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Abstract:



Inspired by many deadlock detection applications, the feedback vertex set is defined as a set of vertices in an undirected graph, whose removal would result in a graph without cycle. The Feedback Vertex Set Problem, known to be NP-complete, is to search for a feedback vertex set with the minimal cardinality to benefit the deadlock recovery. To address the issue, this paper presents NewkLS_FVS(LS, local search; FVS, feedback vertex set), a variable depth-based local search algorithm with a randomized scheme to optimize the efficiency and performance. Experimental simulations are conducted to compare the algorithm with recent metaheuristics, and the computational results show that the proposed algorithm can outperform the other state-of-art algorithms and generate satisfactory solutions for most DIMACSbenchmarks.
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1. Introduction


Inspired by many deadlock detection applications, the Feedback Vertex Set Problem (FVSP) is known to be NP-complete and plays an important role in the study of deadlock recovery [1,2]. For example, the wait-for graph is a directed graph used for deadlock detection in operating systems and relational database systems of an operating system. and each directed cycle corresponds to a deadlock situation in the wait-for graph. In order to resolve all deadlocks, some blocked processes need to be aborted. A minimum feedback vertex set in this graph corresponds to a minimum number of processes that one needs to abort. Therefore solving the FVSP with more efficiency and better performance can contribute to an improved deadlock recovery.



To describe the FVSP, the following concepts are predefined. Assuming [image: there is no content] is a graph, then the set of vertices is denoted by [image: there is no content], and the set of edges of G is denoted by [image: there is no content]. For [image: there is no content], the subgraph induced by S is denoted by [image: there is no content]. The set of vertices adjacent to a vertex, [image: there is no content], will be denoted by [image: there is no content] and called the [image: there is no content] of the vertex, i. Let G be a graph. A feedback vertex set, S, in G is a set of vertices in G, whose removal results in a graph without cycle (or equivalently, every cycle in G contains at least one vertex in S).



The FVSP can be considered in both directed and undirected graphs.Let G be an undirected graph. A Feedback Vertex Set Problem (FVSP), S, in G is a set of vertices in G, whose removal results in a graph without cycle (or equivalently, every cycle in G contains at least one vertex in S). Let G be a directed graph. A feedback vertex set (FVS), S, in G is a set of vertices in G, whose removal results in a graph without directed cycle (or equivalently, every directed cycle in G contains at least one vertex in S).



Inspired by real world applications, several variants were proposed over the years. Some of them are summarized by the following definitions.

	(a) 

	
FVSP: Given a graph, G, the feedback vertex set problem is to find an FVS with the minimum cardinality.




	(b) 

	
The Parameterized Feedback Vertex Set Problem (DFVSP): Given a graph, G, and a parameter, k, the Parameterized Feedback Vertex Set Problem is to either find an FVS of at most k vertices for G or report that no such set exists.




	(c) 

	
The Vertex Weighted Feedback Vertex Set Problem (VWFVSP): Given a vertex weighted graph, G, the Vertex Weighted Feedback Vertex Set Problem is to find an FVS with the minimum weight.









The Parameterized Feedback Vertex Set Problem is the decision version of the feedback vertex set problem. The FVSP and DFVSP were classic NP-complete problems that appeared in the first list of NP-complete problems in Karp’s seminal paper [3]. When the edges or arcs instead of vertices are considered, it becomes the corresponding edge or arc version. For example, the parameterized feedback arc set problem is to find out whether there is a minimum of k arcs in a given graph, whose removal makes the graph acyclic.



Let G be a graph. It is said that a vertex set, S, is an acyclic vertex set if [image: there is no content] is acyclic. An acyclic vertex set, S, is maximal if [image: there is no content] is not acyclic for any [image: there is no content]. Note that if [image: there is no content] is acyclic, then [image: there is no content] is a feedback vertex set.



Without loss of generality, only the feedback vertex set problem for an undirected graph is considered in this paper, and the aim is to search for the largest subset, [image: there is no content], such that [image: there is no content] is acyclic.



The rest of this paper is organized as follows: Section 2 presents the related work of local search heuristics. Then, Section 3 and Section 4 propose the k-opt local search (KLS)-based local search algorithm and the KLS with a randomized scheme algorithm in detail. Section 5 conducts the experiments of both the proposed algorithms and the compared metaheuristics with the results for the performance and efficiency evaluation. Finally, Section 6 discusses the contributions of this paper and draws a conclusion.




2. Related Work


As a local improved technology, the local search is a practical tool and a common technique looking for the near-optimal solutions for combinatorial optimization problems [4]. In order to obtain high-quality solutions, it was applied to many metaheuristic algorithms, such as simulating annealing, genetic algorithm, memetic algorithm and swarm intelligent algorithms, in many cases.



The local search is a common tool looking for near-optimal solutions in reasonable time for combinatorial optimization problems. Usually, the current solution is iteratively replaced by an improved solution from its neighborhood, until no better solution can be obtained. Then, the current solution is called locally optimal.



The basic local search starts with a feasible solution, x, and repeatedly replaces x with an improved one, [image: there is no content], which is selected from the neighborhood of x. If no better neighbor solutions can be found in its neighborhood, the local search immediately stops and returns as the final best solution found during the search [4].



Since the basic local search is usually unable to obtain a good-quality solution and often far from the optimal solution, various improved local searches were proposed, e.g., tabu search [5,6,7], variable depth search [8,9], variable neighborhood search [10,11,12], reactive local search [13,14,15,16], k-opt local search (KLS) [4,17], iterated local search [18], iterated k-opt local search [17] and phased local search [19].



In many cases, the local search can be applied into heuristic algorithms, such as simulated annealing, ant colony and particle swarm optimizations. However, normally, it is hard to obtain the best solution, or even an approximate solution with high quality, for a certain combinatorial optimization problem. Therefore, various local search methods, such as phased local search [19] and variable depth local search, were proposed. The variable depth local search was initially used to solve the Graph Partitioning Problem (GPP) [9] and the Traveling Salesman Problem (TSP) [8]. Then, it was applied to other heuristic algorithms [20,21,22,23]. In [4], it was applied to solve the maximum clique problem and successfully obtained good solutions.



