute force, web, infiltration, and Heartbleed attacks. Passwords can be cracked,
secret information can be found, and attacks may be attempted via brute force attacks.
Botnet assaults use internet-connected gadgets to launch spam attacks. DoS attacks over-
whelm the system networks and cause the system to become unavailable for a while. DDoS
attacks happen when several systems become targets. Web assaults are software programs
designed to search for weaknesses in the user system and attack it. A backdoor can be built
in an infiltration assault in order to launch attacks on the system once the user system has

Algorithms 2025, 18, 69 15 of 59

been exploited. A Heartbleed attack operates by tricking servers into giving up their pri-
vate encryption key, which then leaks their data. Figure 2 shows the CICIDS2017 dataset’s
sample distribution for each class. In the two-stage process, the first binary classification
stage is followed by multi-class classification, where removing the normal traffic samples
enabling the model to focus on distinguishing between different attack types.

Table 3. Dataset and Class Types [16].

File Names (.csv File Format) + Activity Day Instances Classes

Friday Working Hours Afternoon DDos 225,745 Benign, DDoS

Friday Working Hours Afternoon PortScan 286,467 Benign, Port Scan

Friday Working Hours Morning 191,033 Benign, Bot

Monday Working Hours 529,918 Benign

Thursday Working Hours Afternoon Infiltration 288,602 Benign, Infiltration

Thursday Working Hours Morning WebAttacks 170,366 Benign, Web Attack Brute Force, Web Attack Sql Injection, Web Attack XSS

Tuesday Working Hours 445,909 Benign, FTP Patator, SSH Patator

Wednesday Working Hours 692,703 Benign, DoS-GoldenEye, DoS-Hulk, DoS Slowhttptest, DoS-Slowloris, Heartbleed
Algorithms 2025, 18, x FOR PEER REVIEW 17 of 61

Figure 2. Sample distribution of the CICIDS2017 dataset for each class.

3.2. Data Preprocessing

The CICIDS2017 dataset, while comprehensive, contains missing or NaN (not a num-

ber) values that require careful handling during preprocessing to ensure high-quality

data. The preprocessing began with merging all eight constituent files into a unified da-

taset before addressing any missing values. Next, duplicate entries were removed, and

columns containing only a single unique value were discarded. The remaining NaN val-

ues were imputed and leading spaces stripped from feature names for consistency. After

these cleaning steps, samples were taken from the dataset. In the case of multi-class clas-

sification, the Normal class was removed after sampling. Outliers were then removed us-

ing LOF to ensure the dataset was free from extreme values that could have distorted

model performance. Then the data were split into input and output variables. Numerical

features were then normalized using MinMaxScaler 1.2.2 to ensure consistent scaling

across the inputs. Following these preprocessing tasks, the dataset was split into training

and testing sets. To address class imbalance, the enhanced hybrid ADASYN-SMOTE tech-

nique was applied for oversampling in binary classification and enhanced SMOTE was

used for oversampling in multi-class classification to generate synthetic samples within

the training set. Moreover, ENN was employed for undersampling the training data, en-

suring a balanced class distribution for both binary and multi-class tasks. The prepro-

cessing steps effectively cleaned, balanced, and optimized the dataset, ensuring it was

well-prepared for model training and positioned to deliver high-quality and dependable

results.

99,000

12,000 14,000

39,000

4000 2000 900 1700 1200 700 450 350 36 21 11
0

20000

40000

60000

80000

100000

120000

N
u

m
b

er
 o

f
S

am
p

le
s

Traffic Type

Figure 2. Sample distribution of the CICIDS2017 dataset for each class.

3.2. Data Preprocessing

The CICIDS2017 dataset, while comprehensive, contains missing or NaN (not a num-
ber) values that require careful handling during preprocessing to ensure high-quality data.
The preprocessing began with merging all eight constituent files into a unified dataset
before addressing any missing values. Next, duplicate entries were removed, and columns
containing only a single unique value were discarded. The remaining NaN values were
imputed and leading spaces stripped from feature names for consistency. After these
cleaning steps, samples were taken from the dataset. In the case of multi-class classification,
the Normal class was removed after sampling. Outliers were then removed using LOF to

Algorithms 2025, 18, 69 16 of 59

ensure the dataset was free from extreme values that could have distorted model perfor-
mance. Then the data were split into input and output variables. Numerical features were
then normalized using MinMaxScaler 1.2.2 to ensure consistent scaling across the inputs.
Following these preprocessing tasks, the dataset was split into training and testing sets. To
address class imbalance, the enhanced hybrid ADASYN-SMOTE technique was applied
for oversampling in binary classification and enhanced SMOTE was used for oversampling
in multi-class classification to generate synthetic samples within the training set. Moreover,
ENN was employed for undersampling the training data, ensuring a balanced class distri-
bution for both binary and multi-class tasks. The preprocessing steps effectively cleaned,
balanced, and optimized the dataset, ensuring it was well-prepared for model training and
positioned to deliver high-quality and dependable results.

3.2.1. Data Cleaning

This section covers the critical preprocessing tasks of dropping duplicates, dropping
columns with one unique value, filling NaN values, and removing leading space characters
in the CICIDS2017 dataset. Dropping duplicates is an essential step for maintaining the
integrity of the dataset. A total of 24 duplicate records were identified and removed for
binary classification, and 12 duplicate records were removed for multi-class classification
to ensure that each entry was unique, avoiding bias and overfitting, to enhance the reli-
ability and performance of the machine learning models. Dropping columns with one
unique value helped to reduce the dimensionality of the dataset by removing columns
that provided no meaningful variance or discriminative power. Columns such as Bwd
PSH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk
Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, and Bwd Avg Bulk Rate, all of which
contained only a single unique value, were removed. This step ensured that the dataset
included only features that contributed to the learning process, improving model efficiency
and predictive accuracy. Filling the NaN values was another critical preprocessing step.
A total of 1358 missing values were imputed with the column’s mean value of 1358. This
imputation ensured that the dataset was complete and improved the model’s reliability by
addressing gaps in the data. Lastly, removing leading space characters from feature names
was necessary to ensure consistency in the dataset. A total of 59 feature names contained
leading spaces for binary classification, and 46 feature names contained leading spaces
for multi-class classification, including columns such as Destination Port, Flow Duration,
and Total Fwd Packets. Removing these spaces improved the dataset’s structure, making
it easier to handle programmatically and reducing the likelihood of errors. These data
cleaning steps collectively ensured that the CICIDS2017 dataset was robust, consistent, and
ready for machine learning tasks.

3.2.2. Removing Outliers Using LOF

The LOF method was utilized to identify and remove outliers from the dataset, thereby
improving the quality of the data used for model training. LOF works by detecting data
points with significantly lower density than their surrounding neighbors, making it partic-
ularly effective for datasets with uneven density distributions. In this implementation, the
LOF algorithm was set with n_neighbors at 20 and a contamination rate of 0.05, suggesting
that approximately 5% of the data was expected to be outliers. Once the LOF model was
fitted, each sample was categorized as either an outlier (labeled −1) or an inlier (labeled 1).
Only the inliers were retained for further processing, ensuring the removal of extreme
values that could have negatively impacted model performance. It is important to note
that the LOF method is designed to remove data points that deviate significantly from
the overall distribution of the dataset and does not target or remove cases of anomalous

Algorithms 2025, 18, 69 17 of 59

behavior such as attacks, which exhibit identifiable characteristics distinct from normal
traffic. Therefore, removing outliers does not interfere with the detection of anomalous
behavior but ensures the dataset is free from extreme, irrelevant values that could distort
model training. This outlier detection process was applied to the features of the dataset,
excluding the labels. The resulting dataset, now free of outliers, was used in the subsequent
stages of model training and evaluation, enhancing the performance and robustness of
the classification models for both binary and multi-class tasks without compromising the
detection of anomalous behavior.

The LOF score, as shown in Equation (1) [39], was used to identify outliers by com-
paring the local density of a data point to the densities of its neighbors. The score was
calculated by measuring the local reachability density (lrd) of a point X and its neighbors.
A point with a significantly lower LOF score than its neighbors is considered an outlier,
indicating that it resides in a region of much lower density. This method helped to isolate
data points that deviated from the overall distribution of the dataset, making it useful for
outlier detection.

LOF(K.X) =
lrd(X)

1
K ∑iϵNK(X) lrd(i)

(1)

where LOF(K.X) is the local outlier factor for the point, lrd(X) represents the local reach-
ability density of the point X, and NK(X) denotes the set of k-nearest neighbors to point
X. The LOF score compares the local density of point X to the density of its neighbors,
helping to identify outliers by highlighting points that are less densely populated than
their neighbors.

The sample distribution of the CICIDS2017 dataset for binary classification, before
and after the application of the LOF method, is detailed in Table 4. The LOF technique
significantly impacted the dataset, particularly by reducing the number of samples in both
the Normal and Attack classes. Specifically, the Normal class, which initially contained
99,000 samples, was reduced to 93,053 samples following outlier removal. Similarly, the
Attack class, which had 76,368 samples before applying LOF, saw a reduction to 73,546 sam-
ples after the outlier removal process. Overall, the application of LOF resulted in a cleaner
dataset, removing extreme values and enhancing the balance and reliability of the data for
the binary classification model.

Table 4. Sample distribution of CICIDS2017 dataset for binary classification using LOF.

Class Type Number of Samples Before LOF Number of Samples After LOF

Normal 99,000 93,053

Attack 76,368 73,546

The sample distribution of the CICIDS2017 dataset for multi-class classification before
and after the application of the LOF method is shown in Table 5. The LOF method had a
noticeable effect on the dataset, particularly in reducing the number of samples in various
classes. For instance, the PortScan class, initially containing 12,000 samples, was reduced
to 11,892 samples after outlier removal. Similarly, the DDoS class decreased from 14,000
to 13,544, while the number of samples in the DoS Hulk class dropped from 39,000 to
36,640. The DoS GoldenEye class saw a reduction from 4000 to 3554, and the FTP-Patator
class decreased in number from 2000 to 1964. Classes such as SSH-Patator and DoS
Slowloris also experienced reductions, from 900 to 868 and from 1700 to 1540, respectively.
Proportionally, smaller classes like Infiltration and Web Attack—Sql Injection saw more
significant reductions, from 36 to 15 and from 21 to 9, respectively. The Heartbleed class
remained relatively unchanged, with a slight reduction from 11 to 10 samples. Overall, the

Algorithms 2025, 18, 69 18 of 59

LOF method helped create a more balanced dataset by removing outliers, improving the
reliability and performance of the classification models for multi-class tasks.

Table 5. Sample distribution of CICIDS2017 dataset for multi-class classification using LOF.

Class Type Number of Samples Before LOF Number of Samples After LOF

PortScan 12,000 11,892

DDoS 14,000 13,544

DoS Hulk 39,000 36,640

DoS GoldenEye 4000 3554

FTP-Patator 2000 1964

SSH-Patator 900 868

DoS Slowloris 1700 1540

DoS Slowhttptest 1200 1099

Bot 700 638

Web Attack—Brute Force 450 436

Web Attack—XSS 350 340

Infiltration 36 15

Web Attack—Sql Injection 21 9

Heartbleed 11 10

3.2.3. Normalization

Data scaling involves adjusting numerical values to fit within a specific range and
is a critical preprocessing step in machine and deep learning. This process enhanced the
efficiency and effectiveness of the training models by standardizing the data across all
columns. One commonly used method for normalization is the MinMaxScaler, a popular
tool available in the Scikit-learn library. Equation (2) [40] illustrates the procedure where
each column is processed by subtracting its minimum value and then dividing by the
range (maximum value minus minimum value) to normalize it. In Equation (2) [40],
X represents the original value, min(X) is the minimum value in the column, and max(X) is
the maximum value in the column. After evaluating several normalization techniques,
MinMaxScaler was identified as the optimal choice for achieving the best results in our
study. This normalization approach was applied to all features in the dataset to ensure
consistent scaling across the entire dataset.

X(scaled) =
X − min(x)

max(x)− min(x)
(2)

3.2.4. Train–Test Dataset Split

The dataset was split into training and testing sets, allowing the model to learn
patterns from the training data and ensuring unbiased evaluation of the testing data
for generalization in both binary and multi-class scenarios. The sample distribution of
the CICIDS2017 dataset for binary classification is presented in Table 6, showcasing the
allocation of samples between the training and testing sets. From the normal class, a total of
79,112 samples were designated for training, with 13,941 samples reserved for testing. The
attack class consisted of 62,497 training samples and 11,049 test samples. This distribution
ensured that both classes were adequately represented in both the training and testing
phases, contributing to a balanced and effective evaluation of the model’s performance.

Algorithms 2025, 18, 69 19 of 59

Table 6. Sample distribution of the CICIDS2017 dataset for binary classification.

Class Type Train Test

Normal 79,112 13,941

Attack 62,497 11,049

The CICIDS2017 dataset for multi-class classification consisted of multiple attack
classes, including PortScan, DDoS, DoS Hulk, DoS GoldenEye, FTP-Patator, SSH-Patator,
DoS Slowloris, DoS Slowhttptest, Bot, Web Attack—Brute Force, Web Attack—XSS, Infil-
tration, Web Attack—Sql Injection, and Heartbleed. The largest class, DoS Hulk, included
31,172 training samples and 5468 test samples, followed by DDoS with 11,519 training
samples and 2025 test samples. Other significant classes included DoS GoldenEye, with
3018 training samples and 536 test samples, and FTP-Patator, which contained 1658 train-
ing samples and 306 test samples. Smaller classes such as Infiltration and Heartbleed
were represented by 13 and 9 training samples, respectively, with even fewer test samples,
2 and 1, respectively. This distribution highlights the varying sample sizes across differ-
ent classes, with some attack types being more prevalent than others, while rarer attack
types like Infiltration and Heartbleed are less frequent, making them critical for testing
the model’s ability to detect less common attacks. This variation in class size ensured a
comprehensive evaluation of the model’s performance across both major and minor attack
types, as shown in Table 7.

Table 7. Sample distribution of the CICIDS2017 dataset for multi-class classification.

Class Type Train Test

PortScan 10,080 1812

DDoS 11,519 2025

DoS Hulk 31,172 5468

DoS GoldenEye 3018 536

FTP-Patator 1658 306

SSH-Patator 735 133

DoS Slowloris 1312 228

DoS Slowhttptest 943 156

Bot 539 99

Web Attack—Brute Force 373 63

Web Attack—XSS 288 52

Infiltration 13 2

Web Attack—Sql Injection 7 2

Heartbleed 9 1

3.2.5. Class Balancing

Class imbalance is a prominent issue in the CICIDS2017 dataset and can impact the
effectiveness of machine learning models. To address this, a comprehensive class-balancing
strategy was employed, combining both oversampling and undersampling techniques,
a widely recognized solution to tackle class imbalance [41]. For binary classification, the
enhanced hybrid ADASYN-SMOTE technique was utilized during training to oversample
the minority class, while for multi-class classification, enhanced SMOTE was applied during
training to generate synthetic samples and balance the class distribution. For both tasks,
ENN was employed during training for undersampling, removing noisy or redundant
instances from the majority class to improve data quality. This balanced approach enhanced
the model’s ability to accurately identify and classify minority classes, improving overall

Algorithms 2025, 18, 69 20 of 59

performance and reliability. However, the accuracy paradox may be encountered, where a
model achieves high accuracy but fails to effectively predict minority class instances [42].
To mitigate this, an enhanced method combining oversampling techniques such as hybrid
ADASYN-SMOTE for binary classification and SMOTE for multi-class classification with
undersampling using ENN during model training was implemented, based on previous
research [43]. This integrated approach effectively addressed class imbalance, leading to
more reliable predictions across all classes.

1. Hybrid ADASYN-SMOTE

In this work, hybrid ADASYN-SMOTE was applied for the binary classification task
to address class imbalance effectively. This technique combined the strengths of both
ADASYN and SMOTE in a two-stage process. First, ADASYN was used to generate
synthetic samples for the minority class, focusing on difficult-to-learn instances. The
output from ADASYN then served as the input for the second stage, where SMOTE
further enhanced the minority class by creating additional synthetic samples along the
line segments between existing instances. This hybrid approach not only improved the
class balance but also strengthened the model’s ability to learn from challenging examples,
resulting in better performance in binary classification tasks.

Let Xi denote the samples from the minority class and N(Xi, K) represent the k-nearest
neighbors of Xi. The number of synthetic samples ni to be generated for each minority
sample is determined as outlined in Equation (3) [44].

ni=
NMaj − NMin

NMin
×(1 − Ni

k
) (3)

where NMaj and NMin represent the sample sizes of the majority and minority classes,
respectively, emphasizing the class imbalance. The term Ni refers to the number of minority
class samples within the radius defined by the k-nearest neighbors, to assist in identifying
minority instances located near decision boundaries where synthetic samples are typically
generated, thereby enhancing the model’s performance.

For each minority instance Xi, synthetic samples are generated using Equation (4) [44].

Xsyn= Xi+γ ×
(
Xj −Xi

)
(4)

where Xsyn represents the synthetic sample generated to balance the class distribution, Xj

is a randomly chosen neighbor from the k-nearest neighbors of Xi, the minority sample,
and the term γ is a random value between 0 and 1, ensuring that the synthetic sample is
created along the line segment connecting Xi and Xj.

