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Abstract: Computer vision seeks to mimic the human visual system and plays an essential
role in artificial intelligence. It is based on different signal reprocessing techniques; therefore,
developing efficient techniques becomes essential to achieving fast and reliable processing.
Various signal preprocessing operations have been used for computer vision, including
smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce
reluctant falsifications, segmentation, and image feature improvement. For example, to
reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This
is achievedby convolving the distributed signal with smoothing kernels. In addition,
orthogonal moments (OMs) are a crucial technique in signal preprocessing, serving as
key descriptors for signal analysis and recognition. OMs are obtained by the projection of
orthogonal polynomials (OPs) onto the signal domain. However, when dealing with 3D
signals, the traditional approach of convolving kernels with the signal and computing OMs
beforehand significantly increases the computational cost of computer vision algorithms.
To address this issue, this paper develops a novel mathematical model to embed the
kernel directly into the OPs functions, seamlessly integrating these two processes into
a more efficient and accurate approach. The proposed model allows the computation
of OMs for smoothed versions of 3D signals directly, thereby reducing computational
overhead. Extensive experiments conducted on 3D objects demonstrate that the proposed
method outperforms traditional approaches across various metrics. The average recognition
accuracy improves to 83.85% when the polynomial order is increased to 10. Experimental
results show that the proposed method exhibits higher accuracy and lower computational
costs compared to the benchmark methods in various conditions for a wide range of
parameter values.

Keywords: signal preprocessing; image kernels; orthogonal moments; orthogonal polynomials;
3D object; object recognition

Algorithms 2025, 18, 78 https://doi.org/10.3390/a18020078

https://doi.org/10.3390/a18020078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0705-6475
https://orcid.org/0000-0001-6072-9926
https://orcid.org/0000-0002-3482-2243
https://orcid.org/0009-0002-1511-3991
https://orcid.org/0000-0002-4121-0843
https://orcid.org/0000-0002-6439-0082
https://orcid.org/0000-0001-7937-3093
https://orcid.org/0000-0001-8413-0045
https://doi.org/10.3390/a18020078
https://www.mdpi.com/article/10.3390/a18020078?type=check_update&version=1


Algorithms 2025, 18, 78 2 of 21

1. Introduction
Three-dimensional object recognition is considered an important research area in

computer vision and artificial intelligence. It focuses on the identification and classification
of objects in three-dimensional space. In contrast to 2D, 3D object recognition makes
use of depth data, spatial relationships, and geometric features, which lead to a better
understanding of the object in the real world [1]. This capability is considered essential for
applications where both perception accuracy and real-world interaction are required [2].

The importance of 3D object recognition arises from its wide range of applications
across various industries. In augmented and virtual reality, 3D recognition improves
the user experiences by allowing for simple interactions with virtual objects in the real
world [3]. In robotics, 3D object recognition enables machines to navigate and process
objects efficiently, facilitating several tasks such as autonomous navigation and object grasp-
ing [4,5]. In healthcare, 3D object recognition enhances advanced medical imaging and
surgical planning by providing detailed 3D reconstructions of anatomical structures [6]. In
addition, in security and surveillance, 3D recognition improves object detection and track-
ing in complex environments, which enhances the capabilities of safety and monitoring [7].
Moreover, accurate recognition and interpretation of 3D objects is crucial for advancements
in autonomous vehicles, where understanding the 3D structure of the environment is
important for safe navigation [8].

Three-dimensional object recognition is important for bridging the gap between digital
systems and the real world. As this technology continues to develop, 3D object recognition
reveals exciting new possibilities, making it significant in the field of modern computer vision
and AI research.

After capturing visual data, image processing algorithms are utilized to identify 3D
objects, and areas of interest. These algorithms play a crucial role in extracting meaningful
information from visual inputs. This is essential for tasks such as 3D object detection,
classification, and scene understanding. Utilizing advanced algorithms, systems can in-
terpret and analyze visual data efficiently across various domains [9]. Within this context,
orthogonal polynomials (OPs) can be used, which serve as powerful mathematical tools
that significantly enhance the overall performance of the system [10–12]. The application
of OPs in image preprocessing ensures accurate and efficient processing, making them
indispensable for achieving reliable and precise navigation in autonomous robotic sys-
tems [13]. A great deal of progress in the OPs field has been made recently in relation
to significant analysis branches because OPs are connected to different functions, such
as hypergeometric, trigonometric, and elliptic functions. In addition, OPs are related to
continued fractions theory, as well as to problems of interpolation, mechanical quadrature,
and their occurrence in the theory of integral and differential equations. Moreover, OPs
provide instructive illustrations of some situations in the theory of orthogonal systems. In
addition, some OPs have recently played important roles in mathematical statistics and
quantum mechanics [14]. Moments are considered as the projection of OPs on the signal
domain [15].

Discrete moments, also known as discrete orthogonal moments, have been utilized
in various signal processing fields such as speech, image, and video processing [16–19].
They are commonly used as a shape descriptor and are applied in different tasks such
as face recognition [20], image classification [21], differential equations [22–25], speech
enhancement [26], and edge detection [27]. Moreover, orthogonal moments have been
utilized in other areas such as speech enhancement [28,29], watermarking [30], medical
image analysis [31–33], and shot boundary detection [34].

