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Abstract: Machine learning (ML) techniques are increasingly used to diagnose faults
in aerospace applications, but diagnosing multiple faults in aircraft fuel systems (AFSs)
remains challenging due to complex component interactions. This paper evaluates the
accuracy and introduces an innovative approach to quantify and compare the interpretabil-
ity of four ML classification methods—artificial neural networks (ANNs), support vector
machines (SVMs), decision trees (DTs), and logistic regressions (LRs)—for diagnosing fault
combinations present in AFSs. While the ANN achieved the highest diagnostic accuracy
at 90%, surpassing other methods, its interpretability was limited. By contrast, the deci-
sion tree model showed an 82% consistency between global explanations and engineering
insights, highlighting its advantage in interpretability despite the lower accuracy. Inter-
pretability was assessed using two widely accepted tools, LIME and SHAP, alongside
engineering understanding. These findings underscore a trade-off between prediction
accuracy and interpretability, which is critical for trust in ML applications in aerospace.
Although an ANN can deliver high diagnostic accuracy, a decision tree offers more trans-
parent results, facilitating better alignment with engineering expectations even at a slight
cost to accuracy.

Keywords: aircraft fuel system; multiple fault diagnosis; machine learning; interpretability;
explainable AI

1. Introduction
An aircraft fuel system (AFS) performs three primary functions: fuel storage, fuel

supply to the engine, and fuel management and distribution. Fuel is stored in multiple tanks
throughout the fuselage and wings, designed to withstand vibrations, pressure changes,
and various in-flight loads. The AFS ensures clean fuel delivery to the main engines and
the auxiliary power unit (APU), maintaining thrust under all operating conditions, whether
in flight or on the ground [1]. To provide reliable fuel delivery, AFS designs often include
redundancies; for instance, the Boeing 737 has two boost pumps and bypass lines per
tank, allowing gravity-fed cross-feeding across engines on both sides [2]. Additionally,
the AFS helps control the aircraft’s centre of gravity, reducing flight resistance and fuel
consumption [3], and regulates fuel temperature via the fuel oil heat exchanger (FOHE) to
optimise performance.

To fulfil its functions, the aircraft fuel system (AFS) is equipped with multiple compo-
nents, including fuel tanks, pumps, valves, pipelines, filters, fuel metering units, injectors,
and other essential equipment. Additionally, the AFS incorporates various sensors to moni-
tor critical parameters such as fuel level, pressure, flow rate, and temperature, providing
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real-time data on the system’s operational status. These sensors serve as the primary data
source for diagnosing faults, enabling a timely detection of issues and supporting the
reliability and safety of fuel delivery.

During normal operation, components within the aircraft fuel system (AFS) undergo
continuous degradation at varying rates, which can eventually lead to functional failures.
Common failure modes include tank pressure failure, leakage, blockage, and partial or
complete fuel pump loss, each of which impacts sensor readings differently. Detecting,
isolating, and repairing faults in the AFS promptly is essential. Therefore, any fault
detection system must provide robust and accurate predictions and produce interpretable
results for domain operators to minimise ambiguity. Additionally, since multiple fault
modes may coexist, it is critical to study AFS fault modes in the context of simultaneous
component degradation or failure.

ML-based fault diagnosis has garnered significant attention in industry applications.
Previous work in this study ([4]) has identified several machine learning (ML) techniques
with the potential for classifying faults in complex systems like an aircraft fuel system (AFS).
For a comprehensive review of ML methods applicable to fault diagnosis, readers may refer
to this prior work. Choosing an effective ML algorithm requires understanding dataset size
requirements, as training data quantity influences algorithm performance and overfitting
risk. While traditional machine learning (ML) typically requires less data than deep learn-
ing, which involves neural networks with multiple layers of nonlinear transformations,
complex ML algorithms, often considered traditional ML models with complex rules or
ensemble learning approaches, still require larger datasets and more thorough feature engi-
neering. Limited systematic research on dataset size effects exists; however, one study on
medical datasets compared six supervised ML algorithms [5], finding that data distribution
affected algorithm performance more than dataset size. Simpler algorithms like naive
Bayes performed most robustly on smaller datasets, followed by support vector machines
(SVMs) and then neural networks (NNs), while decision trees (DTs) showed less robustness
but a slightly higher average accuracy than SVMs. The approximate data requirements
for common ML algorithms, in ascending order, are as follows: simpler algorithms (e.g.,
logistic regression, naive Bayes) < decision trees < SVMs < NNs or random forests.

While existing ML-based fault diagnosis algorithms can accurately detect individual
faults, system-level diagnosis in systems with multiple degradations or faults often still
requires multi-algorithm methods [6] and parallel computing [7], which can be resource-
intensive in terms of storage and computation. Advances in multiclass ML algorithms
have enabled researchers to identify up to seven distinct failure modes [8–12] or varying
severity levels of a single fault [13], though, typically, under the assumption of only one
active fault in the system. More recently, studies have begun to explore diagnosing fault
combinations; for instance, ref. [14] examined six failure modes and a limited set of dual-
fault combinations. However, a comprehensive approach capable of diagnosing all possible
fault combinations within a complex system, such as an aircraft fuel system, remains
lacking. Developing a robust multi-fault diagnosis method that can efficiently handle a full
range of fault combinations is essential and represents the primary challenge this paper
seeks to address.

Machine learning (ML) algorithms are becoming increasingly complex to meet higher
expectations for predictive accuracy. However, the opaque decision-making processes of
these sophisticated algorithms often make their outputs difficult for human users to inter-
pret. In contrast, transparent algorithms like decision trees (DTs) and logistic regressions
(LRs) offer more accessible decision logic. For instance, [15] assessed the interpretability of
DTs and LRs in breast cancer diagnosis using identity, stability, and separability metrics,
finding that DTs had superior interpretability. Similarly, a study on Alzheimer’s disease [16]
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ranked tree-based algorithms as the most interpretable, followed by multilayer perceptron
(MLP), with support vector machines (SVMs) and k-nearest neighbours (KNNs) lagging.
This suggests a preliminary interpretability ranking of DTs > LRs > MLPs > SVMs/KNNs.
Limited interpretability can hinder the broader adoption of ML-based diagnostic algo-
rithms [17,18], particularly in high-stakes fields like fault diagnosis [19]. Explainable AI
(XAI) shows promise in enhancing user trust [20] and providing insights into ML algorithm
learning [21], yet its use in fault diagnosis remains scarce [22]. Furthermore, as noted in [4],
XAI alone may not fully address trust concerns ([23,24]) unless key limitations are resolved,
specifically (1) developing robust metrics to evaluate explanations [20] and (2) validating
XAI outputs. This paper seeks to address these two challenges.

The remainder of this paper is organised as follows: Section 2 provides an overview
of the data source, which forms the foundation of this study. Section 3 presents the
methodology, covering aspects of machine learning algorithms, structural complexity,
and explainable techniques. Section 4 discusses the diagnosis and interpretation results,
following the order outlined in the methodology. Section 5 offers a further discussion of
the obtained results and outlines potential directions for future work. Finally, Section 6
concludes the paper.