Following the ADASYN step, SMOTE is applied. When a sample XI from the minority
class is provided, SMOTE generates a synthetic sample by selecting one of its k-nearest
neighbors, Xzi. The new synthetic sample Xnew is then created by interpolating between XI

and Xzi, as described in Equation (5) [45].

Xnew= XI+σ × (Xzi −XI) (5)

where σ is a random number between 0 and 1. This formula ensures that the generated
sample Xnew lies on the line segment connecting XI and Xzi, effectively creating a synthetic
data point that better represents the minority class within the feature space. By emphasizing
the feature relationships within the minority class, SMOTE helps balance the dataset,
thereby improving model performance in binary classification tasks.

An initial imbalance existed in the binary classification of the CICIDS2017 dataset, with
79,112 samples in the Normal class and 62,497 in the Attack class. To address this, the hybrid

Algorithms 2025, 18, 69 21 of 59

ADASYN-SMOTE technique was applied to generate synthetic samples for the minority
Attack class, first increasing its count to 79,296 with ADASYN and then balancing both
classes to 79,296 using SMOTE, as shown in Table 8. This balanced distribution ensured
more reliable training and evaluation by providing equal representation for both classes.

Table 8. Sample distribution in each training class before/after resampling using hybrid ADASYN-
SMOTE for binary classification, on the CICIDS2017 dataset.

Type of Class Number of Samples Before
Resampling (ADASYN-SMOTE)

Number of Samples After
Resampling (ADASYN-SMOTE)

Normal 79,112 79,296

Attack 62,497 79,296

2. SMOTE

In this work, cascaded SMOTE is applied to multi-class classification tasks to address
class imbalance effectively. This method involved applying SMOTE in two stages, where
the output of the first SMOTE served as the input for the second. By progressively oversam-
pling the minority classes in each stage, this technique helped to better balance the class
distribution. The enhanced representation of the minority classes improved the model’s
ability to capture and learn patterns across all classes, resulting in improved accuracy and
reliability in multi-class classification performance.

When given a sample XI from the minority class, SMOTE creates a synthetic sample
by selecting one of its k-nearest neighbors Xzi. The new synthetic sample Xnew is then
created by interpolating between XI and Xzi, as shown in Equation (6) [45].

Xnew= XI+σ × (Xzi −XI) (6)

where σ is a random number between 0 and 1. This formula ensures that the new sample
Xnew lies along the line segment between XI and Xzi, effectively creating a synthetic data
point that represents the minority class more accurately within the feature space. By
focusing on the feature relationships within the minority class, SMOTE balances the dataset,
enhancing model performance in multi-class classification tasks.

The sample distribution for the multi-class classification task in the CICIDS2017
dataset, before and after resampling with SMOTE, is illustrated in Table 9. Initially, the
dataset exhibited a considerable imbalance, with certain classes such as Web Attack—Sql
Injection and Heartbleed containing as few as 7 and 9 samples, respectively. This imbalance
could have led to model bias, as the minority classes would have been underrepresented
during training. After applying SMOTE, the sample sizes for these minority classes were
significantly increased, with classes like Web Attack—Sql Injection and Heartbleed being
resampled to 31,172 instances, ensuring a more balanced representation across all classes.
This resampling approach mitigated the risks of class imbalance, allowing more equitable
model training and improving overall classification performance by reducing bias towards
the majority classes. The enhanced dataset facilitated more robust and reliable predictions
for both the majority and minority classes in the multi-class classification tasks.

Table 9. Sample distribution in each training class before/after resampling using SMOTE for multi-
class classification, on the CICIDS2017 dataset.

Type of Class Number of Samples Before
Resampling (SMOTE)

Number of Samples After
Resampling (SMOTE)

PortScan 10,080 10,080

DDoS 11,519 11,519

DoS Hulk 31,172 31,172

Algorithms 2025, 18, 69 22 of 59

Table 9. Cont.

Type of Class Number of Samples Before
Resampling (SMOTE)

Number of Samples After
Resampling (SMOTE)

DoS GoldenEye 3018 3018

FTP-Patator 1658 1658

SSH-Patator 735 735

DoS Slowloris 1312 1312

DoS Slowhttptest 943 943

Bot 539 539

Web Attack—Brute Force 373 373

Web Attack—XSS 288 288

Infiltration 13 13

Web Attack—Sql Injection 7 31,172

Heartbleed 9 31,172

3. ENN

ENN is an advanced data preprocessing method designed to enhance the quality of
training datasets by removing noisy and misclassified instances, ultimately refining class
boundaries. This technique operates by evaluating the nearest neighbors of each data
point and discarding those that are incorrectly classified, thereby improving the clarity and
distinction between classes. Through this process, ENN effectively reduces class overlap,
promoting a more balanced representation across the dataset. This is particularly beneficial
for both binary and multi-class classification tasks, as it ensures that the training data are
cleaner and more accurately reflect the underlying patterns. When integrated into the
preprocessing pipeline, ENN aids in achieving better model generalization, leading to
enhanced performance when applied to new, unseen data [46].

For each instance Xi in the dataset, its k-nearest neighbors are identified using the
formula in Equation (7) [46].

N(Xi) =
{

Xj1, Xj2,, Xjk

}
(7)

where Xjk are the nearest neighbors of Xi in terms of a distance metric (e.g., Euclidean distance).
To determine the majority class among the nearest neighbors, the approach outlined in

Equation (8) [46] was used. This process involved examining the class labels of the nearest
neighbors and identifying the class that appeared most often. By leveraging this method,
the predicted class for an instance can be assigned based on the most frequent class within
its neighborhood, thus improving the model’s classification accuracy by ensuring it reflects
the dominant pattern in the surrounding data points.

C(Xi) = argmaxc

(
k

∑
j=1

∏
(
yj = c

))
(8)

where C(Xi) denotes the predicted class for instance Xi, with yj representing the class label
of its j-th neighbor. The indicator function ∏ outputs 1 if the condition holds true, otherwise
returning 0.

An instance Xi is discarded if the predicted class C(Xi) differs from its true class
label yj, as defined by the formula in Equation (9) [46]. This step helps in eliminating
misclassified instances, thereby improving the quality of the dataset by retaining only those
instances whose predicted and actual classes align.

If C(Xi) ̸= yj, then remove Xi (9)

Algorithms 2025, 18, 69 23 of 59

The sample distribution for the binary classification task on the CICIDS2017 dataset,
before and after applying ENN for resampling, is shown in Table 10. Before resampling us-
ing ENN, both the Normal and Attack classes contained an equal number of 79,296 samples.
However, after applying ENN, a slight reduction in the Attack class was observed, with its
sample count decreasing to 79,067. This reduction occurred as ENN removed misclassified
instances from the Attack class, helping to eliminate noise and improve the quality of
the training data. The resulting dataset maintained a nearly balanced distribution while
enhancing the clarity of class boundaries and contributing to better model performance
and generalization.

Table 10. Sample distribution in each training class before/after resampling using ENN for binary
classification, on the CICIDS2017 dataset.

Type of Class Number of Samples Before
Resampling (ENN)

Number of Samples After
Resampling (ENN)

Normal 79,296 79,296

Attack 79,296 79,067

The sample distribution for the multi-class classification task on the CICIDS2017
dataset, before and after applying ENN for resampling, is shown in Table 11. Prior to
resampling, there was some variation in the numbers of samples across the different
classes, with some classes having significantly fewer instances than others. After applying
ENN, minor adjustments were made to the sample sizes of several classes. For example,
the PortScan class underwent a reduction from 10,080 to 10,076 samples, and the DDoS
class decreased from 11,519 to 11,474. Similarly, other classes such as DoS Hulk and
DoS Slowhttptest experienced slight reductions in their sample sizes. These changes
were the result of ENN removing misclassified instances, which helped to reduce noise
and improve the quality of the training data. Despite these adjustments, the dataset
remained largely balanced, with no significant loss of samples in the majority of classes.
The application of ENN resulted in a cleaner, more accurate dataset, which was expected to
improve the model’s ability to distinguish between classes and enhance overall classification
performance.

Table 11. Sample distribution in each training class before/after resampling using ENN for multi-class
classification, on the CICIDS2017 dataset.

Type of Class Number of Samples Before
Resampling (ENN)

Number of Samples After
Resampling (ENN)

PortScan 10,080 10,076

DDoS 11,519 11,474

DoS Hulk 31,172 31,147

DoS GoldenEye 3018 3017

FTP-Patator 1658 1651

SSH-Patator 735 733

DoS Slowloris 1312 1310

DoS Slowhttptest 943 927

Bot 539 537

Web Attack—Brute Force 373 373

Web Attack—XSS 288 286

Algorithms 2025, 18, 69 24 of 59

Table 11. Cont.

Type of Class Number of Samples Before
Resampling (ENN)

Number of Samples After
Resampling (ENN)

Infiltration 13 13

Web Attack—Sql Injection 31,172 31,172

Heartbleed 31,172 31,172

3.3. Architectures of Models

In this study, a diverse range of model architectures were employed, including CNN,
Autoencoder, DNN, Autoencoder–CNN, and Transformer–DNN. These models were cho-
sen based on their superior performance across various metrics [47–49].

3.3.1. Convolutional Neural Networks (CNNs)

The proposed model architecture combines CNN and MLP to tackle both binary
and multi-class classification tasks. It begins with an input layer that accepts sequential
data formatted as a one-dimensional array. The first CNN block performs convolution
operations with ReLU activation, followed by batch normalization, max pooling, and
dropout to extract and regularize key features in the data for binary classification. For
multi-class classification, the initial CNN block applies convolution operations, followed
by batch normalization, an activation function, max pooling, and dropout to extract and
regularize important features in the data. This sequence is repeated in subsequent CNN
layers with varying kernel sizes and pool sizes, enabling the model to capture diverse
patterns and relationships within the input data. The different kernel sizes allow the
model to detect features at multiple scales along the sequence, while the varying pool sizes
help in downsampling and reducing the sequence’s spatial dimensions, enhancing the
model’s ability to generalize across different input features. After passing through the CNN
layers, the output is flattened and processed through an MLP block designed for binary
classification. This block comprises a dense layer with an activation function, followed
by batch normalization and dropout, to enhance the model’s capability to learn intricate
patterns while minimizing overfitting. Similarly, for multi-classification tasks, the output is
flattened and passed through an MLP block that includes a dense layer, batch normalization,
activation function, and dropout, effectively strengthening the model’s ability to represent
complex features and reducing the risk of overfitting. The features extracted from both the
CNN and MLP components are concatenated to form a unified feature set. The final output
layer utilizes a sigmoid activation function for binary classification or a softmax activation
function for multi-class classification, paired with binary cross-entropy or categorical cross-
entropy loss functions, respectively, to tailor the model’s optimization process for the
specific classification objective. The model is trained using the Adam optimizer, ensuring
efficient learning and convergence throughout the training process.

The convolution operation within the CNN layers is fundamental for feature extraction,
as it applies filters to the input data. This process involves sliding the convolution kernel
over the input feature map and computing the dot product at each position, resulting in a
new feature map. The mathematical expression for the convolution operation is represented
in Equation (10) [50].

Zi,j= (X ∗ K) i,j= ∑
m

∑
n

Zi+m,j+nkm,n (10)

where Z denotes the output feature map and X represents the input feature map. The
convolution kernel, denoted by K, is applied during the convolution operation to convert
the input features into the output features.

Algorithms 2025, 18, 69 25 of 59

The ReLU activation function depicted in Equation (11) [51] is a straightforward yet
effective non-linear transformation. It outputs zero for negative inputs, preserves positive
values, helps address the vanishing gradient problem, and encourages sparse activations,
all of which improve training efficiency and model performance.

ReLU(x) = max(0, x) (11)

The max pooling operation simplifies the input feature map by reducing its spatial
dimensions while preserving the most relevant features. This is achieved by selecting the
maximum value within a defined pooling window, thus downsampling the data. The
process is mathematically represented in Equation (12) [50].

Pi,j= max
(
Xi:i+p, j:j+q

)
(12)

where P represents the output resulting from the pooling process, while p and q denote
the dimensions of the pooling window applied to aggregate the input features into the
pooled output.

The dropout layer introduces regularization by randomly disabling a proportion p
of input units during training. This process reduces overfitting by preventing the model
from becoming overly dependent on specific input features, thereby promoting better
generalization. The effect of this regularization technique is mathematically represented in
Equation (13) [52].

Dropout(x) =

{
x with probability 1 − p
0 with probability p

(13)

For binary classification tasks, the output layer applies the sigmoid function to generate
a probability score reflecting the likelihood that a given instance belongs to the positive
class. This function outputs a value between 0 and 1, with values closer to 1 suggesting a
higher probability of the instance being classified as positive. The mathematical expression
for this operation is provided in Equation (14) [53].

σ(Z) =
1

1 + e−z (14)

where Z represents the output generated by the final dense layer in the network.
The output layer utilizes the softmax function for multi-class classification, transform-

ing the raw model outputs into a probability distribution over all possible classes. This
function ensures that the sum of the probabilities across all classes equals one, providing a
clear indication of the model’s confidence in each class. The mathematical formulation of
this process is presented in Equation (15) [53].

Softmax(Zi) =
ezi

∑
j

ezi
(15)

where Zi represents the output generated by the final dense layer in the network for class i.

(i) Binary Classification

The CNN model architecture for binary classification applied to the CICIDS2017 and
NF-BoT-IoT-v2 datasets, as outlined in Table 12, began with an input layer tailored to each
dataset. For the CICIDS2017 dataset, the input layer consisted of 69 neurons, while the
NF-BoT-IoT-v2 dataset used an input layer with 18 neurons. The model then progressed
through the three hidden blocks. The first hidden block featured a 1D CNN layer with
256 filters and a ReLU activation function, followed by a 1D max pooling layer with a pool
size of 2 and a dropout layer with a minimal rate of 0.00000001 to mitigate overfitting. The
second hidden block mirrored the first, incorporating a 1D CNN layer with 256 filters and
ReLU activation, followed by a 1D max pooling layer with a pool size of 4, and another

Algorithms 2025, 18, 69 26 of 59

dropout layer with the same rate. The third hidden block included a dense layer with
256 neurons and ReLU activation, followed by a dropout layer with a rate of 0.00000001.
Finally, the output block consisted of a single neuron in the output layer, activated by
the sigmoid function, to generate the binary classification result. This architecture was
optimized to process the distinct feature sets of both datasets effectively.

Table 12. CNN model layers for binary classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 18 -

Shared structure

Hidden block 1

1D CNN layer 256 ReLU

1D max pooling layer 2 -

Dropout layer 0.00000001 -

Hidden block 2

1D CNN layer 256 ReLU

1D max pooling layer 4 -

Dropout layer 0.00000001 -

Hidden block 3
Dense layer 256 ReLU

Dropout layer 0.00000001 -

Output block Output layer 1 Sigmoid

(ii) Multi-Class Classification

The CNN model architecture for multi-class classification applied to the CICIDS2017
and NF-BoT-IoT-v2 datasets, as detailed in Table 13, began with dataset-specific input
layers, using 69 neurons for CICIDS2017 and 28 neurons for NF-BoT-IoT-v2. The model
progressed through five shared hidden blocks. The first hidden block included a 1D CNN
layer with 256 filters, followed by a ReLU activation, a 1D max pooling layer with a pool
size of 2 and a dropout layer with a minimal rate of 0.0000001. The second hidden block
mirrored this setup with another 1D CNN layer of 256 filters, ReLU activation, a max
pooling layer of size 4, and a dropout layer with the same rate. The third hidden block
followed a similar structure, featuring a 1D CNN layer with 256 filters, ReLU activation,
a max pooling layer of size 8, and a dropout layer with a rate of 0.0000001. The fourth
block included a dense layer with 1024 neurons, followed by a ReLU activation and a
dropout layer with the same minimal rate. The fifth block consisted of a dense layer with
768 neurons using the softmax activation function, accompanied by a dropout layer with a
rate of 0.0000001. The model concluded with an output layer of 14 neurons with softmax
for the CICIDS2017 dataset and 4 neurons with softmax activation for the NF-BoT-IoT-v2
dataset, designed to handle multi-class classification tasks.

(iii) Hyperparameter Configuration for the CNN Model

The hyperparameters for the CNN models, as detailed in Table 14, were configured
for both binary and multi-class classification tasks. For both types of classifiers, a batch
size of 128 was used. The learning rate for both binary and multi-class classifiers was
dynamically adjusted using the ReduceLROnPlateau schedule. If the validation loss did
not improve for two consecutive epochs, the learning rate was reduced by a factor of 0.5.
This approach ensured that the learning rate decreased gradually, improving convergence
as training progresses. The minimum value for the learning rate was capped at 1 × 10−5,
preventing the learning rate from becoming too small to effect meaningful updates. This
method allowed more efficient training and helped the model to converge more reliably.
The Adam optimizer was employed across both classifiers. The loss function varied by task.

Algorithms 2025, 18, 69 27 of 59

Binary cross-entropy was used for binary classification, while categorical cross-entropy
was applied for multi-class classification. Accuracy served as the evaluation metric for both
types of classifiers.

Table 13. CNN model layers for multi-class classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 28 -

Shared structure

Hidden block 1

1D CNN layer 256 ReLU

1D max pooling layer 2 -

Dropout layer 0.0000001 -

Hidden block 2

1D CNN layer 256 ReLU

1D max pooling layer 4 -

Dropout layer 0.0000001 -

Hidden block 3

1D CNN layer 256 ReLU

1D max pooling layer 8 -

Dropout layer 0.0000001 -

Hidden block 4
Dense layer 1024 ReLU

Dropout layer 0.0000001 -

Hidden block 5
Dense layer 768 Softmax

Dropout layer 0.0000001 -

CICIDS2017 Output block Output layer 14 Softmax

NF-BoT-IoT-v2 Output block Output layer 4 Softmax

Table 14. CNN model hyperparameters.