In general, moments are quantities that are used to represent 1D, 2D, and 3D data
without redundancy, making them an effective and efficient data descriptor. This means
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that moments have the capability to describe data while avoiding duplication [35–37].
Signal preprocessing techniques play a crucial role in enhancing the performance of com-
puter vision algorithms by improving the quality of input data [38]. For instance, noise is
removed from signals by utilizing smoothing kernels, such as averaging kernels. This is per-
formed to obtain a more clean and reliable data for the remaining processing steps [19,39].
Furthermore, gradient kernels are usually used to calculate the gradients in the x-direction
for 1D signals, x- and y-directions for 2D signals, and x-, y- and z-directions for 3D signals
to determine intensity changes in the aforementioned directions, respectively. Extracting
moments from images following preprocessing with smoothing and/or gradient image
kernels is an effective approach to represent signals [40,41]. However, some existing works
are required to reduce the spectral data space and, consequently, the computational load.
More improvement is required to obtain more robust and accurate methods.

In order to obtain a smoothed and gradient version of a 3D signal f , kernels hs and
hg are convolved with the signal. The convolution process is carried out separately for
each required version of the 3D signal. Once the smoothed and gradient versions of
the 3D signal are obtained, moments can be extracted from them. However, performing
these operations for each signal significantly increases the computational cost of a feature
extraction algorithm, such as for 3D object recognition. Recently, 3D object recognition has
emerged as a transformative technology with significant potential in fields such as virtual
reality, autonomous driving, and commercial manufacturing. While advanced feature
extraction methods, including deep learning models, have achieved impressive results
in this domain, their high computational cost poses a substantial challenge, particularly
for resource-constrained mobile applications [42]. Three-dimensional object recognition is
a complex process because 3D objects provide a large variety of projected images based
on viewing direction, illumination, distance, and other viewing conditions [43]. To deal
with viewing direction effects, in [43], a computational work is demonstrated using sets
of a small number of object viewpoints. However, this approach leaves many problems
unanswered. The main problems include the use of abstractions, class-based recognition,
and the classification problem, which requires a large experimental and computational
research. Basically, computer vision is an active task and plays a crucial role in making the
computer system see and identify the visual world automatically based on simulating the
basic biological ability of human visual perception. Therefore, to achieve a high potential,
the focus is on having an accurate algorithm with a lower computational cost [44,45].

Therefore, the aim of this paper is to obtain an accurate algorithm with a lower com-
putational cost by addressing the aforementioned issues. To this end, we propose a new
mathematical model for 3D object recognition that computes preprocessed signal moments
by combining two operations into one, thereby reducing the cost of clustering. This model
can be effectively used in mobile robot applications. To achieve this, we have embedded a
smoothing kernel operator into OP functions to extract features quickly and efficiently. Our
contributions are as follows:

1. We presented a mathematical model that integrates image kernels directly into or-
thogonal polynomial (OP) functions, eliminating the need for separate convolution
and orthogonal moment (OM) computation processes. This innovation significantly
reduces computational overhead while maintaining accuracy.

2. The presented mathematical model shows a reduction in computational cost, mak-
ing it suitable for applications and large-scale 3D signal processing. Moreover, the
method not only enhances efficiency but also achieves an improvement in recogni-
tion accuracy. In addition, the presented approach can be used with any discrete
orthogonal polynomials.
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3. We conducted extensive experiments using the well-known McGill benchmark dataset
to validate the effectiveness of the presented approach. These experiments were
performed under various noisy environments to evaluate the robustness and reliability
of the approach.

This paper is organized as follows: Section 2 discusses the preliminaries related to
the orthogonal polynomial (OP) used in this paper and the formulation of the squared
Krawtchouk–Tchebichef polynomial. In Section 3, the methodology of the proposed ap-
proach is given. Section 4 carries out the performance evaluation of the proposed recogni-
tion system based on the proposed technique. Finally, the paper concludes with a summary
of findings and future directions in Section 5.

2. Preliminaries
This section describes the OP used in this paper, as well as the process of computing

moments, which will be used in the vision and control system of mobile robots to ensure
safe navigation in environments. Moments have a significant role in the process of feature
extraction. Feature selection is the process of choosing a subset of relevant features from
a larger set for a particular task, such as classification. The length of the feature vector is
important in the performance of machine learning algorithms. Forming a feature vector
using too few features may not capture enough information, which affects the recognition
accuracy. On the other hand, constructing a feature vector using too many features can
lead to overfitting. Therefore, finding the optimal feature vector length is essential.

Features that possess energy compaction and localization properties in the moment
domain are able to simplify feature handling and have a significant impact on processing
steps [46]. This is because they allow the signal to be expressed using a small number of
moments, reducing computational complexity. Moreover, the localization property in space
identifies the region of interest, which speeds up the computation and improves feature
classification [47]. To achieve these properties, this paper uses the squared Krawtchouk–
Tchebichef polynomial (SKTP) as a discrete transform. The SKTP has been shown to
have robust performance in different applications, demonstrating its powerful energy
compaction and localization properties [46]. Moreover, its localization property in space
contributes an additional reduction in computation and feature classification by locating
the region of interest (ROI) [48].

2.1. Formulation of the Squared Krawtchouk–Tchebichef Polynomial

The SKTP is a mathematical function that is generated by combining two orthogonal
polynomials according to a defined mathematical operation. This method is efficiently
applicable because when two orthogonal polynomials are multiplied, the result is also an
orthogonal polynomial. This means that the properties of the original polynomials are
maintained in the newly generated polynomial, as explained in [28,46,49]. To this end, the
SKTP can be expressed as the nth order of the polynomial Rp

n(x; N), where p is a parameter
that determines the shift of the polynomial and N is the maximum degree of the polynomial
so that

Rp
n(x; N) =

N−1

∑
i=0

Ap
i (x; N) Bp

i (n; N), (1)

where Ap
n(x; N), and Bp

n(x; N) represent the discrete Krawtchouk–Tchebichef polynomial
(DKTP) [28] and discrete Tchebichef–Krawtchouk polynomial (DTKP) [49], respectively.
The aforementioned polynomials are also formed from two orthogonal polynomials, which
are defined by [28,49] as follows:
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Ap
n(x; N) =

N−1

∑
i=0

Kp
i (n; N) Ti(x; N), (2)

Bp
n(x; N) =

N−1

∑
i=0

Kp
i (x; N) Ti(n; N), (3)

where Kp
n(x; N) and Tn(x; N) are the Krawtchouk and Tchebichef polynomials, respectively.