2. Background
2.1. Data Source

The work presented in this paper is based on a simplified fuel rig designed to represent
the Boeing 777 fuel system. Figure 1 illustrates the schematic of the fuel rig, with fuel flow
moving from left to right, powered by a pump. Direct proportional valves (DPVs) were
employed to accurately simulate degradation within the system, with DPV1 to DPV5 used
to introduce and control five distinct failure modes: pump external leakage, pump internal
leakage, FOHE (fuel oil heat exchanger) blockage, FOHE leakage, and clogged nozzle.
Pressure sensors monitor the system’s pressure, while flow meters track the flow rate.
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Figure 1. The schematic of the fuel rig.

As part of another task within this PhD project, a Simulink model (Figure 2) was
developed using experimental data to create a digital twin of the fuel rig. Similar in
function to the fuel rig, this model simulates five failure modes and their combinations
under five specific pump speeds. Although this simulation work is beyond the scope of the
current paper, the model has been systematically validated under both healthy and faulty
conditions, with a maximum deviation of 3% between simulation results and experimental
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data. A more detailed discussion of this work will be presented in a subsequent article,
which is currently under preparation. Consequently, the model is employed here to provide
the necessary data for training, testing, and validating the ML-based diagnostic algorithms.
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Figure 2. The Simscape model.

2.2. Data Preparation

This paper considers five failure modes within the aircraft fuel system (AFS), with
their degradation severity outlined in Table 1. Each failure mode was categorised into
five levels of severity, including a healthy condition and four progressively degraded
states. The degradation process begins at 0% (indicating a completely healthy state) and
progresses through specific intervals of degradation. The healthy and early degradation
levels are considered tolerable (normal condition), while further degradation leads to
functional failure (faulty condition), at which point the affected component requires repair
or replacement. The boundaries between normal and faulty conditions were determined
based on the impact of each failure mode on the performance metrics of static pressure and
flow rate delivered to the engine (Figure 3). The red bars in the figure highlight the severity
levels that significantly affect one or both performance metrics, thereby indicating faulty
conditions (or functional failures).

Table 1. Degradation severities of each fault.

Failure Modes Normal Conditions Faulty Conditions

Pump ext leak 0%, 10%, 20%, 30% 40%
Pump int leak 0%, 10%, 20% 30%, 40%
FOHE block 0%, 10%, 20% 30%, 40%
FOHE leak 0%, 15%, 30%, 45% 60%

Nozzle block 0%, 10%, 20% 30%, 40%

In this simplified aircraft fuel system (AFS), the five failure modes can occur indepen-
dently, allowing for simultaneous occurrences of multiple (0 to 5) faults. As mentioned
in Section 1, this study aims to develop an end-to-end multi-fault diagnostic algorithm
without relying on ensemble methods. Specifically, the approach involves feeding a single
ML algorithm with a dataset to identify all potential faults in the system. To achieve this,
the work considers all possible combinations of the failure modes. Consequently, this
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method innovatively transforms a typical multi-label problem, which often requires multi-
ple algorithms to be addressed, into a multiclass problem solvable by a single algorithm.
These five failure modes, each with two possible states (normal and faulty), formed 32
(25) multi-fault classes, comprising one normal class and 31 faulty classes. Table 2 pro-
vides the failure modes included in each class: Class 1 represents the normal class with
all components functioning correctly, while Class 32 represents the worst-case scenario,
where all components experience failure. Data were collected across all 32 classes, with the
simulation model run for each possible combination of degradation severity. During each
run, the pump speed was set to one of five fixed values (200, 300, 400, 500, and 600 rpm) to
simulate different operating conditions. The final two rows of Table 2 show the minimum
number of simulation runs needed to generate sufficient data across these conditions.
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Each dataset comprised readings from eleven sensors: seven pressure sensors, three
flow meters, and a laser sensor for measuring pump speed. Two feature selection algo-
rithms, MRMR and tree-based methods, were applied to rank the importance of these
features (Figure 4) in predicting the aforementioned 32 classes. However, the results of
the two methods differed significantly. As a result, all 11 sensor outputs were selected to
serve as 11 features with equal importance for training the ML algorithms. Pressure sensors
were strategically placed throughout the system to capture pressure levels before and after
key components, while the flow meters were positioned in series along the main pipeline:
the first measured the total inflow from the fuel tank, the second monitored the pump’s
discharge flow downstream, and the third tracked the flow delivered to the engine. All data
were normalised and rescaled to the range [0, 1] to ensure a balanced feature contribution
in the ML models.
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Table 2. All classes and their corresponding failure modes and number of runs.

Normal
class

Faulty classes

Failure
modes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Pump
ext leak

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pump
int leak

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FOHE
block

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FOHE
leak

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nozzle
block

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Number
of runs
(with 5
pump

speeds)

2160 1440 540 360 1440 960 360 240 1440 960 360 240 960 640 240 160 540 360 135 90 360 240 90 60 360 240 90 60 240 160 60 40

Sum 15,625

✓ indicates fault modes included in each faulty class.
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The data for the algorithm development were randomly split into three subsets:
training, testing, and validation. During training, 70% of the data were used to train the
model, while 10% served as the testing data to evaluate and optimise hyperparameters,
helping to find the best combination and reduce overfitting. The remaining 20% was set
aside as validation data for a final, unbiased evaluation of the algorithm’s performance.

To assess whether each class had sufficient data to train the diagnostic algorithm using
these 11 features, the training dataset (comprising 10,938 instances) was categorised by class,
with the distribution shown by the blue bars in Figure 5. As depicted, Class 1 contained
a substantial amount of data. However, as the number of faults increased, the amount of
available training data decreased correspondingly. For instance, when all components were
in a failure state (Class 32), only 24 instances were available in the training data.
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In contrast to experimental methods, the simulation model offered an efficient way to
generate additional data for classes with fewer data points. To ensure adequate training, a
minimum of 200 datasets was deemed necessary per faulty class. The simulation model
was rerun for data-deficient classes, introducing random measurement uncertainties (noise)
to create 3880 new samples. This noise, primarily originating from atmospheric pressure
and sensor readings, followed a Gaussian distribution with distinct standard deviations:
atmospheric pressure noise was set to a standard deviation of 500 Pa, based on Met Office
data, while each sensor’s noise standard deviation varied with pump speed, as derived from
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experimental data. This expanded “boosted dataset” contained a total of 19,505 datasets.
Consistent with previous splits, 70% of these data (13,650 sets) were designated as new
training data, with the class distribution shown in Figure 5 (red bar). This approach
highlights the effectiveness of simulation techniques in rapidly generating large, diverse
datasets compared to traditional experimental methods.