Parameter Binary Classifier Multi-Class Classifier

Batch size 128 128

Learning rate
Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Optimizer Adam Adam

Loss function Binary cross-entropy Categorical cross-entropy

Metric Accuracy Accuracy

3.3.2. Autoencoder (AE)

The Autoencoder model is designed to handle both binary and multi-class classifica-
tion tasks, starting with an input layer that accepts feature vectors. The architecture includes
an encoder composed of multiple dense layers that progressively reduce the dimensionality
of the input while utilizing the ReLU activation function to extract significant features.
Following the encoder, a classification layer is employed to predict class probabilities. For
binary classification, the sigmoid activation function is applied, whereas for multi-class
classification, the softmax activation function is used. This allows the model to generate
the appropriate output probabilities for each classification type. The model is optimized
using the Adam optimizer and applies binary cross-entropy loss for binary classification
and categorical cross-entropy loss for multi-class classification, ensuring accurate loss
computation for each classification task.

Algorithms 2025, 18, 69 28 of 59

In the encoder layers, the dimensionality of the input data is progressively reduced,
allowing the model to extract essential features through dense layers. This process of
reducing dimensions and extracting features can be mathematically represented as shown
in Equation (16) [50].

h(l)= f
(

W(l) a(l−1)+b(l)
)

(16)

where h(l) represents the output of encoder layer l, with a(l−1) denoting the output of the
preceding layer, which acts as the input to the first layer. The weight matrix for layer l
is denoted by W(l) and the bias vector for that layer is given by b(l). In this context, the
activation function represented by f is specifically the ReLU function.

In a typical Autoencoder, the decoder layer reconstructs the original input based on
the compressed representation produced by the encoder. This reconstruction process is
mathematically expressed in Equation (17) [50].

′
α = g

(
W(d) h(l)+b(d)

)
(17)

where ά represents the reconstructed output, with h(l) being the output from the final
encoder layer. The weight matrix for the decoder layer is represented by W(d), and b(d)

denotes the bias vector for the decoder layer. The activation function g, generally selected
to be linear, is applied to facilitate reconstruction.

The classification layer applies a designated activation function to produce the binary
classification output, as outlined in Equation (18) [50].

y = σ
(

W(out) h(l)+b(out)
)

(18)

where y represents the predicted probability of the positive class and the output layer’s
weight matrix is indicated by W(out), with b(out) representing the bias term for this layer.
The sigmoid function, σ, is used to map the output to a probability score ranging from
0 to 1.

For multi-class classification, the classification layer uses the softmax activation func-
tion, allowing the model to produce a probability distribution over multiple classes. This
process is mathematically represented in Equation (19) [53].

y = softmax
(

W(out) h(l)+b(out)
)

(19)

where y denotes the vector of predicted probabilities for each class and the output layer
is defined by the weight matrix W(out) and bias b(out). The softmax function is applied to
transform the logits into probabilities, ensuring that the predicted values sum to one across
all classes.

(i) Binary Classification

The design of the Autoencoder model for binary classification, as detailed in Table 15,
begins with an input layer of 69 neurons for CICIDS2017 and 18 neurons for NF-BoT-IoT-v2.
The encoder block consists of three dense layers, the first with 128 neurons, the second
with 64 neurons, and the third with 32 neurons, all using the ReLU activation function. The
model concludes with an output block containing a single neuron activated by the sigmoid
function, providing the binary classification output.

(ii) Multi-Class Classification

The architecture of the Autoencoder model for multi-class classification is in Table 16,
starting with an input layer consisting of 69 neurons for the CICIDS2017 dataset and
28 neurons for the NF-BoT-IoT-v2 dataset. In the encoder block, the first dense layer has
128 neurons, followed by two additional dense layers with 64 and 32 neurons, all activated

Algorithms 2025, 18, 69 29 of 59

by the ReLU function, to progressively compress the input data. The model concludes with
an output layer consisting of 14 neurons for CICIDS2017 and 4 neurons for NF-BoT-IoT-v2,
both activated by the softmax function, to handle the multi-class classification task.

Table 15. Autoencoder model layers for binary classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 18 -

Shared structure

Encoder Dense layer 128 ReLU

Encoder Dense layer 64 ReLU

Encoder Dense layer 32 ReLU

Output block Output layer 1 Sigmoid

Table 16. Autoencoder model layers for multi-class classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 28 -

Shared structure

Encoder Dense layer 128 ReLU

Encoder Dense layer 64 ReLU

Encoder Dense layer 32 ReLU

CICIDS2017 Output block Output layer 14 Softmax

NF-BoT-IoT-v2 Output block Output layer 4 Softmax

(iii) Hyperparameter Configuration for the Autoencoder Model

The hyperparameters for the Autoencoder model detailed in Table 17 are specified for
both the binary and multi-class classification tasks. For both types of classifiers, a batch size
of 128 was used, and the Adam optimizer was employed. The learning rate for both the
binary and multi-class classification tasks was controlled using the ReduceLROnPlateau
scheduling technique. The learning rate started with an initial value of 0.001, reduced by a
factor of 0.5 whenever the validation loss did not improve for two consecutive epochs, as
specified by the patience parameter. The learning rate does not decrease below a minimum
value of 1 × 10−5, ensuring that it remains within a reasonable range for effective training.
This dynamic adjustment helps optimize model training by preventing the learning rate
from becoming too small too quickly, which could hinder convergence. The loss function
differed between the two tasks, with binary cross-entropy used for binary classification and
categorical cross-entropy applied for multi-class classification. Accuracy was the metric
utilized to assess model performance in both scenarios.

Table 17. Autoencoder model hyperparameters.

Parameter Binary Classifier Multi-Class Classifier

Batch size 128 128

Learning rate
Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Optimizer Adam Adam

Loss function Binary cross-entropy Categorical cross-entropy

Metric Accuracy Accuracy

Algorithms 2025, 18, 69 30 of 59

3.3.3. Deep Neural Network (DNN)

The DNN model has been designed to handle both binary and multi-class classification
tasks. It starts with an input block, consisting of a dense layer with ReLU activation, where
the input dimension matches the number of features in the dataset. This layer introduces
non-linearity, allowing the model to capture complex patterns in the data. The hidden layers
are divided into two blocks. The first hidden block includes a dropout layer to prevent
overfitting, followed by a dense layer with ReLU activation and then batch normalization
to improve training stability and speed. The second hidden block mirrors this structure,
adding another dropout layer and batch normalization. The output block is customized
based on the classification task. For binary classification, it includes a dense layer with
a single neuron and a sigmoid activation function to compute probabilities for the two
classes. For multi-class classification, it features a dense layer with a number of neurons
equal to the target classes, along with a softmax activation function to predict probabilities
for each class. The model was compiled using the Adam optimizer, configured with an
ExponentialDecay learning rate schedule to gradually reduce the learning rate during
training. Binary cross-entropy was used as the loss function for binary classification, and
categorical cross-entropy for multi-class classification. Accuracy served as the evaluation
metric in both scenarios.

In a DNN, the feed-forward process involves transmitting the input through successive
layers to generate the final output. This operation for layer l can be mathematically
represented as shown in Equation (20) [54].

a(l)= f
(

W(l) a(l−1)+b(l)
)

(20)

where a(l) represents the activation of the current layer l, the weight matrix for this layer
is denoted by W(l), and b(l) stands for the bias vector of layer l. The activation function f
is applied element-wise and can include non-linear functions such as ReLU or sigmoid,
enabling the model to capture complex relationships.

The ReLU activation function presented in Equation (21) [55] is a straightforward and
effective non-linear function. It outputs zero for any negative input values, encourages
sparsity in activations, and facilitates smooth gradient flow, which makes it highly suitable
for deep learning models.

ReLU(x) = max(0, x) (21)

For binary classification tasks, the sigmoid function is employed to produce a prob-
ability score that reflects the likelihood of an instance belonging to the positive class. It
converts the raw score into a value between 0 and 1, acting as a threshold for making the
classification decision. This process is mathematically expressed in Equation (22) [53].

σ(Z) =
1

1 + e−z (22)

where Z represents the output from the final dense layer.
For multi-class classification tasks, the output layer uses the softmax function, allow-

ing the model to generate probability distributions over multiple classes. This function
transforms a vector of raw scores (logits) into normalized values within the range of 0 to 1,
ensuring that the sum of all probabilities equals 1. The mathematical representation of the
softmax function is provided in Equation (23) [53].

Softmax(Zi) =
ezi

∑
j

ezi
(23)

where Zi represents the raw score for the i-th class.

Algorithms 2025, 18, 69 31 of 59

(i) Binary Classification

The architecture outlined in Table 18 describes the structure of a DNN model tailored
for binary classification using both the CICIDS2017 and NF-BoT-IoT-v2 datasets. The
input layer processes the features of the datasets, with the CICIDS2017 dataset having
69 features and the NF-BoT-IoT-v2 dataset having 18 features. The input layer includes a
dense layer with 1024 neurons, activated by ReLU, introducing non-linearity and enabling
complex decision boundaries. To combat overfitting, the first hidden block includes a
dropout layer with a minimal dropout rate of 0.0000001, followed by another dense layer
with 768 neurons, activated by ReLU. This layer is enhanced through batch normalization
to stabilize training via normalizing activations. The second hidden block mirrors the
first, featuring an additional dropout layer with the same minimal rate and another batch
normalization layer. The architecture concludes with a single-neuron output layer activated
by the sigmoid function, producing a probability score representing the likelihood of the
input belonging to the positive class. This design was optimized for the binary classification
tasks, with separate input layers tailored to the CICIDS2017 and NF-BoT-IoT-v2 datasets.

Table 18. DNN model layers for binary classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 ReLU

NF-BoT-IoT-v2 Input block Input layer 18 ReLU

Shared structure

Dense layer 1024 -

Hidden block 1

Dropout layer 0.0000001 -

Dense layer 768 ReLU

Batch normalization - -

Hidden block 2
Dropout layer 0.0000001 -

Batch normalization - -

Output block Output layer 1 Sigmoid

(ii) Multi-Class Classification

The architecture outlined in Table 19 describes the structure of a DNN model tailored
for multi-class classification on both the CICIDS2017 and NF-BoT-IoT-v2 datasets. The
input layer processes the features of the datasets, with the CICIDS2017 dataset having
69 features and the NF-BoT-IoT-v2 dataset having 28 features. The input layer includes a
dense layer with 1024 neurons, activated by ReLU, introducing non-linearity and enabling
the model to capture more complex patterns. To combat overfitting, the first hidden
block includes a dropout layer with a minimal dropout rate of 0.0000001, followed by
another dense layer with 768 neurons, activated by ReLU. This layer is enhanced with
batch normalization to stabilize training by normalizing activations. The second hidden
block mirrors the first, featuring an additional dropout layer with the same minimal rate
and another batch normalization layer. The architecture concludes with an output layer
consisting of 14 neurons for the CICIDS2017 dataset and 4 neurons for the NF-BoT-IoT-
v2 dataset, each activated by the softmax function. This configuration produces class
probabilities, empowering the model to accurately handle multi-class classification tasks
with high precision and reliability.

Algorithms 2025, 18, 69 32 of 59

Table 19. DNN model layers for multi-class classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 ReLU

NF-BoT-IoT-v2 Input block Input layer 28 ReLU

Shared structure

Dense layer 1024 -

Hidden block 1

Dropout layer 0.0000001 -

Dense layer 768 ReLU

Batch normalization - -

Hidden block 2
Dropout layer 0.0000001 -

Batch normalization - -

CICIDS2017 Output block Output layer 14 Softmax

NF-BoT-IoT-v2 Output block Output layer 4 Softmax

(iii) Hyperparameter Configuration for the DNN Model

The hyperparameters for the DNN models, as shown in Table 20, are configured for
both binary and multi-class classification tasks. Both classifiers use a batch size of 128 and
the Adam optimizer. The learning rate for both the binary and multi-class classifiers is
scheduled using Exponential Decay. The initial learning rate is set to 0.0003, with a decay
factor of 0.9 and decay steps of 10,000. This exponential decay schedule reduces the learning
rate progressively during training, helping to stabilize the optimization process and ensure
more effective convergence over time. The loss function applied is binary cross-entropy for
the binary classifier and categorical cross-entropy for the multi-class classifier. Accuracy is
used as the evaluation metric for both classifiers.

Table 20. DNN model hyperparameters.

Parameter Binary Classifier Multi-Class Classifier

Batch size 128 128

Learning rate
Scheduled: Initial = 0.0003,
Factor = 0.9, Decay Steps = 10,000
(Exponential Decay)

Scheduled: Initial = 0.0003,
Factor = 0.9, Decay Steps = 10,000
(Exponential Decay)

Optimizer Adam Adam

Loss function Binary cross-entropy Categorical cross-entropy

Metric Accuracy Accuracy

3.3.4. Autoencoder–Convolutional Neural Network (Autoencoder–CNN)

The Autoencoder component of the model is crucial for reshaping input data, prepar-
ing it for enhanced classification in the subsequent CNN layers. Starting with an input
layer that processes the entire feature set individually, the Autoencoder’s Encoder block
reduces dimensionality through a dense layer with ReLU activation, capturing essential
patterns while filtering out less relevant information. This compression emphasizes key
characteristics in the data, effectively highlighting meaningful patterns. The Decoder block
then reconstructs this compressed data back to the original feature space via a layer with
linear activation, retaining significant features and reducing noise. This reshaping results
in a refined dataset that optimally represents the underlying data patterns. Compiled using
the Adam optimizer and mean squared error loss function, the Autoencoder minimizes
reconstruction error, enhancing the dataset’s suitability for further classification. The output
of the Autoencoder serves as the input for the CNN component, where additional feature
extraction and classification take place. The proposed model architecture combines CNN

Algorithms 2025, 18, 69 33 of 59

and MLP to address both binary and multi-class classification tasks in a structured sequence
of feature extraction and classification layers. The CNN component starts with an input
layer designed to process sequential data in a one-dimensional format. This is followed by
an initial CNN block that includes convolution operations with ReLU activation, followed
by batch normalization, max pooling, and dropout layers, tailored for binary classification.
For multi-class classification, an initial CNN block with convolution operations, followed
by batch normalization, ReLU activation, max pooling, and dropout layers is used. This
combination refines key features while preventing overfitting and is repeated in subsequent
CNN layers with varying kernel sizes and pool sizes, enabling the model to capture diverse
patterns and relationships within the input data. The different kernel sizes allow the model
to detect features at multiple scales along the sequence, while the varying pool sizes facili-
tate downsampling and reduce the sequence’s spatial dimensions, enhancing the model’s
ability to generalize across different input features. After passing through the CNN layers,
the output is flattened and processed through an MLP block. This block comprises a dense
layer with an activation function, followed by batch normalization and dropout, to enhance
the model’s capability to learn intricate patterns for binary classification while minimizing
overfitting. Similarly, for multi-classification tasks, the output is flattened and passed
through an MLP block that includes a dense layer, batch normalization, activation function,
and dropout, effectively strengthening the model’s ability to represent complex features
and reducing the risk of overfitting. Features from both the CNN and MLP components are
then combined into a comprehensive unified feature set. Finally, an output layer employs a
sigmoid activation function for binary classification or a softmax activation function for
multi-class classification, with binary cross-entropy or categorical cross-entropy as the
respective loss functions. The model is optimized with the Adam optimizer to ensure
efficient learning and robust convergence across both classification objectives.

The encoder layers progressively reduce the dimensionality of the input data, enabling
the model to extract key features through dense layers. This process of dimensionality reduc-
tion and feature extraction can be mathematically expressed as shown in Equation (24) [50].

h(l)= f
(

W(l) a(l−1)+b(l)
)

(24)

where h(l) represents the output of encoder layer l and a(l−1) denotes the output of the
preceding layer, which acts as the input to the first layer. The weight matrix for layer l
is denoted by W(l), and the bias vector for that layer is given by b(l). In this context, the
activation function represented by f is specifically the ReLU function.

In a standard Autoencoder, the decoder layer is responsible for reconstructing the
original input from the compressed representation generated by the encoder. This process
of reconstructing the input from the encoded features can be mathematically described by
Equation (25) [50].

′
α = g

(
W(d) h(l)+b(d)

)
(25)

where ά represents the reconstructed output, h(l) is the output from the final encoder layer,
the weight matrix for the decoder layer is represented by W(d), and b(d) denotes the bias
vector for the decoder layer. The activation function g, generally selected to be linear, is
applied to facilitate reconstruction.

The convolution operation in the CNN layers plays a critical role in extracting features
by applying filters to the input data. It works by sliding the convolution kernel across the
input feature map, computing the dot product at each position and producing a transformed
output known as the feature map. The mathematical representation of this convolution
process is given in Equation (26) [50].

Algorithms 2025, 18, 69 34 of 59

Zi,j= (X ∗ K) i,j= ∑
m

∑
n

Zi+m,j+nkm,n (26)

where Z denotes the output feature map and X represents the input feature map. The
convolution kernel denoted by K is applied during the convolution operation to convert
the input features into the output features.