Different from the previous studies, the proposed local search algorithms are based on KLS and are combined with a depth variable search, which can improve the performance and efficiency.




3. KLS-Based Local Search Algorithm


In the simple local search procedure, the current solution is changed by adding or removing one vertex. The idea of KLS-based local search is to operate more vertices for each time. That is to say, the current solution is changed by way of adding or removing more than one vertex. Furthermore, the number of operated vertices is not limited in KLS. Therefore, it is a variable depth local search, also called k-opt local search.



As a comparison, the KLS-based local search is explored to solve the feedback vertex set problem. Then, a variable depth-based local search with a randomized scheme is proposed to solve this problem. For a given graph, G, it can be observed that if S is acyclic, then [image: there is no content] is a feedback vertex set. Therefore, such a vertex set, S, with maximum cardinality corresponds to a feedback vertex set with minimum cardinality. Hence, the goal is to find a vertex set, [image: there is no content], with maximum cardinality, for which [image: there is no content] is acyclic. The main framework of this algorithm is taken from [image: there is no content] in [4].



The following notations will be used to describe the algorithms.



	
•CF: the current vertex subset, [image: there is no content], for which [image: there is no content] is acyclic.



	
•PA: the possible vertex set of addition. i.e., [image: there is no content]



	
•f(v):the degree of v in the graph, [image: there is no content];



	
•f+(v): the degree of v in the graph, [image: there is no content], i.e., f+(v)=d[image: there is no content](v).






First, a vertex set, [image: there is no content], is randomly generated as an initial acyclic vertex set. If [image: there is no content] is not maximal, then a vertex, [image: there is no content], that minimizes [image: there is no content] is chosen to add to [image: there is no content]. On the contrary, if [image: there is no content] is maximal, then a vertex, [image: there is no content], with the maximum degree is chosen to be dropped. In the search process, some vertices are iteratively added or removed, ensuring that the vertex set, [image: there is no content], is acyclic at each iteration. In order to avoid cycling, when a vertex, v, is added (resp.dropped), v would not be dropped (resp.added) immediately. The pseudocode of the procedure is shown in Algorithm 1 (k-opt-LS).






	Algorithm 1 k-opt-LS([image: there is no content])



	Require:



	
  G: a graph with the vertex set, [image: there is no content];



  [image: there is no content]: the current acyclic vertex set;



  [image: there is no content]: the possible vertex set of addition;






	1:

	
generate an acyclic vertex set, [image: there is no content], randomly.




	2:

	
repeat




	3:

	
  [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]




	4:

	
  repeat




	5:

	
    if [image: there is no content]then




	6:

	
      find a vertex, v, from [image: there is no content] that minimizes [image: there is no content]. if multiple vertices are found, select one randomly.




	7:

	
      [image: there is no content]; [image: there is no content]; [image: there is no content];




	8:

	
    else




	9:

	
      if [image: there is no content]then




	10:

	
        find a vertex, v, from [image: there is no content] that maximizes [image: there is no content]. if multiple vertices are found, select one randomly.




	11:

	
        [image: there is no content]; [image: there is no content]; [image: there is no content];




	12:

	
        if v is contained in [image: there is no content]then




	13:

	
          [image: there is no content];




	14:

	
        end if




	15:

	
      end if




	16:

	
    end if




	17:

	
  until [image: there is no content]




	18:

	
until [image: there is no content]














In this local search algorithm, if [image: there is no content], then the acyclic vertex set, [image: there is no content], is maximal. In this case, a vertex, [image: there is no content], will be dropped; otherwise, a vertex [image: there is no content] will be added. Algorithm 1 starts with a random acyclic vertex set, [image: there is no content]; then, a possibly better acyclic vertex set is obtained by adding or removing more than one vertex. Therefore, it is called the variable depth local search, and it can be applied to other heuristic algorithms, such as simulated annealing. Compared with the simple local search algorithm, where only one vertex would be added or removed to change the current solution, the variable depth local search operates more vertices and provides more efficiency in searching for the desired acyclic vertex set.




4. KLS with a Randomized Scheme for the FVSP


In Algorithm 1, when a vertex is added (resp.dropped), it is no longer dropped (resp.added) if it does not exit the inner loop. Moreover, at each iteration, a vertex that minimizes [image: there is no content] or minimizes [image: there is no content] is selected. These conditions are too restricted, and they may trap the procedure into a local minimum. In order to overcome these drawbacks, a variable [image: there is no content] is used to store the moment of the last iteration, while the vertex, v, was under operation, and c is used to record the iteration number of the inner loop. If v is added (resp.dropped), then the chance is given to make v dropped (resp.added) for at most k times within a given number of iterations. Moreover, at each iteration, a vertex is selected with a probability associated with the degree of v. The modified version of Algorithm 1 is shown in Algorithm 2 (NewKLS_FVS(LS, local search; FVS, feedback vertex set)).






	Algorithm 2 NewKLS_FVS([image: there is no content])



	Require:

	
  G: a graph with the vertex set, [image: there is no content];



  [image: there is no content]: the current acyclic vertex set;



  [image: there is no content]: the possible vertex set of addition;






	1:

	
generate an acyclic vertex set, [image: there is no content], randomly.




	2:

	
repeat




	3:

	
   [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content] for [image: there is no content];




	4:

	
   repeat




	5:

	
      [image: there is no content];




	6:

	
      P←{v|c−[image: there is no content]≥k};




	7:

	
      if [image: there is no content]then




	8:

	
         find a vertex, v, from [image: there is no content] with a probability, ρ.




	9:

	
         [image: there is no content]; [image: there is no content]; [image: there is no content]←c;




	10:

	
      else




	11:

	
         if [image: there is no content]then




	12:

	
            find a vertex v from [image: there is no content] with a probability, ρ.