Note that p represents the parameter of the Krawtchouk polynomials. From (2) and (3), the
SKTP that is defined in (1) can also be written as follows:

Rp
n(x; N) =

N−1

∑
i=0

N−1

∑
j=0

N−1

∑
l=0

Kp
j (i; N)Tj(x; N)Kp

l (n; N)Tl(i; N). (4)

The matrix of SKTP, R, can be represented by multiplying the Krawtchouk and
Tchebichef polynomials using matrix multiplication properties as

R = (K T)2 (5)

2.2. Computation of 3D Moments

In the literature, there are different methods proposed for computing 3D moments.
Examples of these methods are the direct method, cubes method, and matrix product
method, as well as Kronecker tensor and matrix product method [50]. The primary goal
of these methods is to minimize computation time while maintaining accuracy. However,
the computational complexity of these methods varies. For example, the direct method
has a computational complexity of O(n6), while the cubes method has a complexity of
O(( n

Cubos )
6), the matrix product method has a complexity of O(( n

8 )
6), and finally, the

Kronecker tensor and matrix product method has a complexity of O(n3.81) [50]. As illus-
trated above, the computational complexity burden could be very high, especially with
3D signals. To overcome this issue, this paper proposes an efficient method of using the
Kronecker tensor as well as the matrix multiplication method to compute the moments in
an efficient way with lower computational complexity. To this end, for a 3D signal f (x, y, z),
the moments M can be computed as follows [50]:

M:,k = ∑z Rk,z ⊗
[
Rn,x F Rm,y

]
n, m, k = 0, 1, . . . , Ord,

(6)

where Ord represents the order, and Mn,m,k ∈ RL×L×L ← M:,k ∈ RL2×L.

3. Research Design and Methodology
This section describes the methodology of the proposed method. Suppose we have

a 3D object, denoted by f (x, y, z), with dimensions Nx × Ny × Nz. Let us also consider a
kernel, denoted by h(u, v, w), that we convolve with f (x, y, z) resulting in a new 3D object
of size Nx × Ny × Nz, denoted by g(x, y, z) that can be written as:

g(x, y, z) = f (x, y, z) ∗ h(u, v, w) (7)

g(x, y, z) =
a

∑
u=−a

b

∑
v=−b

c

∑
w=−c

f (x, y, z)h(u− x, v− y, w− z). (8)

When convolving a kernel of size A× B× C with a function f (x, y, z), it is possible
to decompose the convolution operation into three separate operations. This approach is
called spatially separable convolution. In this method, the kernel of size A× B× C is split
into three separate kernels: an A× 1× 1 kernel, a 1× B× 1 kernel, and a 1× 1× C kernel.
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In the spatially separable convolution process, the first kernel, i.e., the A × 1 × 1
kernel, is convolved with f (x, y, z), followed by convolving the result with the 1× B× 1
kernel and then convolving the output of the previous step with the 1× 1× C kernel. This
technique has been explained in detail in [51]. As a result of this decomposition, the original
convolution equation, represented by (7), can be rewritten as follows:

g(x, y, z) =
a

∑
u=−a

[
b

∑
v=−b

[
c

∑
w=−c

f (x, y, z)h(w− z)

]
h(v− y)

]
h(u− x). (9)

To calculate the moments of the function g(x, y, z), we can use Equation (6). This
equation will yield the moments (MCn,m,k) of the original function f (x, y, z) after it has
been convolved with the kernel and can be expressed, in the form of a matrix, as follows:

MC:,k = ∑
z

Rk,z ⊗
[
Rn,x G RT

m,y

]
(10)

n, m, k = 0, 1, . . . , Ord,

where G denotes the matrix form of the function g(x, y, z) and ⊗ represents the mathemati-
cal kronecker product. In what follows, we provide proof of the above expression.

Proposition 1. Suppose we have a function p that is convolved with a kernel h. The outcome of
this convolution operation is a new function q, which can be expressed as follows:

q = p ∗ h. (11)

Typically, the convolution operation presented above can be reformulated using the properties
of matrix multiplication. The resulting matrix can be expressed as follows:

Q = H P, (12)

In the equation mentioned above, the matrix H represents the Toeplitz matrix of the kernel h.
Using this equation, we can compute the moments Φ as a function of Q as follows:

Φ = R Q. (13)

To this end, we can substitute matrix P given above into the moment function Φ. The resulting
moment function Φ can be written as follows:

Φ = R H P (14)

Let us assume that Re = R H, which represents the orthogonal polynomials embedded with
the kernel H so that we have the following:

Φ = Re P (15)

The concept we discussed above can also be extended to multidimensional signals. In other
words, we can use the same approach to compute moments for signals with more than two dimensions.
To achieve this, we can substitute Equation (14) into (10), which yields the following formula:

MC:,k = ∑
z

Re(k,z) ⊗
[
Re(n,x) F RT

e(m,y)

]
. (16)

From the formula (16), we can observe that the moments of the function g can be
calculated using the original function f and the orthogonal polynomials that contain the
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kernels within them. These orthogonal polynomials are denoted as Re(n,x), Re(m,y), and
Re(k,z) for the x, y, and z dimensions, respectively. Here, Re is the embedded version of
the orthogonal polynomials and is obtained by multiplying R (the standard orthogonal
polynomial matrix) with the Toeplitz matrix H of the corresponding kernel (hx, hy, or hz).
It is important to note that the Toeplitz matrix H represents the convolution kernel.