The ReLU activation function illustrated in Equation (27) [51] is a simple but powerful
non-linear transformation. It sets all negative inputs to zero while maintaining positive
values. This mechanism not only mitigates the problem of vanishing gradient but also
promotes sparse activations, both of which contribute to faster training and enhanced
model performance.

ReLU(x) = max(0,x) (27)

The max pooling operation reduces the spatial dimensions of the input feature map,
effectively downsampling the data while retaining the most important features. This is
accomplished by selecting the maximum value from within a specified pooling window,
ensuring that the most significant information is preserved while less relevant details are dis-
carded. The mathematical representation of this operation is provided in Equation (28) [50].

Pi,j= max
(
Xi:i+p, j:j+q

)
(28)

where P represents the output resulting from the pooling process; p and q denote the dimen-
sions of the pooling window applied to aggregate the input features into the pooled output.

The dropout layer serves as a regularization technique by randomly deactivating a
fraction p of the input units during training. This randomness prevents the model from
relying too heavily on any particular input feature, thereby reducing the risk of overfitting.
As a result, the model is encouraged to learn more robust and generalized patterns. The
impact of this regularization process is mathematically described in Equation (29) [52].

Dropout(x) =

{
x with probability 1 − p
0 with probability p

(29)

For binary classification tasks, the output layer utilizes the sigmoid function to produce
a probability score that indicates the likelihood of an instance belonging to the positive class.
This function outputs a value between 0 and 1, with values near 1 indicating a stronger
likelihood of the instance being classified as positive, while values closer to 0 suggest a lower
probability. The mathematical representation of this process is shown in Equation (30) [53].

σ (Z) =
1

1 + e−z (30)

where Z denotes the result produced by the last dense layer in the network.
The output layer employs the softmax function for multi-class classification, convert-

ing the raw outputs from the model into a probability distribution across all potential
classes. This transformation ensures that the probabilities for each class sum to one, effec-
tively representing the model’s level of certainty regarding each class. The mathematical
representation of this operation is given in Equation (31) [53].

Softmax (Zi) =
ezi

∑
j

ezi
(31)

where Zi represents the output from the final dense layer for class i.

(i) Binary Classification

Algorithms 2025, 18, 69 35 of 59

The architecture outlined in Table 21 describes an Autoencoder-CNN model de-signed
for binary classification on the CICIDS2017 and NF-BoT-IoT-v2 datasets. The model begins
with an input layer, processing 69 features for the CICIDS2017 dataset and 18 features for
the NF-BoT-IoT-v2 dataset. The encoder block employs a dense layer with 64 neurons
and ReLU activation to learn compressed representations of the input data. The decoder
block features a dense layer with a size matching the Autoencoder input and a linear
activation function to reconstruct the original input. The output of the Autoencoder is then
fed into the CNN, which begins with a 1D CNN layer comprising 256 filters and ReLU
activation, followed by a 1D max pooling layer with a pool size of 2. To prevent overfitting,
a dropout layer with a minimal rate of 0.00000001 is included. The second hidden block
mirrors this structure, with a pool size of 4 in the max pooling layer. The third hidden block
features a dense layer with 256 neurons and ReLU activation, followed by another dropout
layer. Finally, a single neuron output layer with a sigmoid activation function produces a
probability score, enabling effective binary classification of inputs.

Table 21. Autoencoder–CNN model layers for binary classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 18 -

Shared structure

Encoder Dense layer 64 ReLU

Decoder Dense layer Autoencoder input Linear

Input block Input layer Autoencoder output -

Hidden block 1

1D CNN layer 256 ReLU

1D max
pooling layer 2 -

Dropout layer 0.00000001 -

Hidden block 2

1D CNN layer 256 ReLU

1D max
pooling layer 4 -

Dropout layer 0.00000001 -

Hidden block 3
Dense layer 256 ReLU

Dropout layer 0.00000001 -

Output block Output layer 1 Sigmoid

(ii) Multi-Class Classification

The architecture described in Table 22 details the Autoencoder–CNN model designed
for multi-class classification on the CICIDS2017 and NF-BoT-IoT-v2 datasets. The model
begins with an input block that processes 69 features for CICIDS2017 and 28 features for
NF-BoT-IoT-v2. The encoder block consists of a dense layer with 64 units activated by
ReLU, compressing the input data into a lower-dimensional representation. The decoder
block mirrors this structure, employing a dense layer with the same size as the Autoencoder
input and a linear activation function to reconstruct the original features. The output of
the Autoencoder serves as the input to the CNN segment. The CNN segment begins with
an input block that directly utilizes the output of the Autoencoder as its input. Hidden
block 1 incorporates a 1D CNN layer with 256 filters followed by ReLU activation, 1D
max pooling layer with a pool size of 2 and a dropout layer with a rate of 0.0000001 to
mitigate overfitting. Hidden block 2 repeats this structure, with the max pooling layer
adjusted to a pool size of 4. Hidden block 3 retains the same configuration but uses a max

Algorithms 2025, 18, 69 36 of 59

pooling layer with a pool size of 8. Hidden block 4 features a dense layer with 1024 units
followed by ReLU activation and a dropout layer with a rate of 0.0000001. Hidden block 5
contains a dense layer with 768 units, followed by softmax function and a dropout layer
with the same minimal rate. Finally, the output block comprises 14 units for CICIDS2017
and 4 units for NF-BoT-IoT-v2, each employing a softmax activation function to generate
class probabilities, effectively enabling the model to address multi-class classification tasks.

Table 22. Autoencoder–CNN model layers for multi-class classification.

Dataset Block Layers Layer Size Activation

CICIDS2017 Input block Input layer 69 -

NF-BoT-IoT-v2 Input block Input layer 28 -

Shared structure

Encoder Dense layer 64 ReLU

Decoder Dense layer Autoencoder input Linear

Input block Input layer Autoencoder output -

Hidden block 1 1D CNN layer 256 ReLU

1D max
pooling layer 2 -

Dropout layer 0.0000001 -

Hidden block 2 1D CNN layer 256 ReLU

1D max
pooling layer 4 -

Dropout layer 0.0000001 -

Hidden block 3 1D CNN layer 256 ReLU

1D max
pooling layer 8 -

Dropout layer 0.0000001 -

Hidden block 4 Dense layer 1024 ReLU

Dropout layer 0.0000001 -

Hidden block 5 Dense layer 768 Softmax

Dropout layer 0.0000001 -

CICIDS2017 Output block Output layer 14 Softmax

NF-BoT-IoT-v2 Output block Output layer 4 Softmax

(iii) Hyperparameter Configuration for the Autoencoder–CNN Model

The hyperparameters for the Autoencoder model are detailed in Table 23. For both
binary and multi-class classification tasks, the model operates with a batch size of 64,
determining the number of samples processed before the model updates its internal weights.
The Adam optimizer was utilized with its default learning rate of 0.001, ensuring efficient
and stable convergence during training. The model employed mean squared error (MSE) as
the loss function for both tasks. Accuracy was used as the evaluation metric for both tasks,
representing the percentage of correctly classified instances out of the total predictions.

The hyperparameters for the CNN model, as outlined in Table 24, were optimized for
both binary and multi-class classification tasks. The model operated with a batch size of 128,
indicating the number of samples processed before the model’s parameters were updated,
and this configuration was consistent across both classification types. The learning rate
for both the binary and multi-class classifiers was managed using ReduceLROnPlateau
callback. The initial learning rate was set to 0.001. The callback monitored the validation
loss, and if the loss rate showed no improvement for two consecutive epochs, the learning

Algorithms 2025, 18, 69 37 of 59

rate was reduced by a factor of 0.5. The learning rate is capped at a minimum value of
1 × 10−5, ensuring it remained within an effective range for training. This adaptive learning
rate strategy enabled more efficient convergence, particularly as the model approached the
optimal solution, and helped prevent overshooting during the training process. The Adam
optimizer was chosen for its robust adaptive learning capabilities which have been proved
effective in both binary and multi-class scenarios. For binary classification, the model
employed binary cross-entropy as the loss function, which measured the error between
predicted probabilities and actual binary labels. Conversely, the multi-class classification
model utilized categorical cross-entropy, evaluating the discrepancy between predicted
class probabilities and true class labels across multiple categories. Both models used
accuracy as the evaluation metric, reflecting the proportion of correctly predicted instances
relative to the total number of predictions made. This metric provided a clear indication
of the models’ performance, showcasing how well the predicted labels aligned with the
actual labels.

Table 23. Hyperparameters of the Autoencoder model.

Parameter Binary Classifier Multi-Class Classifier

Batch size 64 64

Learning rate 0.001 0.001

Optimizer Adam Adam

Loss function Mean_squared_error Mean_squared_error

Metric Accuracy Accuracy

Table 24. Hyperparameters of the CNN model.

Parameter Binary Classifier Multi-Class Classifier

Batch size 128 128

Learning rate
Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Scheduled: Initial = 0.001,
Factor = 0.5, Min = 1 × 10−5

(ReduceLROnPlateau)

Optimizer Adam Adam

Loss function Binary cross-entropy Categorical cross-entropy

Metric Accuracy Accuracy

3.3.5. Transformer–Deep Neural Network (Transformer–DNN)

The model architecture integrates transformer and DNN components to enhance clas-
sification performance by processing sequential data, where each data point is represented
as a 1D vector. The transformer block plays a crucial role in capturing intricate relationships
within the input data, using its multi-head attention mechanism, dynamically assigning
varying levels of importance to different parts of the input sequence and aiding in the
identification of complex patterns and dependencies. After the attention mechanism, the
output is passed through a feed-forward network (FFN) consisting of dense layers with
non-linear transformations, thereby refining the feature representations further. Residual
connections maintain gradient flow during training, improving convergence, while layer
normalization stabilizes the output. After the transformer block, the output is passed to
DNN layers, where multiple fully connected layers with ReLU activation progressively
refine the feature representations learned by the transformer, enabling the model to learn
more complex and abstract patterns. Dropout layers are applied to regularize the network
and prevent overfitting by randomly disabling a proportion of neurons during training.

Algorithms 2025, 18, 69 38 of 59

The output is then flattened and further processed by the DNN. The final output layer
uses a sigmoid activation function for binary classification, producing a probability score
between 0 and 1, indicating the likelihood of an instance belonging to the positive class.
For multi-class classification, the output layer employs a softmax activation function with a
number of neurons equal to the number of classes, generating a probability distribution
over all classes and ensuring the sum of the probabilities equals 1. This distribution reflects
the likelihood of an instance belonging to each class, with the highest probability indicating
the predicted class. The combination of the global context and long-range dependencies
captured by the transformer along with the high-level feature extraction and non-linear
transformations provided by the DNN results in an effective architecture for both binary
and multi-class classification tasks, enabling the model to leverage both global and local
patterns within the data for classification into either two or multiple categories.

The multi-head attention mechanism efficiently identifies intricate relationships within
the input data, as demonstrated by Equation (32) [56].

Attention(Q, K, V) = softmax(
QKT
√

dk
) (32)

where Q represents the query matrix, K denotes the key matrix, and V signifies the value
matrix. The variable dk refers to the dimension of the keys, which plays a crucial role in the
computation of attention scores within the model.

Each attention head computes its attention independently, and the results are then
concatenated according to Equation (33) [56].

MultiHead(Q, K, V) = Concat(head1 , , headh)W0 (33)

where W0 refers to the output weight matrix, which is utilized to transform the output of
the preceding layer into the final output of the model.

Layer normalization stabilizes the output of each layer, as described in Equation (34) [57].

LayerNorm(x) =
X −

σ
× γ + β (34)

where µ represents the mean of the inputs, σ denotes the standard deviation, and γ and β

are learnable parameters that are utilized in the normalization process.
The FFN processes the output from the attention mechanism according to Equa-

tion (35) [56].
FNN(X) = max(0, xW1 +b1)W2+b2 (35)

where W1 and W2 refer to the weight matrices, while b1 and b2 represent the corresponding
biases associated with the layers in the model.

In a DNN, the feed-forward process entails passing the input through multiple lay-
ers to produce the final output. This process for layer l is mathematically expressed in
Equation (36) [54].

a(l)= f
(

W(l) a(l−1)+b(l)
)

(36)

where a(l) represents the activation of the current layer l, the weight matrix for this layer
is denoted by W(l), and b(l) stands for the bias vector of layer l. The activation function f
is applied element-wise and can include non-linear functions such as ReLU or sigmoid,
enabling the model to capture complex relationships.

The ReLU activation function shown in Equation (37) [55] is a simple yet powerful non-
linear function. It outputs zero for negative input values, promotes sparsity in activations,
and ensures smooth gradient flow, making it particularly effective for deep learning models.

ReLU(x) = max(0, x) (37)

Algorithms 2025, 18, 69 39 of 59

For binary classification tasks, the sigmoid function is used to generate a probability
score indicating the likelihood of an instance belonging to the positive class. It transforms
the raw score into a value between 0 and 1, serving as a threshold for the classification
decision. This operation is mathematically represented in Equation (38) [53].

σ(Z) =
1

1 + e−z (38)

where Z refers to the output from the last dense layer.
For multi-class classification tasks, the output layer employs the softmax function,

enabling the model to produce probability distributions across multiple classes. This
function converts a vector of raw scores (logits) into normalized values between 0 and 1,
ensuring that the sum of all probabilities equals 1. The mathematical expression of the
softmax function is given in Equation (39) [53].

Softmax(Zi) =
ezi

∑
j

ezi
(39)

where Zi denotes the raw score for the i-th class.

(i) Binary Classification

The architecture of the transformer model designed for binary classification is detailed
in Table 25. For the CICIDS2017 dataset, the model begins with an input layer that processes
data structured as (69, 1), accommodating input with 69 features. Similarly, for the NF-
BoT-IoT-v2 dataset, the input layer processes data structured as (18, 1), effectively handling
input with 18 features. The transformer block employs a multi-head attention mechanism
with eight heads and a key dimension of 64, capturing complex relationships within the
input data. The output from the attention layer is normalized using layer normalization
with an epsilon value of 1 × 10−6. A residual connection is implemented to add the original
input data back to the attention output for stability. The feed-forward block consists of a
dense layer with 512 units and a ReLU activation function, followed by another dense layer
with 512 units. The output from the feed-forward network is added back to the previous
block’s output via another residual connection, followed by another layer normalization
step with epsilon = 1 × 10−6 to normalize the combined output.

The DNN model designed for binary classification consisted of several blocks, as
outlined in Table 26. The input block takes the output from the transformer model, with the
size matching the transformer output. In hidden block 1, a dense layer with 256 units and
ReLU activation is employed for feature extraction, followed by a dropout layer configured
with an extremely low dropout rate of 0.0000001 to mitigate overfitting. Hidden block 2
includes a dense layer with 128 units, ReLU activation, and another dropout layer with
the same rate. Hidden block 3 features a dense layer with 64 units and ReLU activation.
The output block is composed of a dense layer with a single unit and a sigmoid activation
function, producing the final binary classification output.

(ii) Multi-Class Classification

The architecture of the transformer model designed for multi-class classification is
outlined in Table 27. For the CICIDS2017 dataset, the model processed input data with
69 features through an input layer, structured as (69, 1). Similarly, for the NF-BoT-IoT-v2
dataset, the input layer accommodated input data with 28 features, structured as (28, 1). The
transformer block utilizes a multi-head attention mechanism, configured with 8 attention
heads and a key dimension of 64, enabling the model to capture intricate dependencies
within the input data. Following the attention mechanism, the output is subjected to
layer normalization with an epsilon value of 1 × 10−6, stabilizing the model’s learning

Algorithms 2025, 18, 69 40 of 59

process. To further enhance training stability, a residual connection is employed, allowing
the original input to be added to the attention output. The feed-forward block consists of
a dense layer with 512 units and ReLU activation, followed by a second dense layer with
512 units. The output from the feed-forward network is then combined with the previous
block’s output through another residual connection. Finally, another normalization step
with epsilon = 1 × 10−6 is applied to the combined output, ensuring the model’s stability
during the learning phase.

Table 25. Transformer model layers for binary classification.

Dataset Block Layer Type Output Size Activation
Function Parameters Description

CICIDS2017 Input block Input layer (69, 1) - -
Accepts input data with
69 features (as per the
input shape).

NF-BoT-IoT-v2 Input block Input layer (18, 1) - -
Accepts input data with
18 features (as per the
input shape).

Shared structure

Transformer block Multi-head
attention - - num_heads = 8,

key_dim = 64

Captures complex
relationships within
input data.

Layer
normalization - - epsilon = 1 × 10−6 Normalizes the output

from the attention layer.

Add (residual
connection) - - -

Adds input data to the
attention output
for stability.

Feed-forward block Dense layer 512 ReLU units = 512,
activation = ‘ReLU’

Applies a dense
transformation with
ReLU activation.

Dense layer 512 - units = 512
Another dense
transformation
without activation.

Add (residual
connection) - - -

Adds feed-forward
output to the previous
block output.

Layer
normalization - - epsilon = 1 × 10−6

Normalizes the
combined output
for stability.

Table 26. DNN model layers for binary classification.