	13:

	
            [image: there is no content]; [image: there is no content]; [image: there is no content]←c;




	14:

	
            if v is contained in [image: there is no content]then




	15:

	
               [image: there is no content];




	16:

	
            end if




	17:

	
         end if




	18:

	
      end if




	19:

	
   until [image: there is no content]




	20:

	
until [image: there is no content]















5. Experimental Results


5.1. Experimental Setup and Benchmark Instances


All the algorithms are coded in Visual C++ 6.0 and executed in an Intel Pentium(R) G630 Processor 2.70 MHz with 4 GB of RAM memory on a Windows 7 Operating System.



Two sets of testing instances are used in the experiments. One instance is a set of random graphs, which are constructed with parameter n and p with order (the vertex number) n, inserting an edge with probability p. This probability is called the edge density (or edge probability). The graph, [image: there is no content], is used to represent a graph constructed with parameter n and p. Then, the proposed algorithm is compared with other algorithms on random graphs, [image: there is no content] and [image: there is no content]. The other instance is the well-known DIMACSbenchmarks for graph coloring problems (see [24]), consisting of 59 graph coloring problem instances. Table 1 gives the characteristics of these instances, including the number of vertices ([image: there is no content]), the number of edges ([image: there is no content]) and the graph density ([image: there is no content]).



Table 1. Benchmark instances and their characteristics.







	
No.

	
Instance

	
|V|

	
|E|

	
density






	
1

	
anna.col

	
138

	
986

	
0.104




	
2

	
david.col

	
87

	
812

	
0.217




	
3

	
DSJC125.1.col

	
125

	
736

	
0.095




	
4

	
DSJC125.5.col

	
125

	
3,891

	
0.502




	
5

	
DSJC125.9.col

	
125

	
6,961

	
0.898




	
6

	
fpsol2.i.1.col

	
496

	
11,654

	
0.095




	
7

	
fpsol2.i.2.col

	
451

	
8,691

	
0.086




	
8

	
fpsol2.i.3.col

	
425

	
8,688

	
0.097




	
9

	
games120.col

	
120

	
1,276

	
0.179




	
10

	
homer.col

	
561

	
3,258

	
0.021




	
11

	
huck.col

	
74

	
602

	
0.223




	
12

	
inithx.i.1.col

	
864

	
18,707

	
0.050




	
13

	
inithx.i.2.col

	
645

	
13,979

	
0.067




	
14

	
inithx.i.3.col

	
621

	
13,969

	
0.073




	
15

	
jean.col

	
80

	
508

	
0.161




	
16

	
latin_square_10.col

	
900

	
307,350

	
0.760




	
17

	
le450_5a.col

	
450

	
5,714

	
0.057




	
18

	
le450_5b.col

	
450

	
5,734

	
0.057




	
19

	
le450_5c.col

	
450

	
9,803

	
0.097




	
20

	
le450_5d.col

	
450

	
9,757

	
0.097




	
21

	
le450_15b.col

	
450

	
8,169

	
0.081




	
22

	
le450_15c.col

	
450

	
16,680

	
0.165




	
23

	
le450_15d.col

	
450

	
16,750

	
0.166




	
24

	
le450_25a.col

	
450

	
8,260

	
0.082




	
25

	
le450_25b.col

	
450

	
8,263

	
0.082




	
26

	
le450_25c.col

	
450

	
17,343

	
0.172




	
27

	
le450_25d.col

	
450

	
17,425

	
0.172




	
28

	
miles250.col

	
128

	
774

	
0.096




	
29

	
miles500.col

	
128

	
2,340

	
0.288




	
30

	
miles750.col

	
128

	
4,226

	
0.519




	
31

	
miles1000.col

	
128

	
6,432

	
0.791




	
32

	
miles1500.col

	
128

	
10,396

	
1.279




	
33

	
mulsol.i.1.col

	
197

	
3,925

	
0.203




	
34

	
mulsol.i.2.col

	
188

	
3,885

	
0.221




	
35

	
mulsol.i.3.col

	
184

	
3,916

	
0.233




	
36

	
mulsol.i.4.col

	
185

	
3,946

	
0.232




	
37

	
mulsol.i.5.col

	
186

	
3,973

	
0.231




	
38

	
myciel3.col

	
11

	
20

	
0.364




	
39

	
myciel4.col

	
23

	
71

	
0.281




	
40

	
myciel6.col

	
95

	
755

	
0.169




	
41

	
myciel7.col

	
191

	
2,360

	
0.130




	
42

	
queen5_5.col

	
25

	
320

	
1.067




	
43

	
queen6_6.col

	
36

	
580

	
0.920




	
44

	
queen7_7.col

	
49

	
952

	
0.81




	
45

	
queen8_8.col

	
64

	
1,456

	
0.722




	
46

	
queen8_12.col

	
96

	
2,736

	
0.6




	
47

	
queen9_9.col

	
81

	
2,112

	
0.652




	
48

	
queen10_10.col

	
100

	
2,940

	
0.594




	
49

	
queen11_11.col

	
121

	
3,960

	
0.546




	
50

	
queen12_12.col

	
144

	
5,192

	
0.504




	
51

	
queen13_13.col

	
169

	
6,656

	
0.469




	
52

	
queen14_14.col

	
196

	
8,372

	
0.438




	
53

	
queen15_15.col

	
225

	
10,360

	
0.411




	
54

	
queen16_16.col

	
256

	
12,640

	
0.387




	
55

	
school1.col

	
385

	
19,095

	
0.258




	
56

	
school1_nsh.col

	
352

	
14,612

	
0.237




	
57

	
zeroin.i.1.col

	
211

	
4,100

	
0.185




	
58

	
zeroin.i.2.col

	
211

	
3,541

	
0.16




	
59

	
zeroin.i.3.col

	
206

	
3,540

	
0.168













5.2. Computational Results on k-opt-LS and NewKLS_FVS


5.2.1. Impact of the Tabu Tenure


In order to observe the impact of the tabu tenure of the algorithm, NewKLS_FVS, the algorithm for the tabu tenure, k, is tested from 100 to 1,000 on four chosen graphs. Table 2 reports the best and worst solutions, respectively, for the algorithm, NewKLS_FVS, with different values of the parameter, k.