3. Methodology
3.1. Selected Machine Learning Algorithms

While deep learning is increasingly used for fault diagnosis and maintenance in
the aviation industry, traditional machine learning (ML) remains essential, particularly
in scenarios with limited data, straightforward features, high interpretability needs, or
restricted computational resources. ML-based fault diagnosis relies on algorithms that use
mathematical models to map data to fault classes directly, enabling data-driven decisions
without needing prior domain knowledge or expert input. These simpler algorithms
are often more interpretable, making them especially suitable for high-value assets like
aircraft, where understanding model decisions is crucial for trust and safety. Consequently,
ML’s interpretability advantage over deep learning makes it valuable for fault diagnosis
in aviation.

Given the limited sample size per class (around 200 samples) and the use of simple
features with clear physical meanings, traditional ML was considered suitable for the
fault diagnosis task in this study. Based on the data’s characteristics, four criteria were
established to guide the selection of appropriate ML algorithms:

• Classification task: this study frames fault diagnosis as a classification problem
with discrete fault classes. Thus, all selected algorithms must be suitable for
classification tasks.

• Supervised learning: the dataset from the simulation model is fully labelled, so only
supervised learning methods were considered.

• Data efficiency and interpretability: unlike deep learning methods, the algorithms
should perform well on small datasets and avoid excessive opacity to support ease of
understanding and trust.

• Comparable predictive and interpretability performance: the chosen algorithms
should balance predictive accuracy and interpretability, allowing for meaningful
analysis and discussion of these key performance metrics.

These requirements ensure that the selected ML methods are effective for the available
data and meet the demands for interpretability in the high-stakes context of aviation
fault diagnosis.

Following the outlined requirements, logistic regressions, decision trees, support vec-
tor machines, and artificial neural networks were selected to evaluate diagnostic capability
and interpretability in this study. Each method meets the data requirements and offers a
balance between accuracy and interpretability. The following four subsections provide a
concise overview of each approach.

The logistic regression (LR) is a foundational machine learning algorithm for classifi-
cation, typically used in binary classification tasks where only two outcomes are possible.
In a binary setting, such as distinguishing between circles and squares in Figure 6a, an LR
estimates the likelihood of an event occurring based on the data. It uses a linear function to
fit the data, passing through a nonlinear sigmoid function that maps the results to a range
between 0 and 1. By setting a threshold, an LR classifies the data into two classes.
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LRs can be extended to multinomial logistic regression for multiclass classification,
where the data have more than two classes (e.g., circles, squares, and stars in Figure 6b).
This approach applies multiple LR models to calculate the probability of each class relative
to a reference class. Since the total probability across all classes must be 1, the algorithm
predicts the class with the highest calculated probability. Multinomial logistic regression is,
thus, well-suited for multiclass tasks. Although logistic regression has been infrequently
applied to fault diagnosis for fuel systems, it was used in one study [25] to detect faults,
underscoring its potential applicability.

Decision trees (DTs) are machine learning algorithms that represent decisions in a tree-
like structure with multiple layers of nodes. Typically, a DT has at least two layers: the first
to the (n − 1)th layers comprises nodes where features are assessed, and branches represent
decision outcomes. The nth layer consists of leaf nodes that indicate the classification results.
A decision tree prioritises features for splitting based on information gain, favouring those
that maximise this criterion.

Several common decision tree algorithms include ID3 ([26]), C4.5 ([27]), and
CART ([28]). Unlike ID3 and C4.5, CART (classification and regression trees) limits each
node to two branches and is applicable to both classification and regression tasks. CART
often demonstrates better classification performance than other DT algorithms, though
it can be limited by its reliance on local optimal choices, potentially impacting overall
accuracy. In addition to binary classification, CART can handle multiclass classification,
where leaf nodes correspond to distinct classes. Decision trees have been used effectively
for fault detection and isolation in various contexts, including fuel systems [29], turbofan
engines [30], and auxiliary power units [31].

Support Vector Machines (SVMs) are binary classification algorithms that classify
data by constructing hyperplanes, maximising the margin between classes for improved
separation. Given a dataset with m features, SVMs often apply a kernel function to map
data into an (m + n)-dimensional space, allowing for linear separability in cases where the
original data are not linearly separable. The dimension n depends on data complexity; if
the data are inherently linearly separable, n = 0. The hyperplane for classification in this
new space is defined by the closest data points, known as support vectors.

To handle multiclass classification (e.g., with k classes), SVMs typically employ
two strategies: one-vs-all and one-vs-one. In the one-vs-all approach, k binary classi-
fiers are trained, each distinguishing one class from all others. Each classifier outputs a
score, and the class with the highest score is selected to avoid ambiguous classifications.
The one-vs-one approach, on the other hand, creates an SVM model for each pair of classes,
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resulting in k(k − 1)/2 models, with predictions determined by a majority vote among them.
Although more computationally intensive, one-vs-one generally outperforms one-vs-all
by better managing data imbalances in sub-classifiers. The studies in [6,32–34] highlight
SVMs’ effectiveness in fault detection for fuel systems.

Artificial neural networks (ANNs) with one hidden layer, or shallow networks, are
composed of an input layer, a hidden layer, and an output layer, each containing neurons
(or nodes) that connect fully with the adjacent layers. These connections carry weights that
the ANN adjusts during training to fit the data. Since weights and biases (extra inputs to
neurons) alone form linear operations, nonlinear activation functions are applied to the
hidden and output layers to enable more complex, adaptable prediction capabilities. Com-
mon activation functions in the output layer include the sigmoid for binary classification or
regression and the SoftMax function for multiclass classification.

While shallow ANNs are simpler than deep networks, they still exhibit black-box
characteristics due to the hundreds of weighted connections they generate to learn patterns
across features and classes, such as the 11 features and 32 fault classes in this study’s
AFS case. Weighted connections represent the network’s assessment of the importance
of relationships between neurons, which can aid in analysing simple neural networks.
However, for a network aiming to fit 11 features and 32 classes, the large number of
weighted connections reduces the efficiency and reliability of such analyses. Additionally,
nonlinear activations further complicate the network’s internal decision logic, making it
challenging to interpret its classification processes. Nevertheless, shallow ANNs have
shown promise in diagnosing mechanical faults, as demonstrated in prior studies [35–38].

3.2. The Structural Complexity of Selected ML Algorithms

A novel set of dimensionless metrics based on internal connections or weights was
introduced to enable a fair comparison among machine learning algorithms with varying
structural complexities. This approach balances the evaluation, accounting for each algo-
rithm’s unique structural intricacies. Here is how structural complexity was defined for
each algorithm:

LR: for multinomial logistic regressions, each class prediction relies on weights associated
with input features and an additional bias (or residual) term for each class. Thus, the total
structural complexity is determined by the number of weights and residuals required to
compute probabilities across all classes.
DT: decision trees partition the data using split nodes at each layer. Each split node evalu-
ates one feature to split the data. Therefore, the model’s structural complexity correlates
with the number of split nodes. More nodes allow for finer granularity in the classification,
enhancing performance but increasing complexity.
SVM: the complexity of an SVM in multiclass classification is determined by the number
of binary sub-classifiers required. Based on the discussion above, two ensemble learning
strategies, one-vs-one and one-vs-all, are commonly employed in multiclass problems.
These strategies result in different levels of complexity, corresponding to k(k − 1)/2 and k,
respectively, where k is the total number of classes.
ANN: for ANNs, structural complexity is straightforwardly determined by the number of
connections, or weights, within the network. For a single-hidden-layer ANN with x input
nodes, y hidden nodes, and z output nodes, the total number of weights is calculated as:
( x × y) + (y × z). This includes the connections between the input layer and the hidden
layer and those between the hidden layer and the output layer. This measure reflects the
model’s ability to capture intricate patterns in the data, with higher complexity associated
with larger networks.
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This complexity-based framework allows for a balanced assessment of model perfor-
mance by normalising their predictive power in relation to their structural demands. This
makes comparisons meaningful despite inherent differences in algorithm design.