Remark 1. The current formula for computing moments is faster than the formula that first
applies the convolution operation and then computes the moments. This is because in the current
formula, the kernels are embedded within the polynomials themselves. This embedding operation is
performed at the beginning, after checking the database and extracting relevant information. Once
the embedding is complete, the moments can be computed without the need to apply the kernel for
each object (function).

In other words, the current method saves computational time because the convolution operation
is performed only once, and the resulting orthogonal polynomials containing the embedded kernels
are then used to calculate moments for multiple objects without the need for repeated convolution.

Note that the matrix H in the previous equation represents a Toeplitz matrix that is
truncated to a size of N × N for the operator h. Suppose h = [h0, h1, · · · , hm], then the
Toeplitz matrix can be constructed as follows:

H =



h0 0 0 · · · 0 0
h1 h0 0 0 · · · 0
... h1 h0 0 · · · 0

hm
... h1

. . . . . .
...

0 hm
...

. . . h0 0
0 0 hm · · · h1 h0


. (17)

After presenting the mathematical model for moment computation, it can be applied
for object recognition to demonstrate its advantages and importance. This process includes
the following steps: generating the orthogonal polynomials, followed by constructing the
Toeplitz matrix version of the kernel, and finally, embedding the kernel into the orthogonal
polynomials. This approach has several advantages, such as efficient and fast moment
computation, without the need to repeatedly apply the kernel for each object, which makes
it ideal for object recognition systems.

Research Design

In this section, the design of the methodology is provided. The feature extraction pro-
cess plays a crucial role in object recognition systems. Features extracted using orthogonal
polynomials are considered robust. However, to improve the representation of feature, the
selection of orthogonal polynomials is substantial. Therefore, in the proposed recognition
system, we have utilized the squared Krawtchouk–Tchebichef polynomial (SKTP) due to
its superior performance in signal representation. The SKTP is formed of Krawtchouk and
Tchebichef polynomials using (5), which also can be written as follows:

RS = (RK × RT)
2, (18)

where RS, RK, and RT represent the SKTP, Krawtchouk polynomials, and the Tchebichef
polynomials, respectively. To improve the robustness of the features, we embedded kernels
in the orthogonal polynomials to perform feature extraction. This will speed up the feature
extraction process compared with a traditional feature extraction process. The traditional
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process starts with processing the object using the image kernels, then the process of feature
extraction is performed. However, for the proposed technique, the feature extraction
process is performed directly on the object, i.e., the proposed technique eliminates extra
process while maintaining its effect. To embed the kernel in the orthogonal polynomials,
we follow Equation (12). For more illustration, Figures 1 and 2 show the effect of gradient
kernels on 3D object samples using conventional convolution and OP-based convolution.

Figure 1. Samples showing the effect of kernels on ant 3D objects using conventional convolution
and OP-based convolution.

Figure 2. Samples showing the effect of kernels on plane 3D objects using conventional convolution
and OP-based convolution.

To generate the kernel, first, the length of the kernel (lkernel) is set to generate 1D kernel.
Moreover, the object information is extracted from the object dataset, where the object
information includes the size of the object Nx, Ny, and Nz. According to the extracted
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object information, the orthogonal polynomials (SKTP) are generated. After generating the
orthogonal polynomials, the generated kernel is embedded into the orthogonal polynomials.
The resulting polynomials Px, Py, Pz are then used to compute the moments. Figure 3 shows
the proposed technique described above.

Figure 3. Flow diagram of the proposed embedded kernel.

After computing the moments, the feature vector is generated and it is used for classi-
fication. The features are set to a specific size, which is performed by setting up the order
of the orthogonal polynomials. In other words, the moments size is limited to the order of
the orthogonal polynomials. These orders are Ordx, Ordy, and Ordz for the polynomials
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Px, Py, and Pz, respectively. Therefore, the moment size will be Ordx ×Ordy ×Ordz. After
computing the moment, it is flattened to form the feature vector. Thereafter, the feature
vector is normalized and used for classification. It is noteworthy that after obtaining the
normalized feature vector, each normalized feature vector is associated with a label (ID) for
each object. The labels are used for training and testing processes. In this paper, support
vector machine (SVM) is employed for its ability to optimize the margin between two
hyperplanes that separate the classes [52]. Moreover, SVM is widely used in recognition
for its robustness against signal fluctuations compared to other classifiers [53]. Figure 3
shows the presented technique for embedding kernels. Moreover, Figure 4 shows the
methodology using the proposed technique for 3D object recognition.

Figure 4. Flow diagram of object recognition using the proposed technique.
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4. Results and Discussion
The performance of the recognition system based on the proposed technique is evalu-

ated in this section. The evaluation is performed using the McGill dataset formed in [54].
Figure 5 shows samples of the object in the dataset. The dataset (McGill) serves as a
benchmark dataset and includes nineteen classes expressed as 3D objects. These classes
are categorized as planes, chairs, dinosaurs, fishes, cups, birds, spiders, spectacles, snakes,
octopus, teddies, pliers, dolphins, fours, ants, humans, tables, and craps. For the SVM, we
utilized the LIB-SVM version 3.24 [55]. It is noteworthy that the experiment is performed
using Matlab 2019 on an 8-core core i7-4700MQ CPU with a frequency of 2.4 HGz and
16 GB RAM.