Table 2. Results with with different values of the parameter k.







	
Instance

	
k

	
Best

	
Worst

	
Average






	
inithx.i.1.col

	
100

	
572

	
550

	
553




	

	
200

	
575

	
552

	
561




	

	
300

	
575

	
553

	
561




	

	
400

	
575

	
552

	
562




	

	
500

	
575

	
543

	
555




	

	
600

	
572

	
548

	
558




	

	
700

	
573

	
549

	
553




	

	
800

	
569

	
546

	
553




	

	
900

	
592

	
541

	
563




	

	
1,000

	
570

	
546

	
556




	
le450_25a.col

	
100

	
157

	
154

	
155




	

	
200

	
156

	
153

	
155




	

	
300

	
157

	
155

	
155




	

	
400

	
157

	
155

	
155




	

	
500

	
156

	
155

	
155




	

	
600

	
157

	
154

	
155




	

	
700

	
157

	
154

	
155




	

	
800

	
156

	
154

	
155




	

	
900

	
157

	
155

	
155




	

	
1,000

	
157

	
154

	
155




	
G(400,0.5)

	
100

	
15

	
13

	
13




	

	
200

	
15

	
12

	
13




	

	
300

	
15

	
13

	
13




	

	
400

	
15

	
13

	
13




	

	
500

	
15

	
13

	
13




	

	
600

	
15

	
13

	
14




	

	
700

	
15

	
13

	
14




	

	
800

	
15

	
13

	
14




	

	
900

	
15

	
12

	
14




	

	
1000

	
15

	
12

	
14




	
G(800,0.5)

	
100

	
17

	
13

	
14




	

	
200

	
15

	
13

	
14




	

	
300

	
16

	
13

	
14




	

	
400

	
17

	
13

	
14




	

	
500

	
16

	
13

	
14




	

	
600

	
16

	
14

	
15




	

	
700

	
17

	
13

	
15




	

	
800

	
16

	
15

	
15




	

	
900

	
18

	
13

	
15




	

	
1,000

	
17

	
14

	
15












From the results above, it can be seen that the parameter, k, is important for the algorithm. For example, for the graph, inithx.i.1.col (resp.le450_25a.col, G(400,0.5), G(800,0.5)), [image: there is no content] is the most suitable one.





5.3. Comparison of NewKLS_FVS with Other Algorithms


In order to verify the efficiency and performance of the proposed algorithm, the performance of the proposed heuristic for the feedback vertex set problem is also compared to that of several others. Note that the proposed problem can be solved approximately by various heuristics, including simulated annealing (SA) and variable neighborhood search (VNS).



	(1)

	
Simulated annealing: The simulated annealing algorithm was introduced to solve combinatorial optimization problems proposed by Kirkpatrick [25]. Since then, it has been widely investigated to solve many combinatorial optimization problems. Simulated annealing allows a transition to go opposite towards achieving the goal with a probability. As a result, the simulated annealing algorithm has some opportunities to jump out of the local minima. As preparation, for a given graph, G, and a positive integer, k, a partition [image: there is no content] of [image: there is no content] is found, such that [image: there is no content] is acyclic. Then, the parameters, [image: there is no content] (initial temperature), [image: there is no content] (stop temperature) and α (cooling down coefficient), are required as input. For convenience, the edge numbers of [image: there is no content] and [image: there is no content] are denoted by [image: there is no content] and [image: there is no content], respectively. After the preparation, the algorithm begins with a randomly generated partition [image: there is no content] of [image: there is no content]. Then, a partition [image: there is no content] is chosen that is obtained by swapping two elements from [image: there is no content] and [image: there is no content]. If [image: there is no content] is fewer than [image: there is no content], then [image: there is no content] is accepted. Otherwise, it is accepted according to the simulated annealing rule. At the end of each iteration, the temperature would cool down. Usually, let [image: there is no content], where [image: there is no content]. If [image: there is no content] is acyclic, the procedure terminates successfully, and an acyclic induced subgraph with order k would be returned. When the temperature reaches [image: there is no content], the procedure also terminates. The pseudocode is presented in Algorithm 3, where [image: there is no content] denotes a random number in [image: there is no content].












	Algorithm 3 SA(G, k, [image: there is no content], [image: there is no content], α,t)



	
	1:

	
while Stop condition is not met do




	2:

	
  Generate a partition [image: there is no content] of [image: there is no content] with |[image: there is no content]|=k;




	3:

	
  T←[image: there is no content]




	4:

	
  while T>[image: there is no content]do




	5:

	
    Generate a new partition [image: there is no content] by swapping two elements from [image: there is no content] and [image: there is no content];




	6:

	
    if [image: there is no content] is fewer than [image: there is no content]then




	7:

	
      [image: there is no content]←[image: there is no content]




	8:

	
    else




	9:

	
      if u[image: there is no content]<ee(S1′)−e([image: there is no content])then




	10:

	
        [image: there is no content]←[image: there is no content];




	11:

	
      end if




	12:

	
    end if




	13:

	
    [image: there is no content];




	14:

	
  end while




	15:

	
end while












	(2)

	
Variable neighborhood search: Hansen and Mladenović [10,11,12] introduced the variable neighborhood search (VNS) method in combinatorial problems. In [5], it was applied to solve the maximum clique problem. It constructs different neighborhood structures, which are used to perform a systematic search. The main idea of variable neighborhood search is that when it does not find a better solution for a fixed number of iterations, the algorithm continues to search in another neighborhood until a better solution is found.



Denote [image: there is no content], [image: there is no content] as a finite set of pre-selected neighborhood structures and [image: there is no content](X) as the set of solutions in the [image: there is no content] neighborhood of X. The steps of the basic VNS are presented in Algorithm 4 (see [5]).