3.3. Evaluating the Interpretability of the Selected ML Algorithms

Overview of the proposed validation process. Figure 7 illustrates an innovative struc-
tured process proposed to evaluate, quantify, and compare the interpretability of four
ML algorithms by validating their explanation outputs against domain knowledge. Inter-
pretability metrics were derived through two distinct methods designed for transparent
and black-box algorithms. Domain knowledge, encompassing residuals and key fea-
tures, serves as a benchmark for assessing the alignment between algorithmic outputs and
engineering insights.
Method 1: interpretability assessment for transparent algorithms. Method 1 was applied
to transparent ML algorithms, such as linear regressions (LRs) and decision trees (DTs),
where model components inherently lend themselves to interpretation. Here, a residual
table (Table 3) was employed to validate model interpretations. Interpretability stems from
analysing feature coefficients for LRs, while it originates from diagnostic rules based on
feature splits for DTs. The alignment between residual data and model outputs establishes
the interpretability of these transparent algorithms.
Method 2: evaluating interpretability of black-box algorithms using XAI techniques. For
black-box algorithms, interpretability was assessed using explainable artificial intelligence
(XAI) techniques—specifically LIME and SHAP, both local and model-agnostic methods.
These techniques facilitate an analysis of key features identified by XAI as significant to
model predictions. A key-feature table (Table 4) provides an engineering basis to evaluate
XAI outputs, with interpretability measured by the degree of overlap between the XAI-
derived sensitive features and those identified as critical in engineering analysis. This
approach has proven to be effective in applications such as unmanned aerial vehicle
(UAV) elevators [19], gas turbines [39], nuclear power plants [40], cross-building energy
systems [41], and rotating machines [42], where XAI techniques interpret the diagnostic
logic of complex ML models.
Symptom vector formation. The process, shown in the left half of Figure 7, began with
constructing symptom vectors based on pressure (p1 to p7) and flow rate (f1 to f3) features
within the dataset. These features represent key indicators of system health, with each
condition—such as normal operation, pump external leakage, or fuel oil heat exchanger
(FOHE) blockage—having its own symptom vector (shown in Figure 8). A matrix was
created for each of the five pump speeds, with rows representing classes and columns
representing features. The mean values for each class and pump speed were then recorded
in the matrix, providing a baseline for subsequent analysis.
Residual calculation and interpretation. Residuals from the symptom vectors produced
a 31 × 10 matrix for each pump speed, highlighting deviations between each faulty class
and the normal condition. For example, Table 3 records the residuals for nozzle blockages
(Class 2). Engineering knowledge interprets the resulting backpressure as an increase
in downstream pressure (p3 to p7) and a reduction in flow rate (f1 to f3). Such correla-
tions between engineering principles and residual data underpin the interpretability of
diagnostic models.
Key feature identification for fault diagnosis. Analysing the residuals and leveraging
engineering knowledge can identify the key features most indicative of each faulty class.
These features show the greatest deviation from the normal condition and are instrumental
in diagnosing specific faulty classes. Table 4 shows the key features for several faulty classes,
highlighting the four features most significantly deviating from the normal condition. These
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key features are crucial for diagnostic accuracy and serve as the foundation for validating
the interpretability of the black-box algorithms.
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Table 3. The difference between faulty classes and the normal class.

Class p1 p2 p3 p4 p5 p6 p7 f1 f2 f3

2 + + + + + + + − − −
3 − − − − − − − + + −
4 − − − − − − − + + −
5 + + + + + − − − − −
6 + + + + + − + − − −
7 + + + + + − − − − −

Table 4. Key features of faulty classes.

Class Key Features

2 p7 p6 p5 p4
3 f3 p7 p6 p1
4 f3 p7 p6 f2
5 p5 p4 f3 f2
6 p5 p7 f3 p4
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4. Results
4.1. Multi-Fault Diagnostic Results

In summary, the simplified AFS model comprised five failure modes, producing
32 distinct classes—one representing normal conditions and 31 representing various faulty
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conditions, including multiple faults. This dataset included 19,505 individual datasets. The
objective of multiple-fault diagnosis is to develop an algorithm that accurately identifies
all 32 classes. The performance of the selected ML algorithms was evaluated using the
following metrics: multiclass confusion matrix, accuracy, Matthews correlation coefficient
(MCC), kappa coefficient, and F-1 score.

Before finalising each algorithm’s configuration, including model structure and hy-
perparameters, preliminary evaluations were performed using an independent test set
comprising 10% of the total dataset, instead of cross-validation. This approach was adopted
due to the ample data generated by the simulation model for ML. The entire dataset was
randomly divided into three subsets—training, testing, and validation—ensuring that each
subset had a similar distribution and included all 32 classes. Figure 9 highlights the test set
using the yellow color and illustrates the quantity of data for each class within it.
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A straightforward approach was then employed in the MATLAB R2024a environment
to tune only one to two hyperparameters that significantly impacted algorithm performance
based on accuracy with the test data. All other parameters were kept at their default values.
For the logistic regression, no hyperparameters were identified as substantially affecting
performance. In the case of the SVM, the choice of kernel functions and solvers significantly
influenced performance, with MATLAB offering four kernel options and three solver
options, as summarised in Figure 10a. The key hyperparameters for decision trees (DTs)
and artificial neural networks (ANNs) were the number of decision nodes and neurons in
the hidden layers, respectively.
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Finally, based on the classification errors under the different hyperparameter settings
shown in Figure 10, a one-vs-one strategy was implemented for the SVM. This configuration
used a 4th-order polynomial kernel, 496 sub-learners, and an ISDA solver, which yielded
the lowest classification error. Additionally, when achieving the highest test accuracy, the
ANN featured a three-layer network with 11 input nodes, a hidden layer of 16 nodes,
and 32 output nodes. The decision tree (DT) utilised a CART structure with 1100 splits
(decision nodes).

Subsequently, the optimised models were evaluated on the remaining validation
dataset, representing 20% of the total data. Their performance was assessed using the
four evaluation metrics previously mentioned. The results of this validation process are
summarised in Table 5.

Table 5. Performance on the validation dataset.