Figure 5. Samples of 3D objects extracted from McGill dataset.

In this paper, we focused on 19 different objects and applied a range of translation
effects to enrich the original dataset. The augmentation process starts by shifting each
object within a range from −10 to 10 along the x, y, and z axes, using a step size of 5. This
systematic shifting creates a diverse array of translations, which helps the recognition
system generalize better across various object positions. This augmentation approach
guarantee that the dataset captures a wide range of spatial arrangements. A total of
5902 samples are generated as a result of the utilized augmentation techniques. To evaluate
the performance of the proposed technique, we implemented different evaluation metric,
which are discussed in the following sections.

4.1. Analysis of Optimal Parameter for Orthogonal Polynomial

In this section, first, we performed an experimental analysis to evaluate the perfor-
mance of the proposed system for different values of the orthogonal polynomial parameter
(p). The goal of this analysis is to identify the optimal value that enhances the performance
of the proposed system. Support vector machine (SVM) is utilized as a classifier for this
analysis. SVM is a powerful tool in the field of machine learning which is widely employed
for classification and regression tasks. Compared to other classifiers, SVM’s robustness
against signal fluctuations makes it particularly effective for recognition applications [53].

In this paper, SKTP is applied to 3D objects that are chosen from the McGill dataset.
Various values of the polynomial parameter (p) are tested for the nth order of the polynomial
(Rp

n(x; N)), where (p) affects the polynomial’s shift. The maximum order of the polynomial,
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denoted as (Ord), is set to 8, 10, and 12, while the values of the polynomial parameter (p)
include 0.2, 0.3, 0.4, 0.5, and 0.6.

The SVM model was trained using 4134 3D objects from the McGill dataset, and the
testing phase involved 1768 3D objects. The details of the dataset are given in Table 1 We
examined three different cases of the orthogonal parameter to determine which configura-
tion yields the best fitting effect of SKTP, ultimately aiming to achieve the most accurate
signal representation based on the information provided by the 3D objects.

Table 1. Details of the McGill dataset.

Class ID Class Name Number of
Samples Class ID Class Name Number of

Samples

1 airplanes 26 11 hands 20
2 ants 30 12 humans 26
3 birds 21 13 octopus 25
4 chairs 23 14 pliers 20
5 crabs 30 15 snakes 25
6 cups 25 16 spectacles 25
7 dinosaurs 19 17 spiders 31
8 dolphins 12 18 tables 22
9 fishes 23 19 teddy 20

10 four 31

Total number of samples 454

First, the SVM model is trained and tested in clean environment with the results
reported in Table 2.

Table 2. Recognition accuracy for clean environment with different OP parameter p and order.

Ord
p 0.2 0.3 0.4 0.5 0.6 Average

8 69.853 83.258 85.294 83.088 76.471 79.593
10 81.109 83.824 86.765 85.249 82.353 83.971
12 77.941 82.353 86.029 84.559 78.676 81.912

The results shows that the highest performance score is 86.765, which is achieved
with (p = 0.4) and (Ord = 10). This combination indicates that a moderate value of (p)
paired with a polynomial order (Ord) of 10 yields optimal results. Furthermore, the results
demonstrate that the accuracy increases as the polynomial parameter p increases from 0.2
to 0.4, and the recognition accuracy declines after the polynomial parameter p becomes
greater than 0.4 (0.5 and 0.6).

Moreover, the analysis of the average recognition accuracy across different polynomial
orders (Ord) is important to providing the effect of the polynomial order. For (Ord = 8),
the average recognition accuracy is 79.593, indicating a good ability to capture a relevant
representation of the data. This recognition accuracy increases to 83.971 for (Ord = 10),
which shows that the model benefits from increasing the number of features by a higher
polynomial order, which enhances the fitting capabilities of data distribution. However, as
the polynomial order increases to (Ord = 12), the average performance score decreases to
81.912. The decrease in average performance shows that as the order of the polynomial in-
creases, the complexity is also increases, potentially resulting in overfitting. These findings
show the importance of selecting an appropriate polynomial order, as the results indicate
that while higher orders can improve performance, there exists an optimal threshold.
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To investigate the performance of the proposed approach, an experiment is performed
in different noisy environments, namely Gaussian, salt-and-pepper, and speckle noise.
This experiment aims to examine the effects of these various noise types on the ability of
the presented technique to generalize across different configurations of the orthogonal
polynomial parameter (p) and polynomial orders (Ord). The obtained results are reported
in Tables 3–5.

In Table 3, a comprehensive evaluation of 3D object recognition based on the proposed
technique for polynomial order (Ord = 8) is presented across various environments with
different noise parameters. The Gaussian noisy environment reveals a decline in recognition
accuracy as the noise level increases. At a Gaussian noise level of 1%, the recognition
accuracy is 84.842 at p = 0.4, indicating that the performance can be considered good under
low noise conditions. However, as the noise level increases to 5%, the recognition accuracy
drops to 78.676. The recognition accuracy in the salt and pepper noisy environment follows
a comparable trend when compared to the Gaussian noisy environment, with a maximum
recognition accuracy of 84.785 at p = 0.4 and a noise density of 1%. As the noise level
increases, the recognition accuracy declines, reaching a score of 80.147 at p = 0.4 and a noise
density of 5%. The analysis of speckle noise further emphasizes the challenges posed by
noise in maintaining recognition accuracy. The results show that the recognition accuracy
is 84.615 at p = 0.4 and a noise variance of 0.2, but recognition accuracy decreases as the
noise level increases, with a score of 80.882 at p = 0.4 and a noise variance of 1.