To solve the feedback vertex set problem, the neighborhood structure is described as follows. Let [image: there is no content] be the current partition, for a positive integer, k, with k<min{|[image: there is no content]|,|[image: there is no content]|}; define [image: there is no content] as the set of the k-subset of S. The [image: there is no content] neighborhood of P is defined by:


[image: there is no content][image: there is no content]={([image: there is no content]∪U2\U1,[image: there is no content]∪U1\U2)|U1∈Bk(Vr),U2∈Bk(Vb)}



(1)




The proposed algorithms operate the partition, [image: there is no content],[image: there is no content]. They change the current partition to another solution, [image: there is no content], by swapping exactly k vertices between [image: there is no content] and [image: there is no content]. Therefore, the neighborhood of [image: there is no content] is the set of all the solutions obtained from [image: there is no content] by swapping exactly k vertices between [image: there is no content] and [image: there is no content]. The parameter, [image: there is no content], called the radius of the neighborhood, controls the maximum k of the procedure.







The algorithms, k-opt-LS, NewKLS_FVS, VNS and SA, are carried out on several random graphs and DIMACS benchmarks for the maximum feedback vertex set. In the VNS algorithm, the value of [image: there is no content] is set to be one and two, which are called VNS1 (if [image: there is no content]=1) and VNS2 (if [image: there is no content]=2), respectively. In the SA algorithm, the initial temperature is set to be [image: there is no content]=1,000, and the cooling down coefficient [image: there is no content]. Table 3, Table 4, Table 5, Table 6 and Table 7 show the results of these algorithms, and each is carried out for 15 runs with a CPU-time limit of 30 min.






	Algorithm 4 VNS([image: there is no content])



	
	1:

	
Initialize [image: there is no content],k=1,2,⋯,[image: there is no content], initial solution X and stop criteria;




	2:

	
while Stop condition is not met do




	3:

	
  [image: there is no content];




	4:

	
  Generate a partition [image: there is no content]=[image: there is no content] of [image: there is no content] with |[image: there is no content]|=r;




	5:

	
  while k<[image: there is no content]do




	6:

	
      Generate a point, [image: there is no content]∈[image: there is no content](X) ;




	7:

	
      Apply the local search method with [image: there is no content] as the initial solution; denote by [image: there is no content] the obtained solution;




	8:

	
      if [image: there is no content] is better than incumbent then




	9:

	
            X←[image: there is no content]; [image: there is no content];




	10:

	
      else




	11:

	
            [image: there is no content];




	12:

	
      end if




	13:

	
  end while




	14:

	
  [image: there is no content]




	15:

	
end while














Table 3. Results for NewKLS_FVS (LS, local search; FVS, feedback vertex set) and a CPU-time limit of 30 min for 15 runs.







	
Instance

	
Best

	
Worst

	
Average

	
Instance

	
Best

	
Worst

	
Average






	
anna.col

	
126

	
126

	
126

	
miles1000.col

	
20

	
20

	
20




	
david.col

	
66

	
66

	
66

	
miles1500.col

	
10

	
10

	
10




	
DSJC125.1.col

	
58

	
58

	
58

	
mulsol.i.1.col

	
121

	
121

	
121




	
DSJC125.5.col

	
15

	
15

	
15

	
mulsol.i.2.col

	
133

	
133

	
133




	
DSJC125.9.col

	
6

	
6

	
6

	
mulsol.i.3.col

	
129

	
129

	
129




	
fpsol2.i.1.col

	
366

	
364

	
365

	
mulsol.i.4.col

	
130

	
130

	
130




	
fpsol2.i.2.col

	
370

	
370

	
370

	
mulsol.i.5.col

	
131

	
131

	
131




	
fpsol2.i.3.col

	
344

	
344

	
344

	
myciel3.col

	
8

	
8

	
8




	
games120.col

	
47

	
46

	
46

	
myciel4.col

	
16

	
16

	
16




	
homer.col

	
520

	
520

	
520

	
myciel6.col

	
61

	
61

	
61




	
huck.col

	
52

	
52

	
52

	
myciel7.col

	
122

	
122

	
122




	
inithx.i.1.col

	
602

	
554

	
569

	
queen5_5.col

	
7

	
7

	
7




	
inithx.i.2.col

	
549

	
548

	
548

	
queen6_6.col

	
9

	
9

	
9




	
inithx.i.3.col

	
529

	
529

	
529

	
queen7_7.col

	
11

	
11

	
11




	
jean.col

	
63

	
63

	
63

	
queen8_8.col

	
13

	
13

	
13




	
latin_square_10.col

	
13

	
13

	
13

	
queen8_12.col

	
16

	
16

	
16




	
le450_5a.col

	
114

	
108

	
111

	
queen9_9.col

	
14

	
14

	
14




	
le450_5b.col

	
114

	
109

	
111

	
queen10_10.col

	
16

	
16

	
16




	
le450_5c.col

	
104

	
94

	
98

	
queen11_11.col

	
18

	
18

	
18




	
le450_5d.col

	
104

	
97

	
101

	
queen12_12.col

	
20

	
19

	
19




	
le450_15b.col

	
129

	
126

	
127

	
queen13_13.col

	
21

	
21

	
21




	
le450_15c.col

	
66

	
63

	
64

	
queen14_14.col

	
23

	
22

	
22




	
le450_15d.col

	
67

	
65

	
65

	
queen15_15.col

	
25

	
24

	
24




	
le450_25a.col

	
157

	
154

	
155

	
queen16_16.col

	
26

	
25

	
25




	
le450_25b.col

	
141

	
138

	
140

	
school1.col

	
77

	
75

	
75




	
le450_25c.col

	
78

	
76

	
76

	
school1_nsh.col

	
71

	
67

	
69




	
le450_25d.col

	
72

	
70

	
70

	
zeroin.i.1.col

	
139

	
139

	
139




	
miles250.col

	
81

	
80

	
80

	
zeroin.i.2.col

	
160

	
160

	
160




	
miles500.col

	
43

	
43

	
43

	
zeroin.i.3.col

	
156

	
156

	
156




	
miles750.col

	
27

	
27

	
27

	

	

	

	










Table 4. Results for k-opt-LS and a CPU-time limit of 30 min for 15 runs.