Accuracy MCC Kappa F-1

LR 0.7926 0.7826 0.781 0.7535
DT 0.8382 0.8303 0.83 0.7874

SVM 0.8395 0.8319 0.8308 0.8195
ANN 0.9008 0.8959 0.8958 0.879

All four evaluation metrics indicate that the ANN outperformed the other models,
correctly classifying 90% of the samples, while the logistic regression (LR) showed the
weakest performance. Figure 11 provides a detailed view of the F-1 score distribution
across classes for the four selected ML methods, with the F-1 score being the only metric
capable of offering class-level detail. The average F-1 scores in Table 5 correspond to the
values in Figure 11. The ANN achieved the highest F-1 scores in nearly all classes except
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for Class 12 and 17. Conversely, the LR exhibited the lowest F-1 scores in most classes, with
only seven exceptions. The F-1 scores of the SVM and DT generally fell between those of
the ANN and LR, although the DT’s average score was notably lower than that of the SVM
due to higher variability across classes. Specifically, the DT’s performance was particularly
poor in certain classes, including Classes 11, 15, 16, 30, and 31.
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Figure 12 presents the confusion matrix for SVM results on the validation dataset.
In this matrix, rows correspond to the actual classes, while columns represent the SVM’s
predicted classes. Correct predictions are highlighted in blue, and incorrect predictions are
highlighted in red. The color intensity indicates the number of cases in each cell.

The distribution in Figure 12 reveals that SVM predictions were concentrated along
several distinct lines, including incorrect predictions aligned parallel to the diagonal.
Starting at row 9, column 1, the first red line represents misclassifications related to pump
internal leakage, indicating that the SVM struggled to detect this failure mode. Similarly,
the second red line reflects instances where the SVM failed to identify a pump external
leakage. The third red line shows cases where the SVM did not consistently recognise
simultaneous internal and external leakages in the pump. Notably, the confusion matrix
for the ANN exhibited a similar pattern, with false negatives concentrated in these three
fault classes.

Additionally, the logistic regression (LR) frequently produced false negatives for FOHE
leakages, often misclassifying faulty cases as normal. In contrast, the decision tree (DT)
model generated a high number of false positives for the same failure modes, potentially
leading to increased maintenance costs. Among the failure modes in the simplified AFS,
blockages were generally easier to detect than leakages. Overall, based on these analyses,
the ANN and the SVM demonstrated a superior performance compared to the LR and
the DT.
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4.2. The Structural Complexity and Balanced Results

Following the method outlined in Section 3.2, the structural complexity of the four
trained ML algorithms was quantified to facilitate fair comparisons. This process balances
complexity across algorithms. For the multinomial logistic regression, the model predicts
the class with the highest probability among 32 options. Each probability calculation
requires 11 weights (one for each feature) and a bias term, resulting in 384 parameters,
defining logistic regression’s structural complexity. Adjustments were made to the other
algorithms to ensure comparable complexity, such as reducing the number of decision
nodes in the decision tree (DT) from 1100 to 400 and shrinking the number of hidden
neurons in the artificial neural network (ANN) to nine (from 16).

It is important to note the structural complexity of the SVM, which employs a one-vs-
one strategy and has a complexity of 496, corresponding to the number of sub-learners.
However, to align with the simpler structure of the logistic regression, which only involves
first-order calculations, the nonlinear kernel function order for the SVM was reduced from
fourth to second order. Table 6 summarises the structural complexities of all four algorithms
before and after the balancing adjustments.

Table 6. The structural complexity of each algorithm.

ML Algorithm Original Complexity Balanced Complexity

Logistic regression 384 384
Decision tree 1100 400

SVM 496 496
ANN 688 387
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The four ML models were retrained using the adjusted configurations described above,
and the validation results are presented in Table 7.

Table 7. Performance on the validation dataset after balancing complexity.

Algorithm Accuracy MCC Kappa F-1

LR 0.7877 0.7773 0.7757 0.7481
DT 0.7101 0.6955 0.6942 0.6351

SVM 0.7729 0.7622 0.7596 0.7398
ANN 0.8787 0.8727 0.8725 0.8538

The results indicate that the ANN demonstrated the highest predictive performance,
while the DT showed the lowest. The SVM and logistic regression ranked second and third,
respectively. Reducing model complexity negatively impacted performance, a fact which
is unsurprising. However, achieving higher accuracy typically requires increasing model
complexity, making the model more challenging to interpret.

4.3. Interpretability of the Trained Diagnostic Algorithms

LR. In multinomial logistic regressions, model interpretation is based on the analysis of
coefficients, representing each feature’s contribution when comparing faulty classes to
the normal class. A larger absolute coefficient value indicates a stronger influence of that
feature on the prediction. Positive coefficients suggest a positive relationship between the
feature and the likelihood of a specific fault class, while negative coefficients imply an
inverse relationship.

Table 8 displays selected coefficients from the multinomial logistic regression model
for Classes 2 to 16. Each column corresponds to a fault class, while each row represents the
coefficients for a specific feature. For instance, in the case of FOHE blockages (Class 5 to 8),
the negative coefficient for p6 indicates a negative relationship between p6 and the fault’s
occurrence. This suggests that a lower downstream pressure at p6 increases the likelihood
of FOHE blockages, aligning with engineering principles. Similarly, the coefficients for
pump speed and flow rate f1 indicate strong correlations with internal leakages (Class 9 to
16). According to the model, internal leakages become more probable as pump speed rises
and the system flow rate decreases.

Table 8. Coefficients of the multinomial logistic regression.

Classes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Intercept 6.54 −1.3 −3.27 8.03 8.56 −4.65 0.65 6.77 9.97 0.59 8.98 8.62 7.78 2.75 1.28

Pump
speed −3.35 2.24 −1.5 1.60 −1.1 0.69 −3.5 33.75 34.41 36.94 35.00 34.91 35.03 35.27 36.04

p1 −1.76 0.34 −1.24 −3.17 −5.45 4.42 −0.12 −0.64 −3.55 1.77 −2.67 −1.15 −3.98 4.01 −2.04
p2 −8.35 −0.84 2.06 −5.29 −4.75 −0.15 −1.52 −1.3 −3.2 3.36 −3.37 −1.47 1.32 −0.01 6.12
p3 1.45 −6.38 −5.21 8.25 2.90 4.11 7.64 0.54 −12.75 −5.82 −3.15 −0.97 6.61 0.14 3.68
p4 −8.3 1.72 3.83 22.33 25.16 12.57 22.33 −10.32 −1.15 6.07 −26.29 16.00 13.21 17.47 25.32
p5 1.56 4.06 −2.12 31.92 37.42 52.11 45.26 −33.25 −24.22 −24.79 −8.94 25.61 15.45 20.04 7.76
p6 −61.31 −31.75 −28.98 −84.49 −138.2 −84.12 −105.95 −1.21 −53.49 −9.31 −51.95 −82.55 −116.25 −86.48 −101.39
p7 87.27 4.41 53.57 6.88 101.44 9.33 71.71 8.34 83.51 −15.41 68.97 1.21 82.65 −22.64 78.98
f1 −18.41 −17.86 −10.17 −10.42 −25.24 −6.44 −24.52 −32.68 −46.68 −41.18 −42.01 −37.95 −40.83 −32.46 −44.76
f2 36.93 99.17 92.65 14.56 32.50 68.06 89.34 0.20 33.79 86.14 103.69 0.20 11.22 86.22 83.84
f3 −22.92 −68.55 −92.55 0.00 −20.95 −59.29 −89.02 9.86 −22.79 −69.28 −94.34 13.82 −11.75 −65.9 −93.56