Table 3. Recognition accuracy for noisy environments with different OP parameter p and order
(Ord = 8).

Environment p

0.2 0.3 0.4 0.5 0.6

Clean 69.853 83.258 85.294 83.088 76.471

Gaussian

0.01 69.570 82.692 84.842 82.636 76.357
0.02 67.986 80.826 83.937 81.844 75.452
0.03 66.516 78.281 82.692 80.995 75.170
0.04 64.649 77.149 80.713 80.373 72.455
0.05 63.462 77.093 78.676 78.959 69.514

Salt and Pepper

0.01 69.344 82.523 84.785 82.692 75.848
0.02 67.364 81.505 83.767 81.674 75.226
0.03 66.346 80.769 82.862 80.486 74.717
0.04 65.667 79.016 81.505 79.808 73.756
0.05 64.593 78.281 80.147 79.412 72.794

Speckle

0.2 69.627 82.296 84.615 82.692 76.018
0.4 69.061 80.939 83.767 82.523 75.622
0.6 68.722 79.299 83.258 81.844 75.057
0.8 68.382 77.771 81.957 81.222 73.416
1 67.590 75.905 80.882 80.882 72.059

Average of both clean and noisy environments 67.421 79.850 82.731 81.321 74.371

In Table 4, we present a detailed assessment of 3D object recognition performance using
the proposed technique for polynomial order (Ord = 10) across various environments with
differing noise parameters. In the clean environment, the system exhibits a high recognition
accuracy, achieving a peak score of 86.765 at p = 0.4. This high accuracy indicates that the
system effectively captures the underlying features of the data without the interference of
noise. The performance remains commendable across other parameter settings, with scores
of 85.294 at p = 0.5 and 83.824 at p = 0.3. However, the lowest score of 81.618 is observed
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at p = 0.2. When Gaussian noise is applied to the objects, the recognition accuracy shows a
gradual decline as the noise level increases. At a noise level of 1%, the system maintains
a recognition accuracy of 85.464 at p = 0.4, indicating that it performs well under low
noise conditions. However, as the noise level rises to 5%, the accuracy decreases to 82.127.
The recognition accuracy for Gaussian noise at different levels demonstrate a consistent
downward trend, with accuracy values of 84.615 at p = 0.4 for a noise level of 2% and
83.993 at the same parameter for a noise level of 3%. The performance in the salt and pepper
noisy environment reveals the same trends observed in the Gaussian noise scenario. The
system achieves a maximum recognition accuracy of 85.351 at p = 0.4 and a noise density
of 0.01. As the noise density increases, the recognition accuracy declines, reaching 80.882 at
p = 0.4 and a noise density of 0.05. This decline highlights that the system is sensitive to
high levels of salt and pepper noise. The recognition accuracy for salt and pepper noise
also reflect a gradual decrease, with values of 84.333 at p = 0.4 for a noise density of 0.02
and 83.258 at the same parameter for a noise density of 0.03. The analysis of speckle noise
further illustrates the challenges associated with maintaining recognition accuracy in the
presence of noise. The system achieves a recognition accuracy of 85.238 at p = 0.4 and a
noise variance of 0.2. However, as the noise variance increases, the recognition accuracy
declines, with a score of 83.088 at p = 0.4 and a noise variance of 1.

Table 4. Recognition accuracy for noisy environments with different OP parameter p and order
(Ord = 10).

Environment p

0.2 0.3 0.4 0.5 0.6

Clean 81.618 83.824 86.765 85.294 82.353

Gaussian

0.01 81.109 82.862 85.464 84.446 82.070
0.02 79.921 81.505 84.615 84.050 79.016
0.03 78.054 80.600 83.993 83.484 78.281
0.04 76.640 79.977 82.975 81.505 77.771
0.05 75.735 77.602 82.127 80.147 77.206

Salt and Pepper

0.01 81.335 83.145 85.351 84.106 82.353
0.02 79.808 82.014 84.333 83.484 81.505
0.03 77.941 80.600 83.258 82.523 80.430
0.04 76.867 79.355 81.618 81.957 79.299
0.05 75.962 78.450 80.882 81.618 78.054

Speckle

0.2 81.165 83.428 85.238 84.389 82.127
0.4 79.751 81.957 84.276 83.993 82.014
0.6 78.054 80.373 84.219 82.975 81.222
0.8 75.396 78.507 83.428 82.183 80.260
1 74.434 76.471 83.088 81.448 79.412

Average of both clean and noisy environments 78.362 80.667 83.852 82.975 80.211

In Table 5, we present a thorough evaluation of 3D object recognition performance
using the proposed technique for polynomial order (Ord = 12) across various environments
with differing noise parameters. In the clean environment, the system demonstrates
comparable performance, achieving a peak recognition accuracy of 86.029 at p = 0.4. When
Gaussian noise is applied to 3D objects, the recognition accuracy exhibits a decline as the
noise level increases. At a noise level of 1%, the system maintains a recognition accuracy of
84.898 at p = 0.4, indicating that it performs well under low noise conditions. However,
as the noise level rises to 5%, the accuracy decreases to 80.769. The accuracy for Gaussian
noise at different levels shows a consistent downward trend, with accuracy values of 83.880
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at p = 0.4 for a noise level of 2% and 83.258 at the same parameter for a noise level of 3%.
The performance in the salt and pepper noisy environment follows a similar performance to
that observed with Gaussian noise. The model achieves a maximum recognition accuracy of
84.842 at p = 0.4 and a noise density of 0.01. As the noise density increases, the recognition
accuracy decreases, reaching 81.957 at p = 0.4 and a noise density of 0.05. The scores for salt
and pepper noise also reflect a gradual decrease, with values of 84.219 at p = 0.4 for a noise
density of 0.02 and 83.032 at the same parameter for a noise density of 0.03. The results of
speckle noise illustrate the challenges associated with maintaining recognition accuracy in
the presence of noise. The model achieves a recognition accuracy of 84.729 at p = 0.4 and a
noise variance of 0.2. However, as the noise variance increases, the recognition accuracy
declines, with a score of 81.618 at p = 0.4 and a noise variance of 1.