	
Instance

	
Best

	
Worst

	
Average

	
Instance

	
Best

	
Worst

	
Average






	
anna.col

	
126

	
126

	
126

	
miles1000.col

	
20

	
20

	
20




	
david.col

	
66

	
66

	
66

	
miles1500.col

	
10

	
10

	
10




	
DSJC125.1.col

	
58

	
57

	
57

	
mulsol.i.1.col

	
121

	
121

	
121




	
DSJC125.5.col

	
15

	
15

	
15

	
mulsol.i.2.col

	
133

	
133

	
133




	
DSJC125.9.col

	
6

	
6

	
6

	
mulsol.i.3.col

	
129

	
129

	
129




	
fpsol2.i.1.col

	
364

	
362

	
362

	
mulsol.i.4.col

	
130

	
130

	
130




	
fpsol2.i.2.col

	
370

	
369

	
369

	
mulsol.i.5.col

	
131

	
131

	
131




	
fpsol2.i.3.col

	
344

	
344

	
344

	
myciel3.col

	
8

	
8

	
8




	
games120.col

	
47

	
46

	
46

	
myciel4.col

	
16

	
16

	
16




	
homer.col

	
520

	
520

	
520

	
myciel6.col

	
61

	
61

	
61




	
huck.col

	
52

	
52

	
52

	
myciel7.col

	
122

	
121

	
121




	
inithx.i.1.col

	
601

	
554

	
566

	
queen5_5.col

	
7

	
7

	
7




	
inithx.i.2.col

	
548

	
546

	
547

	
queen6_6.col

	
9

	
9

	
9




	
inithx.i.3.col

	
529

	
528

	
528

	
queen7_7.col

	
11

	
11

	
11




	
jean.col

	
63

	
63

	
63

	
queen8_8.col

	
13

	
13

	
13




	
latin_square_10.col

	
13

	
12

	
12

	
queen8_12.col

	
16

	
16

	
16




	
le450_5a.col

	
112

	
107

	
109

	
queen9_9.col

	
14

	
14

	
14




	
le450_5b.col

	
111

	
106

	
108

	
queen10_10.col

	
16

	
16

	
16




	
le450_5c.col

	
106

	
95

	
99

	
queen11_11.col

	
18

	
18

	
18




	
le450_5d.col

	
104

	
97

	
100

	
queen12_12.col

	
20

	
19

	
19




	
le450_15b.col

	
126

	
123

	
124

	
queen13_13.col

	
21

	
21

	
21




	
le450_15c.col

	
65

	
60

	
62

	
queen14_14.col

	
23

	
22

	
22




	
le450_15d.col

	
65

	
60

	
63

	
queen15_15.col

	
25

	
24

	
24




	
le450_25a.col

	
153

	
149

	
151

	
queen16_16.col

	
26

	
25

	
25




	
le450_25b.col

	
139

	
136

	
137

	
school1.col

	
76

	
72

	
73




	
le450_25c.col

	
76

	
73

	
74

	
school1_nsh.col

	
69

	
66

	
67




	
le450_25d.col

	
70

	
67

	
68

	
zeroin.i.1.col

	
137

	
137

	
137




	
miles250.col

	
80

	
80

	
80

	
zeroin.i.2.col

	
160

	
159

	
159




	
miles500.col

	
43

	
43

	
43

	
zeroin.i.3.col

	
155

	
154

	
154




	
miles750.col

	
27

	
27

	
27

	

	

	

	










Table 5. Results for variable neighborhood search 1 (VNS1) with [image: there is no content]=1 and a CPU-time limit of 30 min for 15 runs.