Dataset Block Layers Layer Size Activation

Shared structure

Input block Input layer Transformer
output -

Hidden block 1 Dense layer 256 ReLU

Dropout layer 0.0000001 -

Hidden block 2 Dense layer 128 ReLU

Dropout layer 0.0000001 -

Hidden block 3 Dense layer 64 ReLU

Output block Output layer 1 Sigmoid

The DNN model for multi-class classification, as shown in Table 28, begins with the
input block, where the output from the transformer model is used as input. The hidden
block 1 consists of a dense layer with 256 units, activated by ReLU, followed by a dropout
layer with a rate of 0.3 for regularization. In hidden block 2, a dense layer with 128 units
and a ReLU activation is applied, along with another dropout layer at a rate of 0.3. Hidden
block 3 includes a dense layer with 64 units and a ReLU activation function. The output

Algorithms 2025, 18, 69 41 of 59

block features a dense layer with a softmax activation function, producing the final multi-
class classification output. For the CICIDS2017 dataset, the output layer comprised 14 units,
corresponding to 14 different classes. Similarly, for the NF-BoT-IoT-v2 dataset, the output
layer consisted of 4 units, corresponding to 4 distinct classes.

Table 27. Transformer model layers for multi-class classification.

Dataset Block Layer Type Output Size Activation
Function Parameters Description

CICIDS2017 Input block Input layer (69, 1) - -
Accepts input data
with 69 features (as
per the input shape).

NF-BoT-IoT-v2 Input block Input layer (28, 1) - -
Accepts input data
with 28 features (as
per the input shape).

Shared Structure

Transformer
block

Multi-head
attention - - num_heads = 8,

key_dim = 64

Captures complex
relationships within
input data.

Layer
normalization - - epsilon = 1 × 10−6

Normalizes the
output from the
attention layer.

Add (residual
connection) - - -

Adds input data to
the attention output
for stability.

Feed-forward
block Dense layer 512 ReLU units = 512,

activation = ‘ReLU’

Applies a dense
transformation with
ReLU activation.

Dense layer 512 - units = 512
Another dense
transformation
without activation.

Add (residual
connection) - - -

Adds feed-forward
output to the previous
block output.

Layer
normalization - - epsilon = 1 × 10−6

Normalizes the
combined output
for stability.

Table 28. DNN model layers for multi-class classification.

Dataset Block Layers Layer Size Activation

Shared Structure

Input block Input layer Transformer
output -

Hidden block 1 Dense layer 256 ReLU

Dropout layer 0.3 -

Hidden block 2 Dense layer 128 ReLU

Dropout layer 0.3 -

Hidden block 3 Dense layer 64 ReLU

CICIDS2017 Output block Output layer 14 Softmax

NF-BoT-IoT-v2 Output block Output layer 4 Softmax

(iii) Hyperparameter Configuration for the Transformer–DNN Model

The hyperparameters for the Transformer-DNN model, detailed in Table 29, have been
meticulously optimized for effectiveness in both binary and multi-class classification tasks.
The model operates with a batch size of 128, which defines the number of samples processed
before the model’s weights are updated, ensuring consistency across both classification
scenarios. The learning rate is adjustable, set at 0.001, allowing for fine-tuning of the speed
at which weights are modified during training. The Adam optimizer is utilized due to its

Algorithms 2025, 18, 69 42 of 59

robust adaptive learning features, demonstrating effectiveness in both binary and multi-
class contexts. In the case of binary classification, the model leverages binary cross-entropy
as its loss function, quantifying the divergence between predicted probabilities and actual
binary outcomes. In contrast, the multi-class classification model employs categorical
cross-entropy, assessing the difference between predicted class probabilities and the true
class labels across multiple categories. For performance evaluation, both models utilize
accuracy as their primary metric, which reflects the ratio of correctly predicted instances to
the total number of predictions made. This metric serves as a straightforward indicator
of model performance, illustrating the extent to which predicted labels correspond with
actual labels.

Table 29. Hyperparameters of the Transformer–DNN model.

Parameter Binary Classifier Multi-Class Classifier

Batch size 128 128

Learning rate 0.001 0.001

Optimizer Adam Adam

Loss function Binary cross-entropy Categorical cross-entropy

Metric Accuracy Accuracy

4. Results and Experiments
In this section, the performances of the CNN, Autoencoder, DNN, and proposed

Autoencoder–CNN and Transformer–DNN models were evaluated using the CICIDS2017
and NF-BoT-IoT-v2 datasets. The experimental results demonstrated that our models
outperformed the state-of-the-art methods in anomaly detection.

4.1. Dataset Description and Preprocessing Overview

This study employed the CICIDS2017 and NF-BoT-IoT-v2 datasets, both established
as pivotal benchmarks for IDSs, encompassing a broad spectrum of network behaviors
and attack patterns. However, these datasets present inherent challenges that include
missing entries, redundant data, outliers, and imbalances across classes. In this study, to
mitigate these issues, a series of preprocessing techniques were implemented that included
handling missing values, eliminating duplicates, addressing anomalous data points, and
correcting class distribution disparities. These measures ensured that the datasets were
effectively prepared for accurate and robust model evaluation in both binary and multi-class
classification contexts.

4.1.1. CICIDS2017 Dataset

The CICIDS2017 dataset, as described in Section 3.1, provides a comprehensive repre-
sentation of network activities, encompassing both legitimate and malicious traffic across
diverse attack types, making it a critical resource for IDS research. Despite its value,
the dataset poses challenges such as incomplete records, duplicate data, and significant
class imbalances. These issues were systematically addressed through the preprocess-
ing techniques outlined in Section 3.2. The process involved managing missing values,
eliminating duplicates, and employing sophisticated methods for detecting and removing
outliers, including LOF. Additionally, numerical features were scaled using MinMaxScaler
to ensure uniformity. To address class imbalance, advanced resampling techniques were
integrated into the model training pipeline, including enhanced hybrid ADASYN-SMOTE
for oversampling in binary classification, advanced SMOTE for oversampling in multi-class
classification, and ENN for undersampling. These comprehensive preprocessing steps

Algorithms 2025, 18, 69 43 of 59

significantly improved the dataset’s robustness and reliability for binary and multi-class
classification tasks.

4.1.2. NF-BoT-IoT-v2 Dataset

An IoT NetFlow-based dataset was developed by extending the NF-BoT-IoT dataset,
featuring data meticulously extracted from publicly available pcap files and flows catego-
rized based on their corresponding attack types. This dataset comprises 37,763,497 data
flows, of which 37,628,460 (99.64%) are identified as attack instances, while 135,037 (0.36%)
represent benign traffic [13]. It encompasses five distinct classes, including one benign cate-
gory and four unique attack types. Data preprocessing is a critical component of machine
learning workflows, transforming raw data into a structured and analysis-ready format to
optimize model performance. For the NF-BoT-IoT-v2 dataset, this process began with han-
dling missing values by removing incomplete records, followed by eliminating duplicate
entries to prevent redundancy. Outliers were identified and addressed using a combination
of Z-score and LOF methods, ensuring a more robust detection of anomalies and improving
data integrity. Feature selection based on correlation analysis reduced dimensionality by re-
taining only the most significant features, while MinMaxScaler standardized the numerical
data for consistent representation. Principal component analysis (PCA) was employed in
the binary classification to minimize redundancy and retain essential features. The dataset
was initially split into training and testing subsets then recombined for the application of
the ADASYN method, generating synthetic samples to address class imbalances. After this
augmentation, the dataset was re-split, keeping the test set intact. The ENN method was
applied for undersampling, removing noisy or borderline samples, and class weights were
adjusted during training to further address imbalances. This comprehensive approach
ensured the model could effective learn from the data, enhancing its ability to generalize
and deliver accurate predictions for detecting anomalies and classifying network traffic.

4.2. Experiment’s Establishment

The models were constructed using TensorFlow 2.17.0 and Keras 3.4.1 on the Kaggle
platform 1.6.17. The experimental setup included hardware featuring an Nvidia GeForce
RTX 1050 graphics card and Windows 10. During data resampling, only the training set
was utilized. The test dataset was kept untouched, reserved exclusively for evaluating the
model’s performance. Training involved 500 epochs, with each epoch optimizing the model
to improve performance and minimize loss, ensuring thorough learning and generalization
from the dataset.

4.3. Evaluation Metrics

Confusion matrices are commonly used for evaluating machine learning models,
comparing actual and predicted class information in a structured table format, as described
in reference [58]. A confusion matrix simplifies the computation of various performance
metrics by providing the following information:

• True Positives (TPs): Correctly predicted positive instances.
• False Negatives (FNs): Instances wrongly predicted as negative.
• True Negatives (TNs): Correctly predicted negative instances.
• False Positives (FPs): Instances wrongly predicted as positive.

Equation (40) [59] is used to calculate accuracy, the simplest and most fundamental
metric that can be derived from the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(40)

Algorithms 2025, 18, 69 44 of 59

In addition to accuracy, it is crucial to assess any model using a range of performance
metrics, particularly when working with imbalanced datasets. Therefore, the current
models were also evaluated using additional metrics such as recall, precision, and F1 score.
Precision was calculated by dividing the number of correctly identified positive instances
by the total number of instances predicted as positive, including both true positives and
false positives. These metrics provided a more comprehensive understanding of the models’
performance across all classes. Precision is also referred to as positive predictive value
and is calculated using Equation (41) [59]. Recall, calculated using Equation (42) [59],
measures the proportion of actual positive samples correctly identified by the model among
all samples that should have been identified as positive. Equation (43) [60] computes the
F-score, which represents the harmonic mean of accuracy and recall.

Precision =
TP

TP + FP
(41)

Recall =
TP

TP + FN
(42)

Fscore =
2 ∗ precision ∗ recall

precision + recall
(43)

In this case, the objective was to optimize the metrics accuracy, precision, recall, and
F-score as specified by the evaluation criteria.

4.4. Results

The evaluation of the proposed models was conducted in two key phases, training and
testing, using the train and test subsets of the CICIDS2017 dataset, with additional evalua-
tion on other datasets like NF-BoT-IoT-v2 to demonstrate the models’ generalizability. The
experiments focused on both binary and multi-class classification tasks, aimed at effectively
detecting attacks and accurately identifying various attack types. The performance of the
proposed models was benchmarked against existing intrusion detection systems as reported
in the literature, providing a contextual understanding of their strengths and limitations.
The results on the CICIDS2017 and NF-BoT-IoT-v2 datasets highlight the effectiveness of
the models in both binary and multi-class classification tasks. The Transformer-DNN and
Autoencoder-CNN models consistently demonstrated superior performance, excelling in
accurately detecting attacks and correctly identifying various attack types. Other models,
such as CNN, Autoencoder and DNN, also performed well, but the Transformer-DNN and
the Autoencoder-CNN model stood out as the most robust across all evaluation metrics.
These findings underscore the impact of the implemented preprocessing techniques and
the strength of the proposed models in handling the classification challenges presented by
the datasets.

(i) Binary Classification

The performance metrics for binary classification across different models on the CI-
CIDS2017 and NF-BoT-IoT-v2 datasets are presented in Table 30. On the CICIDS2017
dataset, the CNN model achieved accuracy, precision, recall, and F-score of 99.83% across
all metrics, while the Autoencoder model recorded slightly lower values, at 99.73%. The
DNN model performed better, achieving 99.88% for all metrics. The Autoencoder–CNN
model demonstrated notable improvements, achieving accuracy, precision, recall, and
F-score of 99.90%. The Transformer–DNN model further outperformed the other models
on this dataset, with all metrics reaching 99.92%. With the NF-BoT-IoT-v2 dataset, the CNN
model performed exceptionally well, with accuracy, precision, recall, and F-score values
of 99.97%. The Autoencoder model followed closely with 99.94% across all metrics, while

Algorithms 2025, 18, 69 45 of 59

the DNN model achieved slightly higher results at 99.96%. The Autoencoder–CNN model
delivered superior performance, achieving 99.98% for all metrics, matched only by the
Transformer–DNN model, which also achieved 99.98% for accuracy, precision, recall, and
F-score. These results emphasize the effectiveness and reliability of our Autoencoder–CNN
and Transformer–DNN models in achieving consistently high metrics across both datasets
for binary classification.

Table 30. Performance metrics in binary classification.

Dataset Metric Accuracy Precision Recall F-Score

CICIDS2017

CNN 99.83% 99.83% 99.83% 99.83%

Autoencoder 99.73% 99.73% 99.73% 99.73%

DNN 99.88% 99.88% 99.88% 99.88%

Autoencoder–CNN 99.90% 99.90% 99.90% 99.90%

Transformer–DNN 99.92% 99.92% 99.92% 99.92%

NF-BoT-IoT-v2

CNN 99.97% 99.97% 99.97% 99.97%

Autoencoder 99.94% 99.94% 99.94% 99.94%

DNN 99.96% 99.96% 99.96% 99.96%

Autoencoder–CNN 99.98% 99.98% 99.98% 99.98%

Transformer–DNN 99.98% 99.98% 99.98% 99.98%

(ii) Multi-Class Classification

The performance metrics for multi-class classification across various models on the
CICIDS2017 and NF-BoT-IoT-v2 datasets are summarized in Table 31, highlighting the
results of our proposed models, Autoencoder-CNN and Transformer-DNN. On the CI-
CIDS2017 dataset, the CNN and DNN models achieved accuracy, precision, recall, and
F-score values of 99.94%, while the Autoencoder model recorded slightly lower values at
99.93%. Autoencoder-CNN model outperformed these, achieving 99.95% for all metrics,
with the Transformer-DNN model demonstrating the best performance at 99.96% across
accuracy, precision, recall, and F-score. For the NF-BoT-IoT-v2 dataset, the CNN model
delivered an accuracy of 97.87%, precision of 97.91%, and recall and F-score values of
97.87%. The Autoencoder model showed slightly lower performance, with 97.81% for all
metrics except precision, which was 97.87%. The DNN model achieved an accuracy of
97.83%, precision of 97.88%, recall of 97.83%, and an F-score of 97.82%. Autoencoder-CNN
model demonstrated the best overall performance, achieving 97.95% for accuracy, recall,
and F-score, and 97.97% for precision. The Transformer-DNN model closely followed,
achieving accuracy, recall, and F-score values of 97.90% and precision of 97.98%.These
results underscore the superior performance of our proposed models, Autoencoder-CNN
and Transformer-DNN, in multi-class classification, demonstrating their reliability and
effectiveness across both datasets.

Table 31. Performance metrics in multi-class classification.

Dataset Metric Accuracy Precision Recall F-Score

CICIDS2017

CNN 99.94% 99.94% 99.94% 99.94%

Autoencoder 99.93% 99.93% 99.93% 99.93%

DNN 99.94% 99.94% 99.94% 99.94%

Autoencoder–CNN 99.95% 99.95% 99.95% 99.95%

Transformer–DNN 99.96% 99.96% 99.96% 99.96%

Algorithms 2025, 18, 69 46 of 59

Table 31. Cont.

Dataset Metric Accuracy Precision Recall F-Score

NF-BoT-IoT-v2

CNN 97.87% 97.91% 97.87% 97.87%

Autoencoder 97.81% 97.87% 97.81% 97.81%

DNN 97.83% 97.88% 97.83% 97.82%

Autoencoder–CNN 97.95% 97.97% 97.95% 97.95%

Transformer–DNN 97.90% 97.98% 97.90% 97.90%

5. Discussion
This section provides a comprehensive evaluation of the Autoencoder–CNN and

Transformer–DNN models, benchmarking their performance against other classification
techniques including CNN, Autoencoder, and DNN, across both binary and multi-class
classification tasks. A detailed analysis of confusion matrices and performance metrics
including accuracy, precision, recall, and F1 score highlights the comparative strengths
and limitations of each approach. By focusing on results from the CICIDS2017 and NF-
BoT-IoT-v2 datasets, we aim to demonstrate how the Autoencoder-CNN model, with its
integration of Autoencoder and CNN architectures, and the Transformer-DNN model,
with its combination of Transformer and DNN architectures, excel in detecting different
classes. These integrations can contribute to measurable improvements in the detection
and differentiation of diverse attack types, addressing key challenges in network intrusion
detection. Through this in-depth discussion, we underscore the practical implications of
our findings, particularly regarding the enhanced accuracy and reliability these models
offer for intrusion detection systems in real-world applications. These results demonstrate
the models’ potential to improve both early threat detection and response, thereby elevating
the overall robustness of modern cyber security solutions.

(i) Binary Classification

On the CICIDS2017 dataset, the Autoencoder–CNN and Transformer–DNN models ex-
hibited exceptional performance in binary classification. The Autoencoder-CNN achieved
accuracy, precision, recall, and F1 scores of 99.90%, correctly detecting 13,927 normal in-
stances and 11,039 attack instances, while incorrectly detecting 14 normal instances and
10 attack instances. The Transformer-DNN outperformed these results slightly, achiev-
ing metrics of 99.92% and correctly detecting 13,930 normal instances and 11,039 attack
instances, with 11 normal instances and 10 attack instances incorrectly detected. On the
NF-BoT-IoT-v2 dataset, both models achieved identical metrics of 99.98% across accuracy,
precision, recall, and F1 score. The Autoencoder–CNN and Transformer–DNN correctly de-
tected 1263 normal instances and 10,795 attack instances, with 3 attack instances incorrectly
detected, as shown in Figure 3. This high level of performance underscores the models’
robustness, especially in handling imbalanced datasets such as are typical in real-world
applications. The high precision and recall values demonstrate their reliability in detecting
attacks while minimizing both false positives and false negatives, making them effective
solutions for intrusion detection systems.