To this end, the results indicate that while the proposed technique performs well in
clean environments, its slightly affected in the presence of noise, especially for OP parameter
p =0.4. The findings highlight that the recognition system based on the proposed technique
is able to tackle the problem of noisy environments.

Table 5. Recognition accuracy for noisy environments with different OP parameter p and order
(Ord = 12).

Environment p

0.2 0.3 0.4 0.5 0.6

Clean 77.941 82.353 86.029 84.559 78.676

Gaussian

0.01 77.432 81.900 84.898 84.276 77.941
0.02 75.396 80.826 83.880 83.484 75.905
0.03 74.095 78.507 83.258 82.127 75.622
0.04 73.586 77.771 82.523 81.052 75.113
0.05 72.738 76.980 80.769 78.959 74.717

Salt and Pepper

0.01 77.489 82.127 84.842 84.333 78.563
0.02 76.131 81.165 84.219 83.428 77.602
0.03 75.057 79.242 83.032 82.070 76.414
0.04 74.095 78.394 82.579 81.448 74.038
0.05 73.190 77.206 81.957 79.412 73.529

Speckle

0.2 77.206 81.165 84.729 84.106 77.941
0.4 74.717 79.129 83.767 83.258 77.262
0.6 73.020 76.867 82.975 82.975 75.962
0.8 71.946 74.943 82.353 81.731 75.170
1 70.928 74.887 81.618 80.995 74.265

Average of both clean and noisy environments 74.685 78.966 83.339 82.388 76.170

4.2. Comparison between the proposed system and existing works

To assess the effectiveness of the presented recognition system based on the proposed
technique, we conducted a comparative analysis of its recognition accuracy against several
existing methods. The algorithms included in this comparison are direct Krawtchouk mo-
ment invariants (DKMI), Tchebichef moment invariants (TMI), Krawtchouk moment invari-
ants (KMI), Hahn moment invariants (HMI), Tchebichef–Tchebichef–Tchebichef moment
invariants (TTTMI), Krawtchouk–Krawtchouk–Krawtchouk moment invariants (KKKMI),
Tchebichef–Krawtchouk–Krawtchouk moment invariants (TKKMI), Tchebichef–Tchebichef–
Krawtchouk moment invariants (TTKMI), geometric moment invariants (GMI), and over-
lapped block processing (OBP). The average recognition accuracy for both the presented
recognition system and the existing methods are shown in Table 6.
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Table 6. Comparison between the presented recognition system and existing methods using the
McGill database.

Method Name
Average

Recognition
Accuracy

Average of
Recognition

Accuracy for Noisy
Environment

DKMI [56] 62.01% 57.92%
HMI [56] 60.89% 56.69%
KMI [56] 60.32% 56.44%
TMI [56] 60.54% 56.40%
TTTMI [57] 71.57% 67.30%
KKKMI [57] 71.11% 66.97%
TKKMI [57] 72.19% 67.64%
TTKMI [57] 72.87% 68.20%
GMI [57] 70.26% 65.49%
OBP [50] 80.21% 80.22%
Proposed System (p = 0.4 and Ord = 8) 82.73% 82.56%
Proposed System (p = 0.4 and Ord = 10) 83.85% 83.66%
Proposed System (p = 0.4 and Ord = 12) 83.33% 83.16%

The comparison presented in Table 6 highlights the performance of the proposed
recognition system against several existing methods using the McGill database. The
average recognition accuracy of each method is reported, providing a clear perspective on
the effectiveness of the proposed approach.

The existing methods, including DKMI, HMI, KMI, and TMI, exhibit relatively low
recognition accuracy, ranging from 60.32% to 62.01%. These results indicate that they
are not too robust for the complexities presented in the McGill database. Moreover, the
Tchebichef-based methods, which are TTTMI, KKKMI, TKKMI, and TTKMI, show im-
proved performance, with an accuracy between 71.11% and 72.87%. This indicates that
the incorporation of Tchebichef moments enhances the recognition capabilities compared
to the earlier methods. However, even the best-performing Tchebichef-based method,
TTKMI, achieves only 72.87%, which still falls short of optimal performance. In contrast,
the proposed system demonstrates significantly higher recognition accuracy across all
tested configurations. The system achieves an accuracy of 82.73% at polynomial order
8, which surpasses the best existing methods by a notable margin. When the polyno-
mial order is increased to 10, the accuracy improves further to 83.85%, indicating that
the proposed system benefits from higher polynomial orders, likely due to its enhanced
ability to capture complex features in the data. In addition, for polynomial order of 12, the
proposed system shows robust performance with an accuracy of 83.33% This stability of
performance across different polynomials orders demonstrates that the proposed approach
is robust and adaptable. thus, the variations in the dataset are effectively handled by the
proposed approach.

The performance of the proposed approach is further evaluated by benchmarking
the proposed approach with the traditional method in terms of computational cost. In
the traditional method, the 3D object is convolved by the kernel and then the moments
are computed. It is noteworthy that the kernel utilized in the experiment is the averaging
kernel with a length of 7.