In Figure 13, the horizontal axis represents the 32 classes, while the vertical axis shows
the results as percentages. The blue bars represent the consistency between the signs of the
logistic regression (LR) parameters fitted for each class (as shown in Table 8, representing
the LR’s interpretation) and the corresponding engineering insights in Table 3. The grey
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bars depict the F-1 scores of the LR on the validation dataset. The table below the graph
summarises the distribution of the consistency levels across classes. This consistency
varied significantly among classes and was low (≤50%) in nearly half of them, resulting
in an average interpretability of only 58% for the LR. Additionally, the LR’s predictive
performance, shown by the grey bars, was weaker than that of the other three algorithms,
as indicated in Figure 11.
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DT. Decision tree (DT) results are generally intuitive and straightforward to interpret. The
decision rules for each class can be traced by following the branches and nodes from the
root to the leaf nodes. However, as the tree structure expands, interpretation becomes
increasingly complex. Despite this, specific rules can be extracted by focusing on individual
paths from the root node to each leaf node.

In this study, the DT algorithm required 1100 decision nodes across more than 20 layers,
with over 900 leaf nodes to classify all 32 classes effectively. Table 9 provides an example
of a rule extracted from the trained DT. This rule involves 23 decision points, meaning
that the corresponding branch contains 24 nodes: one root node, 22 internal nodes, and
one leaf node. The table outlines each node in this branch except for the leaf node. The
second column specifies the features used by the DT at each decision point, while the fourth
column details the decisions made at these nodes. For continuous features (e.g., pressure
and flow rate), the decisions are based on split points (fifth column). The decisions indicate
specific feature values for discrete features (e.g., pump speed).

Table 9. Example rule extracted from the trained DT.

No. Parent Node Predictor Type Judge Criteria Unit

1 1 p7 Continuous Less than 1.3837 bar
2 2 f3 Continuous Less than 0.6596 L/min
3 4 p4 Continuous Less than 2.1767 bar
4 8 f3 Continuous Less than 0.5706 L/min
5 16 p7 Continuous Less than 1.2293 bar
6 22 p5 Continuous Less than 1.6392 bar
7 34 f3 Continuous Less than 0.466 L/min
8 56 f3 Continuous Equal or larger than 0.3643 L/min
9 77 Pump Categorical 300 NaN RPM
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Table 9. Cont.

No. Parent Node Predictor Type Judge Criteria Unit

10 102 p6 Continuous Less than 1.3799 bar
11 142 p3 Continuous Equal or larger than 1.4321 bar
12 209 p6 Continuous Equal or larger than 1.334 bar
13 305 p1 Continuous Equal or larger than 0.9944 bar
14 429 p3 Continuous Less than 1.4559 bar
15 596 f1 Continuous Equal or larger than 0.3938 L/min
16 809 f3 Continuous Equal or larger than 0.3707 L/min
17 1027 p5 Continuous Less than 1.4101 bar
18 1204 f1 Continuous Less than 0.4035 L/min
19 1392 p3 Continuous Equal or larger than 1.4343 bar
20 1577 p1 Continuous Less than 0.9952 bar
21 1732 p3 Continuous Less than 1.4433 bar
22 1826 p3 Continuous Less than 1.4397 bar
23 1876 f1 Continuous Less than 0.4001 L/min

The trained DT contained 939 rules (leaf nodes), with rule counts varying across
different target classes. Table 10 shows the number of rules associated with specific classes
at given pump speeds. Notably, the DT generally required more rules for classifications at
lower pump speeds (e.g., 200 rpm) than at higher pump speeds.

A comparison between the features associated with DT rules and the engineering
insights (Table 3) is illustrated in Figure 14. This figure shows the alignment between
the DT’s rules and engineering perspectives (blue bars) alongside the F-1 score on the
validation dataset (grey bars) at 300 and 600 rpm pump speeds. The interpretability of
the DT is summarised in the tables below each graph. At the lowest pump speed of
300 rpm (Figure 14a), there were some discrepancies between the DT’s interpretations and
engineering understanding. However, the interpretability at 300 rpm was notably higher
than that of the logistic regression, as indicated by the table statistics. At the highest pump
speed of 600 rpm (Figure 14b), both the interpretability and predictive performance of the
DT improved, resulting in an average interpretability of 82% across all five pump speeds.

Algorithms 2025, 18, x FOR PEER REVIEW 21 of 26 
 

A comparison between the features associated with DT rules and the engineering 
insights (Table 3) is illustrated in Figure 14. This figure shows the alignment between the 
DT’s rules and engineering perspectives (blue bars) alongside the F-1 score on the valida-
tion dataset (grey bars) at 300 and 600 rpm pump speeds. The interpretability of the DT is 
summarised in the tables below each graph. At the lowest pump speed of 300 rpm (Figure 
14a), there were some discrepancies between the DT’s interpretations and engineering 
understanding. However, the interpretability at 300 rpm was notably higher than that of 
the logistic regression, as indicated by the table statistics. At the highest pump speed of 
600 rpm (Figure 14b), both the interpretability and predictive performance of the DT im-
proved, resulting in an average interpretability of 82% across all five pump speeds. 

  
(a) (b) 

Figure 14. The interpretability of the decision tree under different pump speeds: (a) RPM = 300; (b) 
RPM = 600. 

SVM and ANN (black-box algorithms). The LIME and SHAP techniques were applied 
to identify the four features most influential for each prediction and to calculate the degree 
of overlap (expressed as a percentage) between the XAI outputs and the critical features 
recommended by engineering insights (Table 4). For instance, a 100% overlap indicates 
that all features identified by XAI match those suggested by engineering insights, while a 
50% overlap signifies that only two features align. The results are visualised in Figure 15, 
categorised by different classes. 

  
(a) (b) 

Figure 15. The interpretability of two black-box algorithms: (a) ANN; (b) SVM. 

In Figure 15, the blue and orange bars indicate the overlap between the outputs of 
LIME and SHAP and the engineering insights, representing the interpretability of these 
opaque algorithms. The grey bars depict the F-1 score of the ML algorithms on the valida-
tion dataset, effectively decomposing the overall F-1 score from Table 5 across individual 

Figure 14. The interpretability of the decision tree under different pump speeds: (a) RPM = 300;
(b) RPM = 600.