The comparative performance of the Transformer–DNN and Autoencoder–CNN
models in binary classification on the CICIDS2017 and NF-BoT-IoT-v2 datasets, as shown in
Figures 4 and 5, demonstrates their outstanding effectiveness. With the CICIDS2017 dataset,
the Transformer–DNN model exceled, achieving perfect scores across all metrics and
99.92% accuracy, precision, recall, and F1 score. The Autoencoder-CNN was close behind,
attaining 99.90% across all metrics, reflecting its strong performance. The DNN model also
performed well, achieving 99.88% in all metrics, while the CNN and Autoencoder models
showed slightly lower results at 99.83% and 99.73%, respectively. With the NF-BoT-IoT-v2

Algorithms 2025, 18, 69 47 of 59

dataset, both the Transformer–DNN and Autoencoder-CNN models achieved flawless
performance, with 99.98% across all metrics, highlighting their excellent ability in binary
classification tasks. The DNN model trailed slightly with a score of 99.96%, while the
CNN and Autoencoder models achieved 99.97% and 99.94%, respectively. These results
further emphasize the exceptional classification capabilities of the Transformer–DNN and
Autoencoder–CNN models, proving their suitability for real-world application in intrusion
detection, particularly when dealing with imbalanced datasets.

Algorithms 2025, 18, x FOR PEER REVIEW 48 of 61

(a) (b)

(c) (d)

Figure 3. Confusion matrices for binary classification: (a) Autoencoder–CNN on the CICIDS2017

dataset, (b) Transformer–DNN on the CICIDS2017 dataset, (c) Autoencoder-CNN on the NF-BoT-

IoT-v2 dataset, and (d) Transformer–DNN on the NF-BoT-IoT-v2 dataset.

The comparative performance of the Transformer–DNN and Autoencoder–CNN

models in binary classification on the CICIDS2017 and NF-BoT-IoT-v2 datasets, as shown

in Figure 4 and Figure 5, demonstrates their outstanding effectiveness. With the CI-

CIDS2017 dataset, the Transformer–DNN model exceled, achieving perfect scores across

all metrics and 99.92% accuracy, precision, recall, and F1 score. The Autoencoder-CNN

was close behind, attaining 99.90% across all metrics, reflecting its strong performance.

The DNN model also performed well, achieving 99.88% in all metrics, while the CNN and

Autoencoder models showed slightly lower results at 99.83% and 99.73%, respectively.

With the NF-BoT-IoT-v2 dataset, both the Transformer–DNN and Autoencoder-CNN

models achieved flawless performance, with 99.98% across all metrics, highlighting their

excellent ability in binary classification tasks. The DNN model trailed slightly with a score

of 99.96%, while the CNN and Autoencoder models achieved 99.97% and 99.94%, respec-

tively. These results further emphasize the exceptional classification capabilities of the

Transformer–DNN and Autoencoder–CNN models, proving their suitability for real-

N
o

rm
a

l

A

tt
a

ck

T
r
u

e
 L

a
b

e
ls

 Predicted Labels

Normal 13,927 14

Attack 10 11,039

N
o

rm
a

l

A

tt
a

ck

T
r
u

e
 L

a
b

e
ls

 Predicted Labels

Normal 13,930 11

Attack 10 11,039

N
o

rm
a

l

A

tt
a

ck

T
r
u

e
 L

a
b

e
ls

 Predicted Labels

Normal 1263 0

Attack 3 10,795

N
o

rm
a

l

A

tt
a

ck

T
r
u

e
 L

a
b

e
ls

 Predicted Labels

Normal 1263 0

Attack 3 10,795

 True Label with Majority

 True Label with Minority

 False Label

Figure 3. Confusion matrices for binary classification: (a) Autoencoder–CNN on the CICIDS2017
dataset, (b) Transformer–DNN on the CICIDS2017 dataset, (c) Autoencoder-CNN on the NF-BoT-IoT-
v2 dataset, and (d) Transformer–DNN on the NF-BoT-IoT-v2 dataset.

The performance metrics in Table 32 highlight the exceptional effectiveness of the
Autoencoder–CNN and Transformer–DNN models for binary classification across different
classes within the CICIDS2017 and NF-BoT-IoT-v2 datasets. With the CICIDS2017 dataset,

Algorithms 2025, 18, 69 48 of 59

the Autoencoder–CNN achieved an accuracy of 99.90% for the Normal class, with precision
of 99.93%, recall of 99.90%, and an F1 score of 99.91%. For the Attack class, it attained
an accuracy of 99.91%, precision of 99.87%, recall of 99.91%, and an F1 score of 99.89%.
The Transformer–DNN slightly outperformed this, with 99.92% accuracy for the Normal
class, achieving a precision of 99.93%, recall of 99.92%, and an F1 score of 99.92%. For the
Attack class, it reached 99.91% accuracy with metrics of 99.90% precision, 99.91% recall, and
99.90% F1 score. With the NF-BoT-IoT-v2 dataset, both models demonstrated outstanding
performance, highlighting their robustness and effectiveness in intrusion detection. The
Autoencoder–CNN and Transformer–DNN models achieved 100% accuracy for the Normal
class, with precision of 99.76%, recall of 100%, and F1 score of 99.88%. For the Attack class,
both models delivered accuracy of 99.97%, achieving 100% precision, 99.97% recall, and an
F1 score of 99.99%. These metrics showcase the balanced performance of the Autoencoder–
CNN and Transformer–DNN models across classes, making them highly effective for
real-world intrusion detection scenarios where accurate identification of both normal and
attack traffic is critical.

Algorithms 2025, 18, x FOR PEER REVIEW 49 of 61

world application in intrusion detection, particularly when dealing with imbalanced da-

tasets.

Figure 4. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the CI-

CIDS2017 dataset.

Figure 5. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the NF-

BoT-IoT-v2 dataset.

The performance metrics in Table 32 highlight the exceptional effectiveness of the

Autoencoder–CNN and Transformer–DNN models for binary classification across differ-

ent classes within the CICIDS2017 and NF-BoT-IoT-v2 datasets. With the CICIDS2017 da-

taset, the Autoencoder–CNN achieved an accuracy of 99.90% for the Normal class, with

precision of 99.93%, recall of 99.90%, and an F1 score of 99.91%. For the Attack class, it

attained an accuracy of 99.91%, precision of 99.87%, recall of 99.91%, and an F1 score of

99.89%. The Transformer–DNN slightly outperformed this, with 99.92% accuracy for the

99.60%

99.65%

99.70%

99.75%

99.80%

99.85%

99.90%

99.95%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

99.92%

99.93%

99.94%

99.95%

99.96%

99.97%

99.98%

99.99%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

Figure 4. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the
CICIDS2017 dataset.

(ii) Multi-Class Classification

In multi-class classification on the CICIDS2017 dataset, the Autoencoder–CNN model
demonstrated exceptional performance across accuracy, precision, recall, and F1 score,
all reaching 99.95%. The confusion matrix shown in Figure 6 reflects the model’s ability
to effectively distinguish between a wide range of attack types with minimal misclassi-
fications. For example, the model correctly classified 1811 instances of PortScan, with
only one misclassification incorrectly labeled as DoS GoldenEye. Similarly, it correctly
classified all 2025 instances of DDoS, with no misclassifications. The model also accurately
classified 5467 instances of DoS Hulk, with one misclassification incorrectly labeled as
DDoS. Regarding more challenging attack types such as DoS Slowloris, the model cor-
rectly identified 227 instances, with a single misclassification incorrectly labeled as DoS
Slowhttptest. Likewise, it accurately classified 155 instances of DoS Slowhttptest, with 1
misclassification incorrectly labeled as a Web Attack—XSS. In the case of Bot attacks, the
model correctly classified 98 instances, with one misclassification incorrectly labeled as

Algorithms 2025, 18, 69 49 of 59

a Web Attack—Brute Force. The model also excelled in classifying rare attack types like
Web Attack—Brute Force or Web Attack—XSS, infiltration, Web Attack—Sql Injection, and
Heartbleed, all with no misclassifications. The confusion matrix highlights the model’s
ability to handle both frequent and rare attack types with minimal errors, demonstrating its
effectiveness in addressing multi-class classification challenges, particularly in imbalanced
datasets. These results validate the model’s potential for real-world intrusion detection
systems, where both high accuracy and the ability to distinguish among diverse attack
types are essential.

Algorithms 2025, 18, x FOR PEER REVIEW 49 of 61

world application in intrusion detection, particularly when dealing with imbalanced da-

tasets.

Figure 4. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the CI-

CIDS2017 dataset.

Figure 5. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the NF-

BoT-IoT-v2 dataset.

The performance metrics in Table 32 highlight the exceptional effectiveness of the

Autoencoder–CNN and Transformer–DNN models for binary classification across differ-

ent classes within the CICIDS2017 and NF-BoT-IoT-v2 datasets. With the CICIDS2017 da-

taset, the Autoencoder–CNN achieved an accuracy of 99.90% for the Normal class, with

precision of 99.93%, recall of 99.90%, and an F1 score of 99.91%. For the Attack class, it

attained an accuracy of 99.91%, precision of 99.87%, recall of 99.91%, and an F1 score of

99.89%. The Transformer–DNN slightly outperformed this, with 99.92% accuracy for the

99.60%

99.65%

99.70%

99.75%

99.80%

99.85%

99.90%

99.95%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

99.92%

99.93%

99.94%

99.95%

99.96%

99.97%

99.98%

99.99%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

Figure 5. Proposed Transformer–DNN and Autoencoder–CNN versus binary classifiers, on the
NF-BoT-IoT-v2 dataset.

Table 32. Performance metrics for Autoencoder–CNN and Transformer–DNN in binary classification
across several classes.

Dataset Model Label Accuracy Precision Recall F-Score

CICIDS2017

Autoencoder–CNN
Normal 99.90% 99.93% 99.90% 99.91%

Attack 99.91% 99.87% 99.91% 99.89%

Transformer–DNN
Normal 99.92% 99.93% 99.92% 99.92%

Attack 99.91% 99.90% 99.91% 99.90%

NF-BoT-IoT-v2

Autoencoder–CNN
Normal 100% 99.76% 100% 99.88%

Attack 99.97% 100% 99.97% 99.99%

Transformer–DNN
Normal 100% 99.76% 100% 99.88%

Attack 99.97% 100% 99.97% 99.99%

In multi-class classification on the CICIDS2017 dataset, the Transformer-DNN model
demonstrates exceptional performance, achieving outstanding accuracy, precision, recall,
and F1-scores across multiple attack classes. As illustrated by the confusion matrix in
Figure 7, the model effectively distinguishes between various attack types with minimal
misclassifications. For instance, the model correctly identified all 1811 instances of PortScan,
with only 1 misclassification, where it was classified as DDoS, and accurately classified all
2025 instances of DDoS and 5468 instances of DoS Hulk, with no misclassifications. For
DoS GoldenEye, the model correctly classified 536 instances without errors, and similarly,

Algorithms 2025, 18, 69 50 of 59

the model classified 305 instances of FTP-Patator, with just 1 instance incorrectly labeled
as DoS Slowloris. Additionally, for more challenging attack types, such as DoS Slowloris
and Web Attack–Brute Force, the model achieved perfect accuracy, correctly identifying
all 228 instances of DoS Slowloris and all 63 instances of Web Attack–Brute Force, with no
misclassifications. The Web Attack-SQL Injection, Infiltration, and Heartbleed attack classes
were all perfectly identified, with 100% precision, recall, and F1-scores. The model also
exhibited strong performance across less frequent classes like Bot, with only 1 misclassifica-
tion out of 99 instances, showcasing its ability to handle imbalanced datasets effectively.
With an overall accuracy of 99.96%, precision of 99.96%, recall of 99.96%, and F1-score of
99.96%, these results highlight the Transformer-DNN model’s robust ability to manage
multi-class classification challenges, making it a reliable candidate for real-world intrusion
detection systems where precision and accuracy in classifying diverse attack types are
essential.

Algorithms 2025, 18, x FOR PEER REVIEW 51 of 61

Figure 6. Confusion matrix for multi-class classification using Autoencoder–CNN on the CI-

CIDS2017 dataset.

In multi-class classification on the CICIDS2017 dataset, the Transformer-DNN model

demonstrates exceptional performance, achieving outstanding accuracy, precision, recall,

and F1-scores across multiple attack classes. As illustrated by the confusion matrix in Fig-

ure 7, the model effectively distinguishes between various attack types with minimal mis-

classifications. For instance, the model correctly identified all 1811 instances of PortScan,

with only 1 misclassification, where it was classified as DDoS, and accurately classified all

2025 instances of DDoS and 5468 instances of DoS Hulk, with no misclassifications. For

DoS GoldenEye, the model correctly classified 536 instances without errors, and similarly,

the model classified 305 instances of FTP-Patator, with just 1 instance incorrectly labeled

as DoS Slowloris. Additionally, for more challenging attack types, such as DoS Slowloris

and Web Attack–Brute Force, the model achieved perfect accuracy, correctly identifying

all 228 instances of DoS Slowloris and all 63 instances of Web Attack–Brute Force, with no

P

o
rt

S
ca

n

 D

D
o
S

 D
o
S

 H
u

lk

 D

o
S

 G
o
ld

en
E

y
e

F
T

P
-P

a
ta

to
r

S
S

H
-P

a
ta

to
r

 D

o
S

 s
lo

w
lo

ri
s

 D
o
S

 S
lo

w
h

tt
p

te
st

 B

o
t

 W

eb
 A

tt
a
ck

 -
 B

ru
te

 F
o
rc

e

 W

eb
 A

tt
a
ck

 -
 X

S
S

 I

n
fi

lt
ra

ti
o
n

W

eb
 A

tt
a
ck

 -
 S

q
l

In
je

ct
io

n

 H

ea
rt

b
le

ed

0 0

T
ru

e
L

a
b

el
s

Predicted Lables

PortScan 1811 0 0 1 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0

DDoS 0 2025 0 0 0 0

0

DoS GoldenEye 0 0 0 536 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

2

0

FTP-Patator 0 0 0 0 306 0 0 0 0 0 0 0 0

0

0

0

0

0

2

0

0 1

0

0

0

0

0

0

0

0

98

0

0

0

0

0

0

0 0 0

0

0

0 0

0 0

0

0

0

0

SSH-Patator 0 0 0

0

0

0

0

0 0

DoS Hulk 0 1 5467

0

0 0 0 0 0

52

0

0 0 0 0

0 0 0 0

0

0 0 0

63

0

0

00 0 0 0

DoS slowloris

DoS Slowhttptest

0

0 0

0

0 0 0 0

0 0 0

0 0 0

0

0133

0

0

0

0

227

0

0

1

0

0

0

0

0

0

155 0

0

0

0

10

1

0Heartbleed

Web Attack - Sql Injection

Web Attack - XSS

Web Attack - Brute Force

Bot

Infiltration 0 0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

 True Label with Sample Count > 2500

 True Label with Sample Count Between 1500 and 2500

 True Label with Sample Count Between 100 and 1500

 True Label with Sample Count < 100

 False Label

Figure 6. Confusion matrix for multi-class classification using Autoencoder–CNN on the CI-
CIDS2017 dataset.

Algorithms 2025, 18, 69 51 of 59

Algorithms 2025, 18, x FOR PEER REVIEW 52 of 61

misclassifications. The Web Attack-SQL Injection, Infiltration, and Heartbleed attack clas-

ses were all perfectly identified, with 100% precision, recall, and F1-scores. The model also

exhibited strong performance across less frequent classes like Bot, with only 1 misclassifi-

cation out of 99 instances, showcasing its ability to handle imbalanced datasets effectively.

With an overall accuracy of 99.96%, precision of 99.96%, recall of 99.96%, and F1-score of

99.96%, these results highlight the Transformer-DNN model’s robust ability to manage

multi-class classification challenges, making it a reliable candidate for real-world intru-

sion detection systems where precision and accuracy in classifying diverse attack types

are essential.

Figure 7. Confusion matrix for multi-class classification using Transformer–DNN on the CI-

CIDS2017 dataset.

The Autoencoder–CNN and Transformer–DNN models demonstrates impressive

performance in multi-class classification on the NF-BoT-IoT-v2 dataset. The Autoencoder–

CNN achieved an overall accuracy of 97.95%, with precision, recall, and F1 score values

of 97.97%, 97.95%, and 97.95%, respectively. The Autoencoder–CNN correctly identifies

P

o
rt

S
ca

n

 D

D
o
S

 D
o
S

 H
u

lk

 D

o
S

 G
o
ld

en
E

y
e

F
T

P
-P

a
ta

to
r

S
S

H
-P

a
ta

to
r

 D

o
S

 s
lo

w
lo

ri
s

 D
o
S

 S
lo

w
h

tt
p

te
st

 B

o
t

 W

eb
 A

tt
a
ck

 -
 B

ru
te

 F
o
rc

e

 W

eb
 A

tt
a
ck

 -
 X

S
S

 I

n
fi

lt
ra

ti
o
n

W

eb
 A

tt
a

ck
 -

 S
q

l
In

je
ct

io
n

 H

ea
rt

b
le

ed

0 0

T
ru

e
L

a
b

el
s

Predicted Lables

PortScan 1811 1 0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0

DDoS 0 2025 0 0 0 0

0

DoS GoldenEye 0 0 0 536 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

2

0

FTP-Patator 0 0 0 0 305 0 1 0 0 0 0 0 0

0

0

0

0

0

2

0

0 1

0

0

0

0

0

0

0

0

98

0

0

0

0

0

0

0 0 0

0

0

0 0

0 0

0

0

0

0

SSH-Patator 0 0 0

0

0

0

0

0 0

DoS Hulk 0 0 5468

0

0 0 0 0 0

52

0

0 0 0 0

0 0 0 0

0

0 0 0

63

0

0

00 0 0 0

DoS slowloris

DoS Slowhttptest

0

0 0

0

0 0 0 0

0 1 0

0 0 0

0

0133

0

0

0

0

228

0

0

0

0

0

0

0

0

0

155 0

0

0

0

00

1

0Heartbleed

Web Attack - Sql Injection

Web Attack - XSS

Web Attack - Brute Force

Bot

Infiltration 0 0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

 True Label with Sample Count > 2500

 True Label with Sample Count Between 1500 and 2500

 True Label with Sample Count Between 100 and 1500

 True Label with Sample Count < 100

 False Label

Figure 7. Confusion matrix for multi-class classification using Transformer–DNN on the CI-
CIDS2017 dataset.