	
Instance

	
Best

	
Worst

	
Average

	
Instance

	
Best

	
Worst

	
Average






	
anna.col

	
111

	
107

	
108

	
miles1000.col

	
16

	
14

	
14




	
david.col

	
57

	
55

	
56

	
miles1500.col

	
10

	
9

	
9




	
DSJC125.1.col

	
42

	
40

	
41

	
mulsol.i.1.col

	
38

	
35

	
36




	
DSJC125.5.col

	
12

	
11

	
11

	
mulsol.i.2.col

	
49

	
46

	
47




	
DSJC125.9.col

	
6

	
6

	
6

	
mulsol.i.3.col

	
48

	
44

	
45




	
fpsol2.i.1.col

	
76

	
72

	
74

	
mulsol.i.4.col

	
48

	
44

	
46




	
fpsol2.i.2.col

	
120

	
113

	
116

	
mulsol.i.5.col

	
49

	
45

	
46




	
fpsol2.i.3.col

	
114

	
108

	
110

	
myciel3.col

	
8

	
8

	
8




	
games120.col

	
37

	
36

	
36

	
myciel4.col

	
16

	
16

	
16




	
homer.col

	
327

	
319

	
322

	
myciel6.col

	
42

	
41

	
41




	
huck.col

	
48

	
46

	
46

	
myciel7.col

	
56

	
53

	
54




	
inithx.i.1.col

	
125

	
118

	
121

	
queen5_5.col

	
7

	
7

	
7




	
inithx.i.2.col

	
136

	
126

	
131

	
queen6_6.col

	
9

	
9

	
9




	
inithx.i.3.col

	
131

	
123

	
127

	
queen7_7.col

	
11

	
11

	
11




	
jean.col

	
58

	
56

	
57

	
queen8_8.col

	
12

	
12

	
12




	
latin_square_10.col

	
7

	
6

	
6

	
queen8_12.col

	
15

	
14

	
14




	
le450_5a.col

	
62

	
58

	
59

	
queen9_9.col

	
14

	
13

	
13




	
le450_5b.col

	
61

	
58

	
59

	
queen10_10.col

	
15

	
14

	
14




	
le450_5c.col

	
41

	
38

	
39

	
queen11_11.col

	
16

	
15

	
15




	
le450_5d.col

	
41

	
39

	
39

	
queen12_12.col

	
17

	
17

	
17




	
le450_15b.col

	
53

	
51

	
52

	
queen13_13.col

	
19

	
18

	
18




	
le450_15c.col

	
30

	
27

	
28

	
queen14_14.col

	
19

	
19

	
19




	
le450_15d.col

	
29

	
27

	
28

	
queen15_15.col

	
21

	
20

	
20




	
le450_25a.col

	
59

	
57

	
57

	
queen16_16.col

	
22

	
21

	
21




	
le450_25b.col

	
57

	
55

	
55

	
school1.col

	
27

	
25

	
25




	
le450_25c.col

	
31

	
29

	
29

	
school1_nsh.col

	
27

	
25

	
25




	
le450_25d.col

	
30

	
29

	
29

	
zeroin.i.1.col

	
47

	
44

	
45




	
miles250.col

	
64

	
62

	
63

	
zeroin.i.2.col

	
66

	
61

	
64




	
miles500.col

	
32

	
31

	
31

	
zeroin.i.3.col

	
66

	
61

	
63




	
miles750.col

	
21

	
20

	
20

	

	

	

	










Table 6. Results for VNS2 with [image: there is no content]=2 and a CPU-time limit of 30 min for 15 runs.







	
Instance

	
Best

	
Worst

	
Average

	
Instance

	
Best

	
Worst

	
Average






	
anna.col

	
110

	
107

	
109

	
miles1000.col

	
15

	
14

	
14




	
david.col

	
58

	
56

	
56

	
miles1500.col

	
10

	
9

	
9




	
DSJC125.1.col

	
42

	
40

	
41

	
mulsol.i.1.col

	
39

	
36

	
37




	
DSJC125.5.col

	
12

	
11

	
11

	
mulsol.i.2.col

	
50

	
46

	
48




	
DSJC125.9.col

	
6

	
6

	
6

	
mulsol.i.3.col

	
49

	
46

	
47




	
fpsol2.i.1.col

	
78

	
73

	
76

	
mulsol.i.4.col

	
50

	
46

	
47




	
fpsol2.i.2.col

	
123

	
118

	
120

	
mulsol.i.5.col

	
50

	
46

	
47




	
fpsol2.i.3.col

	
120

	
112

	
115

	
myciel3.col

	
8

	
8

	
8




	
games120.col

	
37

	
36

	
36

	
myciel4.col

	
16

	
16

	
16




	
homer.col

	
336

	
324

	
329

	
myciel6.col

	
43

	
41

	
41




	
huck.col

	
47

	
46

	
46

	
myciel7.col

	
56

	
54

	
55




	
inithx.i.1.col

	
131

	
123

	
127

	
queen5_5.col

	
7

	
7

	
7




	
inithx.i.2.col

	
144

	
137

	
140

	
queen6_6.col

	
9

	
9

	
9




	
inithx.i.3.col

	
142

	
136

	
138

	
queen7_7.col

	
11

	
11

	
11




	
jean.col

	
58

	
57

	
57

	
queen8_8.col

	
12

	
12

	
12




	
latin_square_10.col

	
7

	
7

	
7

	
queen8_12.col

	
15

	
14

	
14




	
le450_5a.col

	
61

	
59

	
60

	
queen9_9.col

	
14

	
13

	
13




	
le450_5b.col

	
62

	
59

	
60

	
queen10_10.col

	
15

	
14

	
14




	
le450_5c.col

	
41

	
38

	
39

	
queen11_11.col

	
16

	
15

	
15




	
le450_5d.col

	
41

	
39

	
40

	
queen12_12.col

	
17

	
17

	
17




	
le450_15b.col

	
54

	
52

	
52

	
queen13_13.col

	
19

	
18

	
18




	
le450_15c.col

	
30

	
28

	
28

	
queen14_14.col

	
19

	
19

	
19




	
le450_15d.col

	
30

	
28

	
29

	
queen15_15.col

	
21

	
20

	
20




	
le450_25a.col

	
61

	
58

	
59

	
queen16_16.col

	
22

	
21

	
21




	
le450_25b.col

	
58

	
55

	
56

	
school1.col

	
28

	
26

	
26




	
le450_25c.col

	
31

	
29

	
30

	
school1_nsh.col

	
27

	
25

	
25




	
le450_25d.col

	
31

	
29

	
30

	
zeroin.i.1.col

	
49

	
44

	
45




	
miles250.col

	
64

	
62

	
63

	
zeroin.i.2.col

	
68

	
63

	
65




	
miles500.col

	
32

	
31

	
31

	
zeroin.i.3.col

	
65

	
63

	
64




	
miles750.col

	
21

	
20

	
20

	

	

	

	










Table 7. Results for simulated annealing (SA) and a CPU-time limit of 30 min for 15 runs.