Algorithms 2025, 18, 73 20 of 25

Table 10. Distribution of rules across classes and pump speeds.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
200
rpm 18 9 15 6 4 7 3 10 12 3 6 17 9 9 8 7 13 8 11 7 4 8 8 5 3 16 8 4 9 9 8 6

300
rpm 10 7 6 6 10 3 8 5 15 12 12 9 13 10 13 10 4 5 7 5 5 5 3 6 10 9 9 7 7 10 8 8

400
rpm 6 4 1 4 6 5 7 5 7 8 7 6 6 9 8 9 2 2 3 4 4 5 6 5 6 6 9 8 9 7 6 3

500
rpm 3 6 3 3 8 3 5 3 6 1 2 1 8 10 5 6 2 2 2 1 2 2 3 6 4 4 5 4 4 5 6 4

600
rpm 3 2 2 3 3 3 4 2 2 2 4 1 4 4 6 3 1 4 3 1 5 2 2 3 5 4 5 3 4 4 2 4

Sum 40 28 27 22 31 21 27 25 42 26 31 34 40 42 40 35 22 21 26 18 20 22 22 25 28 39 36 26 33 35 30 25
Total 939
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SVM and ANN (black-box algorithms). The LIME and SHAP techniques were applied to
identify the four features most influential for each prediction and to calculate the degree
of overlap (expressed as a percentage) between the XAI outputs and the critical features
recommended by engineering insights (Table 4). For instance, a 100% overlap indicates
that all features identified by XAI match those suggested by engineering insights, while a
50% overlap signifies that only two features align. The results are visualised in Figure 15,
categorised by different classes.
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In Figure 15, the blue and orange bars indicate the overlap between the outputs
of LIME and SHAP and the engineering insights, representing the interpretability of
these opaque algorithms. The grey bars depict the F-1 score of the ML algorithms on
the validation dataset, effectively decomposing the overall F-1 score from Table 5 across
individual classes. For instance, for Class 2 in the ANN which related to a clogged nozzle
prediction, the F-1 score—a measure of predictive accuracy—approached 95%. However,
only two and one of the four most sensitive features identified by LIME and SHAP aligned
with engineering insights. Although the ANN generally performed well across classes, the
interpretability provided by the XAI techniques varied significantly.

The table in Figure 15 summarises the number of classes at each level of overlap.
Compared to the SVM (Figure 15b), the ANN (Figure 15a) had more classes with high
interpretability, defined as an overlap of 75% or greater. Based on these tables, LIME
provided slightly better interpretability than SHAP for the ANN and the SVM, achieving
61% and 52% overlap, respectively. Thus, among the combinations of XAI techniques and
opaque algorithms in this study, LIME provided the highest interpretability with the ANN,
while SHAP offered the lowest interpretability with the SVM.

LIME’s results for the ANN and the SVM in Figure 15 exhibit an approximate bimodal
pattern, indicating a notable gap between the XAI output and engineering insights for
Classes 9 to 16 and 25 to 32. These classes share a common failure mode: pump internal
leakage. Unlike the external leakage, internal leakage results in the leaked flow recirculat-
ing to the pump inlet rather than exiting the system. This backflow reduces the system’s
flow rate and the pressure differential across the pump, giving the impression of normal
operation at lower pump speeds. Although the selected opaque ML algorithms can de-
tect internal leakage by incorporating pump speed into the feature space (as shown by
the grey bars in Figure 15), this failure mode challenges the surrogate model in LIME,
reducing interpretability.
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Based on the engineering insights into pump internal leakages, the pump speed is
the most sensitive feature for detecting this failure mode, followed closely by the flow
rate delivered to the engine (f3) which significantly decreases during an internal leakage.
However, in the XAI explanations for the ANN, pump speed, f3, and p7 were most fre-
quently highlighted as essential features for predicting internal leakages. While engineering
insights support the relevance of pump speed and f3, they disagree on the importance of
p7, as it is located farther from the pump and experiences less significant pressure changes
than p2 or p3. For the SVM, XAI identified flow rate f3 and pressures p5 and p7 as the
most sensitive features, but engineering understanding only supports f3. Consequently,
XAI explanations for the SVM underperformed relative to the ANN in certain classes (e.g.,
Classes 9, 10, 11, 13, 29, 31, and 32) associated with internal leakage.

5. Discussion
This work addresses a more complex multi-fault diagnosis scenario compared to

previous studies. It thoroughly investigates the capabilities of traditional machine learning
methods, including the shallow neural network, in fault diagnosis. Additionally, this study
uniquely examines the influence of algorithmic structural complexity on fault diagnosis
outcomes. A more balanced and fair comparison was achieved by re-evaluating the
performance of four algorithms under similar structural complexities. In their optimal
configurations, the ANN demonstrated the best predictive performance, with an average
accuracy of 90% on the validation dataset and strong F-1 scores across all 32 classes. The
SVM achieved an accuracy of 84%, with the F-1 scores varying by class and reaching
100% accuracy in certain cases. Among the transparent algorithms, the DT had an overall
accuracy of 83.8%, lower than that of both the SVM and the ANN, while the LR, as the
simplest model, yielded the lowest accuracy at 79%. Predictive performance decreased
as model complexity was reduced, yet the ANN maintained the highest accuracy (87.9%).
Additionally, the opaque algorithms consistently outperformed the transparent algorithms
in diagnostic accuracy.

For the failure modes considered here, leaks in the AFS presented a greater challenge
for ML algorithms than blockages. This difficulty is reflected in the confusion matrix, where
a notable number of missed detections and false positives are associated with leaks. A
possible reason for this discrepancy is that blockages produce more pronounced changes in
pressure and flow rate than leaks, making them easier for ML algorithms to identify from
the data.

While black-box algorithms such as SVMs and ANNs exhibit strong diagnostic capa-
bilities, they present interpretability challenges for domain users. To address this, this study
applies XAI techniques to explain black-box models and leverages engineering insights
into the fuel system to validate these explanations. The consistency between model outputs
and engineering understanding serves as a measure of interpretability, where a higher
degree of overlap indicates better interpretability. This approach is necessary because
LIME and SHAP results are influenced by the scope of the input data, whereas engineering
understanding—rooted in human experience and expertise—extends beyond the dataset.

Despite requiring more computational resources and time, SHAP provided inter-
pretability levels similar to those of LIME. Specific to each ML model, the ANN achieved
better interpretability than the SVM (61% vs. 52%). However, as shown in Figure 15, con-
sistency between engineering judgment and feature relevance from both LIME and SHAP
varied widely, with differences of up to 50% across classes. For transparent models, the
logistic regression (LR) parameters in Table 8 differ substantially from engineering insights
across many classes. The LR’s parameters represent global decision-making across the
training dataset which contrasts with the local explanations provided by LIME and SHAP.



Algorithms 2025, 18, 73 23 of 25

While LRs offer intuitive global interpretability, their simplicity limits their interpretability
(only 58%), restricting their ability to capture complex mappings fully.

In contrast, the DT achieved higher interpretability (82%) and displayed greater
consistency across fault classes, especially at high pump speeds. DTs’ interpretability
advantage stems from their rule-based approach, which divides the feature space into
distinct regions associated with different classes. Class data are dispersed at high pump
speeds, reducing inter-class ambiguity and simplifying classification and diagnostic tasks.