The Autoencoder–CNN and Transformer–DNN models demonstrates impressive
performance in multi-class classification on the NF-BoT-IoT-v2 dataset. The Autoencoder–
CNN achieved an overall accuracy of 97.95%, with precision, recall, and F1 score values
of 97.97%, 97.95%, and 97.95%, respectively. The Autoencoder–CNN correctly identifies
2670 instances of Reconnaissance, 4154 instances of DDoS, 3475 instances of DoS, and
62 instances of Theft. The Transformer–DNN, with a slightly lower accuracy of 97.90%,
achieved precision, recall, and F1 score values of 97.98%, 97.90%, and 97.90%, respectively. It
correctly identifies 2633 instances of Reconnaissance, 4154 instances of DDoS, 3507 instances
of DoS, and 62 instances of Theft. Both models misclassified some instances among the
classes, as shown in Figure 8. Both models effectively minimized false positives and false
negatives, demonstrating their robustness in real-world applications, especially when
handling the complexities of imbalanced datasets.

Algorithms 2025, 18, 69 52 of 59

Algorithms 2025, 18, x FOR PEER REVIEW 53 of 61

2670 instances of Reconnaissance, 4154 instances of DDoS, 3475 instances of DoS, and 62

instances of Theft. The Transformer–DNN, with a slightly lower accuracy of 97.90%,

achieved precision, recall, and F1 score values of 97.98%, 97.90%, and 97.90%, respectively.

It correctly identifies 2633 instances of Reconnaissance, 4154 instances of DDoS, 3507 in-

stances of DoS, and 62 instances of Theft. Both models misclassified some instances among

the classes, as shown in Figure 8. Both models effectively minimized false positives and

false negatives, demonstrating their robustness in real-world applications, especially

when handling the complexities of imbalanced datasets.

(a) (b)

Figure 8. Confusion matrix for multi-class classification on the NF-BoT-IoT-v2 dataset using (a) Au-

toencoder–CNN and (b) Transformer–DNN.

The comparative performances of the proposed Transformer–DNN and Autoen-

coder–CNN models against other multi-class classifiers demonstrates their exceptional

capability in handling complex classification tasks on the CICIDS2017 and NF-BoT-IoT-

v2 datasets, as shown in Figures 9 and 10. The evaluation metrics, including accuracy,

precision, recall, and F1 score, highlight the outstanding performance of both models. On

the CICIDS2017 dataset, the Transformer–DNN achieved the highest scores across all met-

rics, with an impressive 99.96% accuracy, precision, recall, and F1 score. The Autoencoder-

CNN model followed closely with scores of 99.95% in each metric. The CNN and DNN

models each achieved 99.94% across all metrics, while the Autoencoder model scored

slightly lower at 99.93%. On the NF-BoT-IoT-v2 dataset, the Autoencoder–CNN outper-

formed the Transformer–DNN, with slightly higher accuracy of 97.95% and precision, re-

call, and F1 scores of 97.97%, 97.95%, and 97.95%, respectively. The Transformer–DNN

achieved accuracy of 97.90%, with precision, recall, and F1 scores of 97.98%, 97.90%, and

97.90%, respectively. The CNN model achieved 97.87% accuracy, with precision, recall,

 R

ec
o

n
n

a
is

sa
n

ce

 D
D

o
S

D
o

S

T
h

ef
t

0

123 2

0

Reconnaissance

DDoS 1 4154 29

0 0 0

2670 0

36 26 3475

62

 T
ru

e
L

a
b

el
s

 Predicted Lables

Theft

DoS

 R

ec
o

n
n

a
is

sa
n

ce

 D
D

o
S

D
o

S

T
h

ef
t

0 0 0

2633 0

4 26 3507

62

 T
ru

e
L

a
b

el
s

 Predicted Lables

Theft

DoS 0

161 1

0

Reconnaissance

DDoS 0 4154 30

 True Label with Sample Count > 4000

 True Label with Sample Count Between 3000 and 4000

 True Label with Sample Count Between 2000 and 3000

 True Label with Sample Count < 2000

 False Label

Figure 8. Confusion matrix for multi-class classification on the NF-BoT-IoT-v2 dataset using
(a) Autoencoder–CNN and (b) Transformer–DNN.

The comparative performances of the proposed Transformer–DNN and Autoencoder–
CNN models against other multi-class classifiers demonstrates their exceptional capability
in handling complex classification tasks on the CICIDS2017 and NF-BoT-IoT-v2 datasets,
as shown in Figures 9 and 10. The evaluation metrics, including accuracy, precision,
recall, and F1 score, highlight the outstanding performance of both models. On the CI-
CIDS2017 dataset, the Transformer–DNN achieved the highest scores across all metrics,
with an impressive 99.96% accuracy, precision, recall, and F1 score. The Autoencoder-CNN
model followed closely with scores of 99.95% in each metric. The CNN and DNN models
each achieved 99.94% across all metrics, while the Autoencoder model scored slightly
lower at 99.93%. On the NF-BoT-IoT-v2 dataset, the Autoencoder–CNN outperformed
the Transformer–DNN, with slightly higher accuracy of 97.95% and precision, recall, and
F1 scores of 97.97%, 97.95%, and 97.95%, respectively. The Transformer–DNN achieved
accuracy of 97.90%, with precision, recall, and F1 scores of 97.98%, 97.90%, and 97.90%,
respectively. The CNN model achieved 97.87% accuracy, with precision, recall, and F1
scores of 97.91%, 97.87%, and 97.87%, respectively. The DNN model achieved 97.83% accu-
racy, with precision, recall, and F1 scores of 97.88%, 97.83%, and 97.82%, respectively. The
standalone Autoencoder scored 97.81% for accuracy, with precision, recall, and F1 scores
of 97.87%, 97.81%, and 97.81%, respectively. These results underscore the effectiveness
of integrating advanced architectures to enhance classification performance when using
imbalanced datasets. The results also demonstrate the superiority of the Transformer–DNN
and Autoencoder–CNN models in terms of reliable and efficient multi-class classification
on both datasets.

Algorithms 2025, 18, 69 53 of 59

Algorithms 2025, 18, x FOR PEER REVIEW 54 of 61

and F1 scores of 97.91%, 97.87%, and 97.87%, respectively. The DNN model achieved

97.83% accuracy, with precision, recall, and F1 scores of 97.88%, 97.83%, and 97.82%, re-

spectively. The standalone Autoencoder scored 97.81% for accuracy, with precision, recall,

and F1 scores of 97.87%, 97.81%, and 97.81%, respectively. These results underscore the

effectiveness of integrating advanced architectures to enhance classification performance

when using imbalanced datasets. The results also demonstrate the superiority of the

Transformer–DNN and Autoencoder–CNN models in terms of reliable and efficient

multi-class classification on both datasets.

Figure 9. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the

CICIDS2017 dataset.

Figure 10. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the

NF-BoT-IoT-v2 dataset.

99.91%

99.92%

99.93%

99.94%

99.95%

99.96%

99.97%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

97.70%

97.75%

97.80%

97.85%

97.90%

97.95%

98.00%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

Figure 9. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the
CICIDS2017 dataset.

Algorithms 2025, 18, x FOR PEER REVIEW 54 of 61

and F1 scores of 97.91%, 97.87%, and 97.87%, respectively. The DNN model achieved

97.83% accuracy, with precision, recall, and F1 scores of 97.88%, 97.83%, and 97.82%, re-

spectively. The standalone Autoencoder scored 97.81% for accuracy, with precision, recall,

and F1 scores of 97.87%, 97.81%, and 97.81%, respectively. These results underscore the

effectiveness of integrating advanced architectures to enhance classification performance

when using imbalanced datasets. The results also demonstrate the superiority of the

Transformer–DNN and Autoencoder–CNN models in terms of reliable and efficient

multi-class classification on both datasets.

Figure 9. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the

CICIDS2017 dataset.

Figure 10. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the

NF-BoT-IoT-v2 dataset.

99.91%

99.92%

99.93%

99.94%

99.95%

99.96%

99.97%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

97.70%

97.75%

97.80%

97.85%

97.90%

97.95%

98.00%

CNN Auto Encoder DNN Auto Encoder-CNN Transformer-DNN

Accuracy

Precision

Recall

F-score

Figure 10. Proposed Transformer–DNN and Autoencoder–CNN versus multi-class classifiers on the
NF-BoT-IoT-v2 dataset.

The Autoencoder–CNN model demonstrated exceptional performance in multi-class
classification on the CICIDS2017 dataset, achieving remarkable accuracy and reliability
across diverse attack categories, as detailed in Table 33. For certain classes such as FTP-
Patator, SSH-Patator, infiltration, Web Attack—Sql Injection, and Heartbleed, the model
achieved perfect scores in all metrics, including 100% accuracy, precision, recall, and
F1 score, underscoring its capability to detect these threats flawlessly. For challenging
attack types such as DoS Slowloris and DoS Slowhttptest, the model maintained robust
performance with F1 scores of 99.78% and 99.36%, respectively. For classes like PortScan
and DDoS, which often involve complex patterns, the model exceled with F1 scores of
99.97% and 99.98%, respectively, indicating its effectiveness in handling intricate attack

Algorithms 2025, 18, 69 54 of 59

scenarios. Notably, F1 scores of 99.21% and 99.05% were achieved for Web Attack—Brute
Force and Web Attack—XSS, reflecting the model’s adeptness at identifying less frequent
attack types. Overall, these comprehensive results affirm the Autoencoder–CNN model’s
robustness and suitability for real-world intrusion detection systems where precise and
consistent performance is paramount.

Table 33. Performance metrics for Autoencoder–CNN across several classes in multi-class classifica-
tion on the CICIDS2017 dataset.

Label Accuracy Precision Recall F-Score

PortScan 99.94% 100% 99.94% 99.97%

DDoS 100% 99.95% 100% 99.98%

DoS Hulk 99.98% 100% 99.98% 99.99%

DoS GoldenEye 100% 99.81% 100% 99.91%

FTP-Patator 100% 100% 100% 100%

SSH-Patator 100% 100% 100% 100%

DoS Slowloris 99.56% 100% 99.56% 99.78%

DoS Slowhttptest 99.36% 99.36% 99.36% 99.36%

Bot 98.99% 100% 98.99% 99.49%

Web Attack—Brute Force 100% 98.44% 100% 99.21%

Web Attack—XSS 100% 98.11% 100% 99.05%

Infiltration 100% 100% 100% 100%

Web Attack—Sql Injection 100% 100% 100% 100%

Heartbleed 100% 100% 100% 100%

The Transformer–DNN model demonstrated exceptional performance in multi-class
classification on the CICIDS2017 dataset, achieving outstanding metrics across various
attack classes, as detailed in Table 34. The model achieved perfect scores for several cate-
gories, including DoS Hulk, DoS GoldenEye, SSH-Patator, Web Attack—XSS, infiltration,
Web Attack—Sql Injection, and Heartbleed, with 100% accuracy, precision, recall, and
F1 scores. These results underscore the model’s ability to detect these attack types with
complete reliability and no misclassifications. For other attack classes, such as DDoS and
PortScan, the model maintained exceptional performance, achieving F1 scores of 99.95%
and 99.97%, respectively. Strong metrics were also displayed for challenging attack types
including DoS Slowloris and DoS Slowhttptest, with F1 scores of 99.78% and 99.68%,
respectively. Additionally, FTP-Patator and Bot attacks were associated with F1 scores
of 99.84% and 99.49%, demonstrating the model’s capacity to handle diverse patterns of
malicious behavior. Even for Web Attack—Brute Force, the model achieved an impressive
F1 score of 99.21%. These comprehensive metrics highlight the Transformer–DNN model’s
robustness in handling complex multi-class classification tasks, making it highly suitable
for real-world intrusion detection systems where accurate and reliable detection across
various attack types is essential.

The performance metrics presented in Table 35 demonstrate the remarkable capabili-
ties of the Autoencoder–CNN and Transformer–DNN models for multi-class classification
using the NF-BoT-IoT-v2 dataset. The Autoencoder–CNN model demonstrated strong per-
formance across all classes, with the highest accuracy of 100% for the Theft class, precision
of 96.88%, and recall of 100%, yielding an F1 score of 98.41%. For the Reconnaissance class,
it achieved 95.53% accuracy, with precision of 98.63%, recall of 95.53%, and an F1 score of
97.06%. The DDoS class was associated with an accuracy of 99.28%, with precision and
recall values of 99.38% and 99.28%, respectively, resulting in an F1 score of 99.33%. For
the DoS class, accuracy was 98.25%, with precision of 95.81%, recall of 98.25%, and an F1

Algorithms 2025, 18, 69 55 of 59

score of 97.01%. The Transformer–DNN model performed comparably, with impressive
metrics. For the Theft class, it achieved 100% accuracy, 98.41% precision, and 100% recall,
with an F1 score of 99.20%. In the Reconnaissance class, it showed 94.20% accuracy, 99.85%
precision, and 94.20% recall, with an F1-score of 96.94%. In the DDoS class, it matched
the Autoencoder–CNN’s results with an accuracy of 99.28%, precision of 99.38%, recall
of 99.28%, and an F1 score of 99.33%. It also demonstrated strong performance in the
DoS class, achieving 99.15% accuracy, 94.84% precision, 99.15% recall, and an F1 score of
96.95%. Overall, both models exhibited robust performance in identifying and classifying
different types of attacks, with the Autoencoder–CNN excelling in certain classes and the
Transformer–DNN showing slightly better results in others.

Table 34. Performance metrics for Transformer–DNN across several classes in multi-class classification
on the CICIDS2017 dataset.

Label Accuracy Precision Recall F-Score

PortScan 99.94% 100% 99.94% 99.97%

DDoS 100% 99.90% 100% 99.95%

DoS Hulk 100% 100% 100% 100%

DoS GoldenEye 100% 100% 100% 100%

FTP-Patator 99.67% 100% 99.67% 99.84%

SSH-Patator 100% 100% 100% 100%

DoS Slowloris 100% 99.56% 100% 99.78%

DoS Slowhttptest 99.36% 100% 99.36% 99.68%

Bot 98.99% 100% 98.99% 99.49%

Web Attack—Brute Force 100% 98.44% 100% 99.21%

Web Attack—XSS 100% 100% 100% 100%

Infiltration 100% 100% 100% 100%

Web Attack—Sql Injection 100% 100% 100% 100%

Heartbleed 100% 100% 100% 100%

Table 35. Performance metrics for Autoencoder–CNN and Transformer–DNN across several classes
in multi-class classification on the NF-BoT-IoT-v2 dataset.

Model Label Accuracy Precision Recall F-Score

Autoencoder–CNN

Reconnaissance 95.53% 98.63% 95.53% 97.06%

DDoS 99.28% 99.38% 99.28% 99.33%

DoS 98.25% 95.81% 98.25% 97.01%

Theft 100% 96.88% 100% 98.41%

Transformer–DNN

Reconnaissance 94.20% 99.85% 94.20% 96.94%

DDoS 99.28% 99.38% 99.28% 99.33%

DoS 99.15% 94.84% 99.15% 96.95%

Theft 100% 98.41% 100% 99.20%

6. Limitations
The Transformer–DNN and Autoencoder–CNN represent advanced hybrid deep

learning architectures designed to enhance performance in both binary and multi-class
classification tasks. While this approach addresses key challenges in intrusion detection
systems, such as improving accuracy and managing class imbalances, several limitations
and challenges remain to be addressed, including the following:

Algorithms 2025, 18, 69 56 of 59

• Scalability: As dataset sizes and the complexities of network traffic increase, compu-
tational requirements may escalate, potentially affecting the models’ efficiency and
ability to handle larger datasets or adapt to evolving network environments.

• Generalization: While the Transformer–DNN and Autoencoder–CNN demonstrated
strong performance on the CICIDS2017 and NF-BoT-IoT-v2 datasets, their effectiveness
on different types of network traffic or emerging attack vectors remains uncertain.
Evaluating the models on a broader range of datasets, such as NSL-KDD, KDDCup99,
UNSW-NB15, or newer ones like CSE-CIC-IDS2018 and NF-ToN-IoT-v2, is essential to
gauge their robustness and generalization capability.

• Data Preprocessing: Implementing data preprocessing on different datasets is a crit-
ical step that involves tasks such as handling missing values, encoding categorical
variables, normalizing or standardizing numerical features, and removing irrelevant
information. The effectiveness of the models depends heavily on how well these
preprocessing steps are executed.

• Model Adaptation: Adapting the models to different datasets involves a trial-and-error
process for hyperparameter optimization. This process is crucial for fine-tuning the
models to align with the characteristics of new datasets.