For this purpose, the computation cost is evaluated by performing five runs for all 3D
objects across different classes. Then, the average computation time is recorded for each 3D
object. The comparison is conducted for three different polynomial orders (Ord = 8, 10,
and 12), and the results are summarized in Table 7. The table includes the computation time
for both the proposed approach (Time (ours)) and the traditional method (Time (Trad)),
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as well as the percentage improvement (Imp) achieved by the proposed method over the
traditional method. The percentage improvement is calculated using the following formula:

Percentage Improvement (Imp) =
(

TTrad − TOurs
TTrad

)
× 100% (19)

Table 7. Computation time (in seconds) comparison between the proposed approach (Our) and
traditional method (Trad).

Ord = 8 Ord = 10 Ord = 12

Class ID Time
(Trad)

Time
(Ours) Imp Time

(Trad)
Time

(Ours) Imp Time
(Trad)

Time
(Ours) Imp

1 1.446 0.722 50.0 1.554 0.750 51.7 1.572 0.805 48.8
2 1.790 0.824 53.9 1.855 0.866 53.3 1.995 0.916 54.1
3 1.198 0.580 51.6 1.239 0.604 51.2 1.263 0.641 49.3
4 1.302 0.638 51.0 1.361 0.669 50.9 1.490 0.717 51.9
5 2.210 0.831 62.4 2.258 0.870 61.5 2.286 0.925 59.5
6 2.068 0.715 65.4 2.148 0.718 66.6 2.191 0.778 64.5
7 1.073 0.527 50.9 1.153 0.548 52.5 1.173 0.585 50.2
8 0.661 0.331 49.9 0.734 0.346 52.9 0.762 0.368 51.8
9 1.318 0.631 52.1 1.397 0.669 52.1 1.424 0.707 50.3
10 1.834 0.856 53.3 1.921 0.902 53.1 2.030 0.957 52.9
11 1.245 0.547 56.1 1.300 0.578 55.5 1.354 0.614 54.6
12 1.445 0.714 50.5 1.509 0.749 50.3 1.549 0.803 48.1
13 1.499 0.690 53.9 1.556 0.725 53.4 1.605 0.771 52.0
14 1.067 0.553 48.2 1.142 0.577 49.4 1.198 0.615 48.7
15 1.481 0.683 53.9 1.565 0.723 53.8 1.595 0.766 52.0
16 1.289 0.683 47.0 1.371 0.717 47.7 1.425 0.768 46.1
17 1.838 0.848 53.9 1.929 0.888 54.0 1.978 0.958 51.6
18 1.393 0.606 56.5 1.420 0.635 55.3 1.459 0.696 52.3
19 1.545 0.553 64.2 1.616 0.579 64.1 1.714 0.617 64.0

Average 27.70 12.535 54.7 29.03 13.11 54.8 30.06 14.00 53.4

Avg
for 3D
object 1

0.061 0.028 54.7 0.064 0.029 54.8 0.066 0.031 53.4

1 Avg per 3D object represents the average computation time for one 3D object. It is computed by summing all the
computation time and dividing it by the number of objects (454)—the test is performed on the original dataset
without augmentation.

The minimum percentage improvement is observed for Class 16, with improvements
of 47.0% at Ord = 8, 47.7% at Ord = 10, and 46.1% at Ord = 12. In contrast, the highest
percentage improvement is achieved for Class 19, where the proposed method attains
improvements of 64.2% at Ord = 8, 64.1% at Ord = 10, and 64.0% at Ord = 12.

The results demonstrate that the proposed algorithm significantly outperforms the
traditional algorithm across all polynomial orders and classes. For instance, at Ord = 8,
the average percentage improvement across all classes is 54.7%, while at Ord = 10 and
Ord = 12, the average improvements are 54.8% and 53.4%, respectively. This indicates that
the proposed method consistently reduces computation time by more than half compared to
the traditional approach. This clearly signifies the robustness and efficiency of the proposed
algorithm, particularly when dealing with higher polynomial orders and complex 3D
objects. The last row of the table provides the average computation time and improvement
per 3D object, further confirming the superiority of the proposed method in terms of
computational efficiency.
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5. Conclusions
Signal preprocessing plays a crucial role in computer vision applications, as it directly

enhances the performance of computer vision algorithms. OMs are considered as robust
descriptors for signal analysis and recognition. Convolving kernels with the signal and pre-
computing OMs increases computational demands. Therefore, this paper introduced a novel
mathematical model that embeds the kernel directly into the OPs functions by integrating
the processes into a single, streamlined framework. By computing the OMs of smoothed
3D signals directly, the model achieved a substantial reduction in computational overhead
while maintaining high accuracy. Our experimental work on 3D objects demonstrated that
the proposed algorithm outperforms traditional methods. When the polynomial order is
equal to 10, the accuracy improves further to 83.85%, indicating that the proposed work
benefits from higher polynomial orders, likely due to its enhanced ability to capture complex
features. In the future, we plan to further enhance the performance of the proposed method
and apply it to various applications, such as medical imaging and robotics.
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3D Three-dimensional
DKMI Direct Krawtchouk moment invariants
TMI Tchebichef moment invariants
KMI Krawtchouk moment invariants
HMI Hahn moment invariants
TTTMI Tchebichef–Tchebichef–Tchebichef moment invariants
KKKMI Krawtchouk–Krawtchouk–Krawtchouk moment invariants
TKKMI Tchebichef–Krawtchouk–Krawtchouk moment invariants
TTKMI Tchebichef–Tchebichef–Krawtchouk moment invariants
GMI Geometric moment invariants
OBP Overlapped block processing
OM Orthogonal moments
OP Orthogonal polynomials
Ord Polynomial order
SKTP Squared Krawtchouk–Tchebichef polynomials
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