These findings suggest a trade-off in performance outcomes depending on the empha-
sis on interpretability versus accuracy. The DT offered relatively consistent interpretability
across fault classes but achieved moderate accuracy, whereas the ANN delivered superior
diagnostic accuracy at the expense of interpretability.

Future research could focus on employing XAI methods with a higher fidelity to
improve model explanations, incorporating deeper engineering insights from experienced
practitioners and addressing dimensionality challenges by reducing the number of classes
or features. Particularly for the latter direction, a potential approach involves investigating
the failure mode ratio (FMR) of components. In failure modes and effects analysis (FMEA),
FMR serves as a metric describing the frequency of different failure modes in a system or
device during operation, helping to identify the primary (frequent) failure modes within the
system. By leveraging this approach, future studies could prioritise high-frequency failure
combinations, thereby streamlining the classification process and reducing the number
of classes.

6. Conclusions
As a critical onboard system, the health of the aircraft fuel system (AFS) directly

impacts engine thrust and the safety of the surrounding equipment. To enable timely
responses to functional failures within the AFS, this study developed a multi-fault diag-
nostic method for a simplified AFS using machine learning. Data for this research were
sourced from a simulation model and a simplified rig representing the Boeing 777 fuel
system. The simulation model enhanced the rig data by introducing random uncertainty,
generating sufficient samples across all fault classes. The machine learning candidates were
selected from classic algorithms to ensure comparable complexity, predictive capability,
and varying levels of transparency. By diagnosing the full combinations of faults in the
AFS, this study uniquely transformed a typical multi-label problem—traditionally requir-
ing multiple algorithms—into a multiclass problem solvable by a single algorithm. The
evaluation of diagnostic accuracy innovatively incorporated the definition and exploration
of algorithmic structural complexity, enabling a fairer comparison among the methods.
After evaluating predictive performance, both local (XAI for opaque algorithms) and global
(interpretation for transparent algorithms) explainable techniques were applied to address
the gap in explainability for fuel system diagnostics. This evaluation framework uniquely
quantified and compared the interpretability of four ML algorithms to identify the most
suitable diagnostic method and tackle the three primary challenges outlined in Section 1.

Given its predictive performance, the ANN emerged as the most suitable algorithm
for this multi-fault diagnostic task. However, the interpretability provided by XAI tools did
not always align well with engineering insights. While the DT demonstrated the highest
interpretability consistency, this came at a cost to the overall performance. DTs also offer the
advantage of easy rule extraction in simpler structures. From an engineering perspective,
a method that excels at interpretability but falls short in fault detection is limited in its
effectiveness, particularly when maintenance decisions depend on its output.

This study emphasises the need for further research into machine learning inter-
pretability to serve domain users better. Engineering knowledge should remain a central
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consideration in designing and implementing data-driven algorithms, and it plays a vital
role in validating XAI outputs.

Author Contributions: Conceptualization, J.L., S.K. and I.J.; methodology, J.L.; software, J.L.; valida-
tion, J.L.; formal analysis, J.L.; investigation, J.L.; resources, J.L.; data curation, J.L.; writing-original
draft preparation, J.L.; writing—review and editing, S.K. and I.J.; visualization, J.L.; supervision, S.K.
and I.J.; project administration, I.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sciatti, F.; Tamburrano, P.; De Palma, P.; Distaso, E.; Amirante, R. Detailed simulations of an aircraft fuel system by means of

Simulink. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2385, p. 012033.
2. Gao, Z.; Song, D. Research of aircraft fuel system feeding failure based on flowmaster simulation. In Proceedings of the First

Symposium on Aviation Maintenance and Management-Volume I; Springer: Berlin/Heidelberg, Germany, 2014; pp. 45–52.
3. Zhao, Y.; Li, Z.; Wang, Z.; Xu, R.; Ding, E. Fault-Tolerant Center of Gravity Control for Fuel Systems with Component Failures.

In Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control,
ICGNC 2020, Tianjin, China, 23–25 October 2020; Springer: Singapore, 2022; pp. 4327–4336.

4. Li, J.; King, S.; Jennions, I. Intelligent fault diagnosis of an aircraft fuel system using machine learning—A literature review.
Machines 2023, 11, 481. [CrossRef]

5. Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A.B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H. Impact of dataset size on
classification performance: An empirical evaluation in the medical domain. Appl. Sci. 2021, 11, 796. [CrossRef]

6. Singh, R.; Maity, A.; Somani, B.; Nataraj, P.S. On-board fault diagnosis of a laboratory mini SR-30 gas turbine engine. IFAC-
PapersOnLine 2022, 55, 153–158. [CrossRef]

7. Matei, I.; Piotrowski, W.; Perez, A.; de Kleer, J.; Tierno, J.; Mungovan, W.; Turnewitsch, V. System resilience through health
monitoring and reconfiguration. ACM Trans. Cyber-Phys. Syst. 2024, 8, 1–27. [CrossRef]

8. Chaabane, A.; Jemmali, M. Gas turbine fault diagnosis based on machine learning techniques. In Proceedings of the 2023 IEEE
Afro-Mediterranean Conference on Artificial Intelligence (AMCAI), Hammamet, Tunisia, 13–15 December 2023; pp. 1–6.

9. Miao, Y.; Li, Y.; Pan, J.; Liu, Z.; Liu, L.; Wang, Z.; Wang, Z. Bio-Inspired Fault Diagnosis for Aircraft Fuel Pumps Using a
Cloud-Edge System. Biomimetics 2023, 8, 601. [CrossRef] [PubMed]

10. Bai, M.; Liu, J.; Long, Z.; Luo, J.; Yu, D. A comparative study on class-imbalanced gas turbine fault diagnosis. Proc. Inst. Mech.
Eng. Part G J. Aerosp. Eng. 2023, 237, 672–700. [CrossRef]

11. Nekoonam, A.; Montazeri-Gh, M. Noise-robust gas path fault detection and isolation for a power generation gas turbine based
on deep residual compensation extreme learning machine. Energy Sci. Eng. 2023, 11, 4001–4018. [CrossRef]

12. Irani, F.N.; Soleimani, M.; Yadegar, M.; Meskin, N. Deep transfer learning strategy in intelligent fault diagnosis of gas turbines
based on the Koopman operator. Appl. Energy 2024, 365, 123256. [CrossRef]

13. Li, J.; Ying, Y. A Novel Machine Learning Based Fault Diagnosis Method for All Gas-Path Components of Heavy Duty Gas
Turbines with the Aid of Thermodynamic Model. IEEE Trans. Reliab. 2024, 73, 1805–1818. [CrossRef]

14. Salilew, W.M.; Karim, Z.A.; Lemma, T.A. Investigation of fault detection and isolation accuracy of different Machine learning
techniques with different data processing methods for gas turbine. Alex. Eng. J. 2022, 61, 12635–12651. [CrossRef]
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