7. Conclusions
Developing an effective IDS is essential for businesses and organizations committed

to safeguarding their networks. This study presents a robust IDS solution that leverages
two advanced hybrid deep learning models, Transformer–DNN and Autoencoder–CNN,
specifically engineered to tackle class imbalance issues. Integrating advanced data resam-
pling techniques including enhanced hybrid ADASYN-SMOTE for binary classification
and enhanced SMOTE for multi-class classification alongside ENN, the proposed model
delivers exceptional performance. The Transformer–DNN achieved 99.92% accuracy in
binary classification and 99.96% in multi-class classification on the CICIDS2017 dataset,
while the Autoencoder–CNN model reached 99.90% accuracy in binary classification and
99.95% in multi-class classification. With the NF-BoT-IoT-v2 dataset, the Autoencoder–
CNN reached 99.98% accuracy in binary and 97.95% in multi-class classification, and the
Transformer–DNN achieved 99.98% and 97.90%, respectively. These remarkable results
underscore the superiority of our approach over existing state-of-the-art methods. Through
comprehensive evaluation using the CICIDS2017 and NF-BoT-IoT-v2 datasets, this study
demonstrates the effectiveness and reliability of the proposed models, positioning it as an
advanced solution for addressing class imbalance and enhancing the overall performance
of IDSs.

8. Future Work
To overcome the limitations and challenges mentioned in Section 6, future research

should focus on the following areas:

• Broader Dataset Evaluation: Future work should include evaluating the Transformer–
DNN and Autoencoder–CNN with a wider range of datasets, including NSL-KDD,
KDDCup99, UNSW-NB15, and newer ones like CSE-CIC-IDS2018 and NF-ToN-IoT-v2,
to assess the models’ robustness, generalization capability, and effectiveness against
emerging attack vectors.

• Data Preprocessing Refinement: The data preprocessing steps should be further refined
and tailored for each specific dataset, to ensure optimal model performance. This will
involve experimenting with different preprocessing techniques and understanding
their impact on model outcomes. Detailed analyses of these preprocessing operations
are thoroughly discussed in Sections 3.2 and 4.1 of this article.

Algorithms 2025, 18, 69 57 of 59

• Model Adaptation and Hyperparameter Optimization: Continued exploration of
model adaptation techniques is necessary, with a focus on refining the hyperparameter
optimization process for different datasets. This process should be systematically
analyzed to identify the best practices for adapting the models to diverse data environ-
ments. These details are discussed in Section 3, particularly in Sections 3.3.4 and 3.3.5.

• Scalability and Computational Efficiency: Efforts should be made to optimize the mod-
els’ computational efficiency and scalability, ensuring that they can handle larger datasets
and more complex network traffic scenarios without compromising performance.

Author Contributions: Conceptualization, H.K. and M.M.; Methodology, H.K. and M.M.; Software,
H.K. and M.M.; Validation, H.K. and M.M.; Writing—original draft, H.K. and M.M.; Supervision,
M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used in our study, CICIDS2017 and NF-BoT-IoT-v2, are
publicly available. Below are the URLs for the datasets: CICIDS2017: https://www.unb.ca/cic/
datasets/ids-2017.html (accessed on 16 January 2025), NF-BoT-IoT-v2: https://staff.itee.uq.edu.au/
marius/NIDS_datasets/#RA8 (accessed on 16 January 2025).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. TechTarget. 6 Common Types of Cyber Attacks and How to Prevent Them. 2023. Available online: https://www.techtarget.com/

searchsecurity/tip/6-common-types-of-cyber-attacks-and-how-to-prevent-them (accessed on 21 January 2025).
2. Tariq, U.; Ahmed, I.; Bashir, A.K.; Shaukat, K. A critical cybersecurity analysis and future research directions for the internet of

things: A comprehensive review. Sensors 2023, 23, 4117. [CrossRef] [PubMed]
3. BlackBerry. Quarterly Global Threat Report—September 2024. 2024. Available online: https://www.blackberry.com/us/en/

solutions/threat-intelligence/threat-report (accessed on 21 January 2025).
4. Conti, M.; Dargahi, T.; Dehghantanha, A. Cyber Threat Intelligence: Challenges and Opportunities; Springer International Publishing:

New York, NY, USA, 2018.
5. Osama, F.; Dogdu, E. Intrusion detection using big data and deep learning techniques. In Proceedings of the 2019 ACM Southeast

Conference; AMC: New York, NY, USA, 2019; pp. 86–93.
6. Kaur, G.; Lashkari, A.H.; Rahali, A. Intrusion traffic detection and characterization using deep image learning. In Pro-

ceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-
gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 55–62.

7. Internet Security Threat Report. Available online: https://docs.broadcom.com/doc/istr-23-2018-en (accessed on 18 July 2022).
8. Cybersecurity Ventures. Cybercrime to Cost the World $9 Trillion Annually in 2024. Available online: https:

//cybersecurityventures.com/cybercrime-to-cost-the-world-9-trillion-annually-in-2024/ (accessed on 21 January 2025).
9. Zhang, X.; Xie, J.; Huang, L. Real-Time Intrusion Detection Using Deep Learning Techniques. J. Netw. Comput. Appl. 2020,

140, 45–53.
10. Kumar, S.; Kumar, R. A Review of Real-Time Intrusion Detection Systems Using Machine Learning Approaches. Comput. Secur.

2020, 95, 101944.
11. Smith, A.; Jones, B.; Taylor, C. Enhancing Network Security with Real-Time Intrusion Detection Systems. Int. J. Inf. Secur. 2021,

21, 123–135.
12. UNB. Intrusion Detection Evaluation Dataset (CICIDS2017), University of New Brunswick. Available online: https://www.unb.

ca/cic/datasets/ids-2017.html (accessed on 21 January 2025).
13. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a standard feature set for network intrusion detection system datasets. Mob.

Netw. Appl. 2022, 27, 357–370. [CrossRef]
14. Anderson, J.P. Computer Security Threat Monitoring and Surveillance; Technical Report; James P. Anderson Company: Washing-

ton, DC, USA, 1980.
15. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for

intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA8
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA8
https://www.techtarget.com/searchsecurity/tip/6-common-types-of-cyber-attacks-and-how-to-prevent-them
https://www.techtarget.com/searchsecurity/tip/6-common-types-of-cyber-attacks-and-how-to-prevent-them
https://doi.org/10.3390/s23084117
https://www.ncbi.nlm.nih.gov/pubmed/37112457
https://www.blackberry.com/us/en/solutions/threat-intelligence/threat-report
https://www.blackberry.com/us/en/solutions/threat-intelligence/threat-report
https://docs.broadcom.com/doc/istr-23-2018-en
https://cybersecurityventures.com/cybercrime-to-cost-the-world-9-trillion-annually-in-2024/
https://cybersecurityventures.com/cybercrime-to-cost-the-world-9-trillion-annually-in-2024/
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1109/ACCESS.2019.2895334

Algorithms 2025, 18, 69 58 of 59

16. Farhana, K.; Rahman, M.; Ahmed, M.T. An intrusion detection system for packet and flow based networks using deep neural
network approach. Int. J. Electr. Comput. Eng. 2020, 10, 5514–5525. [CrossRef]

17. Razan, A.; Faezipour, M.; Musafer, H.; Abuzneid, A. Efficient network intrusion detection using PCA-based dimensionality
reduction of features. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications
(ISNCC), Istanbul, Turkey, 18–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

18. Alsharaiah, M.A.; Abualhaj, M.; Baniata, L.H.; Al-Saaidah, A.; Kharma, Q.M.; Al-Zyoud, M.M. An innovative network intrusion
detection system (NIDS): Hierarchical deep learning model based on Unsw-Nb15 dataset. Int. J. Data Netw. Sci. 2024, 8, 709–722.
[CrossRef]

19. Jouhari, M.; Benaddi, H.; Ibrahimi, K. Efficient Intrusion Detection: Combining χ2 Feature Selection with CNN-BiLSTM on the
UNSW-NB15 Dataset. arXiv 2024, arXiv:2407.14945.

20. Prabhakaran, V.; Kulandasamy, A. Hybrid semantic deep learning architecture and optimal advanced encryption standard key
management scheme for secure cloud storage and intrusion detection. Neural Comput. Appl. 2021, 33, 14459–14479. [CrossRef]

21. Kao, M.-T.; Sung, D.-Y.; Kao, S.-J.; Chang, F.-M. A novel two-stage deep learning structure for network flow anomaly detection.
Electronics 2022, 11, 1531. [CrossRef]

22. Fu, Y.; Du, Y.; Cao, Z.; Li, Q.; Xiang, W. A deep learning model for network intrusion detection with imbalanced data. Electronics
2022, 11, 898. [CrossRef]

23. Kamal, H.; Mashaly, M. Advanced Hybrid Transformer-CNN Deep Learning Model for Effective Intrusion Detection Systems
with Class Imbalance Mitigation Using Resampling Techniques. Future Internet 2024, 16, 481. [CrossRef]

24. Alzughaibi, S.; El Khediri, S. A cloud intrusion detection systems based on dnn using backpropagation and pso on the cse-cic-
ids2018 dataset. Appl. Sci. 2023, 13, 2276. [CrossRef]

25. Arslan, R.S. FastTrafficAnalyzer: An efficient method for intrusion detection systems to analyze network traffic. Dicle Üniversitesi
Mühendislik Fakültesi Mühendislik Derg. 2021, 12, 565–572. [CrossRef]

26. Yaras, S.; Dener, M. IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm. Electronics 2024, 13, 1053.
[CrossRef]

27. ElKashlan, M.; Elsayed, M.S.; Jurcut, A.D.; Azer, M. A machine learning-based intrusion detec-tion system for iot electric vehicle
charging stations (evcss). Electronics 2023, 12, 1044. [CrossRef]

28. Othman, T.S.; Abdullah, S.M. An intelligent intrusion detection system for internet of things attack detection and identification
using machine learning. ARO-THE Sci. J. KOYA Univ. 2023, 11, 126–137. [CrossRef]

29. Wang, Y.; Li, J.; Zhao, W.; Han, Z.; Zhao, H.; Wang, L.; He, X. N-STGAT: Spatio-Temporal Graph Neural Network Based Network
Intrusion Detection for Near-Earth Remote Sensing. Remote Sens. 2023, 15, 3611. [CrossRef]

30. Xu, R.; Wu, G.; Wang, W.; Gao, X.; He, A.; Zhang, Z. Applying self-supervised learning to network intrusion detection for network
flows with graph neural network. Comput. Netw. 2024, 248, 110495. [CrossRef]

31. Li, F.; Shen, H.; Mai, J.; Wang, T.; Dai, Y.; Miao, X. Pre-trained language model-enhanced conditional generative adversarial
networks for intrusion detection. Peer-to-Peer Netw. Appl. 2024, 17, 227–245. [CrossRef]

32. Silivery, A.K.; Kovvur, R.M.R.; Solleti, R.; Kumar, L.S.; Madhu, B. A model for multi-attack classification to improve intrusion
detection performance using deep learning approaches. Meas. Sens. 2023, 30, 100924. [CrossRef]

33. Umair, M.B.; Iqbal, Z.; Faraz, M.A.; Khan, M.A.; Zhang, Y.-D.; Razmjooy, N.; Kadry, S. A network intrusion detection system
using hybrid multilayer deep learning model. Big Data 2022, 12, 367–376. [CrossRef] [PubMed]

34. Türk, F. Analysis of intrusion detection systems in UNSW-NB15 and NSL-KDD datasets with machine learning algorithms. Bitlis
Eren Üniversitesi Fen Bilim. Derg. 2023, 12, 465–477. [CrossRef]

35. Farhan, B.I.; Jasim, A.D. Performance analysis of intrusion detection for deep learning model based on CSE-CIC-IDS2018 dataset.
Indones. J. Electr. Eng. Comput. Sci. 2022, 26, 1165–1172. [CrossRef]

36. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. Cyber threat intelligence sharing scheme based on federated learning for
network intrusion detection. J. Netw. Syst. Manag. 2023, 31, 3. [CrossRef]

37. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147–167. [CrossRef]

38. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 1 2018, 1, 108–116.

39. Breunig, M.M.; Kriegel, H.-P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; Volume 29, pp. 93–104. [CrossRef]

40. Patro, S.G.K.; Sahu, K.K. Normalization: A preprocessing stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 20–22. [CrossRef]
41. Bagui, S.; Li, K. Resampling imbalanced data for network intrusion detection datasets. J Big Data. 2021, 8, 6. [CrossRef]
42. Elmasry, W.; Akbulut, A.; Zaim, A.H. Empirical study on multiclass classifcation-based network intrusion detection. Comput

Intell 2019, 35, 919–954. [CrossRef]

https://doi.org/10.11591/ijece.v10i5.pp5514-5525
https://doi.org/10.5267/j.ijdns.2024.1.007
https://doi.org/10.1007/s00521-021-06085-5
https://doi.org/10.3390/electronics11101531
https://doi.org/10.3390/electronics11060898
https://doi.org/10.3390/fi16120481
https://doi.org/10.3390/app13042276
https://doi.org/10.24012/dumf.1001881
https://doi.org/10.3390/electronics13061053
https://doi.org/10.3390/electronics12041044
https://doi.org/10.14500/aro.11124
https://doi.org/10.3390/rs15143611
https://doi.org/10.1016/j.comnet.2024.110495
https://doi.org/10.1007/s12083-023-01595-6
https://doi.org/10.1016/j.measen.2023.100924
https://doi.org/10.1089/big.2021.0268
https://www.ncbi.nlm.nih.gov/pubmed/35704031
https://doi.org/10.17798/bitlisfen.1240469
https://doi.org/10.11591/ijeecs.v26.i2.pp1165-1172
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1145/342009.335388
https://doi.org/10.17148/IARJSET.2015.2305
https://doi.org/10.1186/s40537-020-00390-x
https://doi.org/10.1111/coin.12220

Algorithms 2025, 18, 69 59 of 59

43. Mbow, M.; Koide, H.; Sakurai, K. Handling class imbalance problem in intrusion detection system based on deep learning. Int. J.
Netw. Comput. 2022, 12, 467–492. [CrossRef]

44. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE international Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; IEEE: Piscataway, NJ, USA, 1–8 June 2008; pp. 1322–1328.

45. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

46. Wilson, D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 3, 408–421.
[CrossRef]

47. El-Habil, B.Y.; Abu-Naser, S.S. Global climate prediction using deep learning. J. Theor. Appl. Inf. Technol. 2022, 100, 4824–4838.
48. Song, Z.; Ma, J. Deep learning-driven MIMO: Data encoding and processing mechanism. Phys Commun. 2022, 57, 101976.

[CrossRef]
49. Zhou, X.; Zhao, C.; Sun, J.; Yao, K.; Xu, M. Detection of lead content in oilseed rape leaves and roots based on deep transfer

learning and hyperspectral imaging technology. Spectroch Acta Part A Mol. Biomole Spectrosc. 2022, 290, 122288. [CrossRef]
50. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
51. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
52. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
53. Bishop, C.M.; Nasser, M.N. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4.
54. Nielsen, A. Neural Networks and Deep Learning. 2015. Available online: https://books.google.com.hk/books/about/Neural_

Networks_and_Deep_Learning.html?id=STDBswEACAAJ&redir_esc=y (accessed on 16 January 2025).
55. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.
56. Vaswani, A.; Noam, S.; Niki, P.; Jakob, U.; Llion, J.; Aidan, N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You

Need.(Nips). arXiv 2017, arXiv:1706.03762.
57. Ba, J.L. Layer normalization. arXiv 2016, arXiv:1607.06450.
58. Jyothsna, V.; Prasad, K.M. Anomaly-Based Intrusion Detection System. Computer and Network Security 10. 2019. Available

online: https://www.intechopen.com/chapters/67618 (accessed on 16 January 2025).
59. Chen, C.; Song, Y.; Yue, S.; Xu, X.; Zhou, L.; Lv, Q.; Yang, L. FCNN-SE: An Intrusion Detection Model Based on a Fusion CNN and

Stacked Ensemble. Appl. Sci. 2022, 12, 8601. [CrossRef]
60. Powers, D.M.W. Evaluation: From Precision, Recall, and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach.

Learn. Technol. 2011, 2, 37–63.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.15803/ijnc.12.2_467
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1016/j.phycom.2022.101976
https://doi.org/10.1016/j.saa.2022.122288
https://books.google.com.hk/books/about/Neural_Networks_and_Deep_Learning.html?id=STDBswEACAAJ&redir_esc=y
https://books.google.com.hk/books/about/Neural_Networks_and_Deep_Learning.html?id=STDBswEACAAJ&redir_esc=y
https://www.intechopen.com/chapters/67618
https://doi.org/10.3390/app12178601

	Introduction
	Related Work
	Binary Classification
	Multi-Class Classification
	Challenges

	Methodology
	Dataset Description
	Data Preprocessing
	Data Cleaning
	Removing Outliers Using LOF
	Normalization
	Train–Test Dataset Split
	Class Balancing

	Architectures of Models
	Convolutional Neural Networks (CNNs)
	Autoencoder (AE)
	Deep Neural Network (DNN)
	Autoencoder–Convolutional Neural Network (Autoencoder–CNN)
	Transformer–Deep Neural Network (Transformer–DNN)

	Results and Experiments
	Dataset Description and Preprocessing Overview
	CICIDS2017 Dataset
	NF-BoT-IoT-v2 Dataset

	Experiment’s Establishment
	Evaluation Metrics
	Results

	Discussion
	Limitations
	Conclusions
	Future Work
	References