	
Instance

	
Best

	
Worst

	
Average

	
Instance

	
Best

	
Worst

	
Average






	
anna.col

	
113

	
100

	
104

	
miles1000.col

	
14

	
12

	
13




	
david.col

	
54

	
49

	
51

	
miles1500.col

	
9

	
8

	
8




	
DSJC125.1.col

	
40

	
37

	
37

	
mulsol.i.1.col

	
38

	
29

	
32




	
DSJC125.5.col

	
10

	
9

	
9

	
mulsol.i.2.col

	
45

	
39

	
42




	
DSJC125.9.col

	
5

	
5

	
5

	
mulsol.i.3.col

	
47

	
39

	
42




	
fpsol2.i.1.col

	
90

	
66

	
73

	
mulsol.i.4.col

	
47

	
39

	
42




	
fpsol2.i.2.col

	
133

	
116

	
123

	
mulsol.i.5.col

	
48

	
38

	
42




	
fpsol2.i.3.col

	
133

	
109

	
116

	
myciel3.col

	
8

	
8

	
8




	
games120.col

	
36

	
34

	
35

	
myciel4.col

	
16

	
15

	
15




	
homer.col

	
331

	
325

	
327

	
myciel6.col

	
40

	
34

	
37




	
huck.col

	
45

	
41

	
42

	
myciel7.col

	
54

	
46

	
50




	
inithx.i.1.col

	
131

	
124

	
128

	
queen5_5.col

	
7

	
7

	
7




	
inithx.i.2.col

	
148

	
138

	
143

	
queen6_6.col

	
9

	
9

	
9




	
inithx.i.3.col

	
145

	
134

	
139

	
queen7_7.col

	
10

	
10

	
10




	
jean.col

	
56

	
52

	
53

	
queen8_8.col

	
12

	
11

	
11




	
latin_square_10.col

	
7

	
6

	
6

	
queen8_12.col

	
14

	
13

	
13




	
le450_5a.col

	
61

	
57

	
58

	
queen9_9.col

	
13

	
12

	
12




	
le450_5b.col

	
60

	
57

	
58

	
queen10_10.col

	
14

	
13

	
13




	
le450_5c.col

	
40

	
36

	
37

	
queen11_11.col

	
15

	
14

	
14




	
le450_5d.col

	
41

	
37

	
38

	
queen12_12.col

	
17

	
15

	
15




	
le450_15b.col

	
54

	
48

	
50

	
queen13_13.col

	
18

	
16

	
16




	
le450_15c.col

	
28

	
26

	
27

	
queen14_14.col

	
18

	
17

	
17




	
le450_15d.col

	
28

	
26

	
26

	
queen15_15.col

	
19

	
18

	
18




	
le450_25a.col

	
61

	
53

	
56

	
queen16_16.col

	
21

	
19

	
19




	
le450_25b.col

	
56

	
52

	
53

	
school1.col

	
26

	
23

	
23




	
le450_25c.col

	
30

	
26

	
28

	
school1_nsh.col

	
25

	
23

	
23




	
le450_25d.col

	
30

	
27

	
27

	
zeroin.i.1.col

	
51

	
37

	
42




	
miles250.col

	
61

	
56

	
58

	
zeroin.i.2.col

	
67

	
54

	
59




	
miles500.col

	
31

	
28

	
29

	
zeroin.i.3.col

	
63

	
53

	
57




	
miles750.col

	
19

	
18

	
18

	

	

	

	




















In order to show the performance and efficiency of various algorithms, experiments are conducted to test the algorithms (NewkLS_FVS, k-opt-LS, VNS1, VNS2, SA) on graphs huck.col, inithx.i.1.col, le450_25a.col, zeroin.i.1.col and school1_nsh.col. The convergence curves of these algorithms are reported on both running times (with a CPU-time limit of 10 min; see Figure 1) and iteration numbers (within 100 iterations; see Figure 2). The experimental results show that NewkLS_FVS outperforms other algorithms on graphs huck.col, le450_25a.col, zeroin.i.1.col and school1_nsh.col almost at any moment. The solution quality is better than any other compared algorithm after 3 min on inithx.i.1.col. Additionally, the solution quality of NewkLS_FVS is better than those of any other compared algorithm on all tested graphs after 20 iterations. It can be seen that the performance of the algorithm, k-opt-LS, is better than VNS1, VNS2 and SA on almost all these instances, and the convergence performance of k-opt-LS is improved by using the proposed approaches.


Figure 1. Comparison of the algorithms with a CPU-time limit of 10 min. (a) inithx.i.1.col; (b) le450_25a.col; (c) school1_nsh.col; (d) zeroin.i.1.col.



[image: Algorithms 06 00726 g001]





Figure 2. Comparison of the algorithms within 100 iterations. (a) huck.col; (b) inithx.i.1.col; (c) le450_25a.col; (d) zeroin.i.1.col.



[image: Algorithms 06 00726 g002]











5.4. Evaluation of the Algorithms


From the report of Table 3, Table 4, Table 5, Table 6 and Table 7, it can be seen that the results of NewKLS_FVS and k-opt-LS are obviously better than those of VNS1, VNS2 and SA. Table 8 presents the results of the best algorithm for each instance testing DIMACS. In Table 8, the column best means the best result from the algorithms, and the column worst is the worst result from the algorithms. The column the-best-algorithm is the set of algorithms capable of obtaining the best result.



Table 8. Results for algorithm analysis.







	
Instance

	
Best

	
Worst

	
The-Best-Algorithm






	
anna.col

	
126

	
126

	
a,b




	
david.col

	
66

	
66

	
a,b




	
DSJC125.1.col

	
58

	
58

	
a




	
DSJC125.5.col

	
15

	
15

	
a,b




	
DSJC125.9.col

	
6

	
6

	
a,b,c,d




	
fpsol2.i.1.col

	
366

	
364

	
a




	
fpsol2.i.2.col

	
370

	
370

	
a




	
fpsol2.i.3.col

	
344

	
344

	
a,b




	
games120.col

	
47

	
46

	
a,b




	
homer.col

	
520

	
520

	
a,b




	
huck.col

	
52

	
52

	
a,b




	
inithx.i.1.col

	
602

	
554

	
a




	
inithx.i.2.col

	
549

	
548

	
a




	
inithx.i.3.col

	
529

	
529

	
a




	
jean.col

	
63

	
63

	
a,b




	
latin_square_10.col

	
13

	
13

	
a




	
le450_5a.col

	
114

	
108

	
a




	
le450_5b.col

	
114

	
109

	
a




	
le450_5c.col

	
104

	
94

	
a




	
le450_5d.col

	
104

	
97

	
a




	
le450_15b.col

	
129

	
126

	
a




	
le450_15c.col

	
66

	
63

	
a




	
le450_15d.col

	
67

	
65

	
a




	
le450_25a.col

	
157

	
154

	
a




	
le450_25b.col

	
141

	
138

	
a




	
le450_25c.col

	
78

	
76

	
a




	
le450_25d.col

	
72

	
70

	
a




	
miles250.col

	
81

	
80

	
a




	
miles500.col

	
43

	
43

	
a,b




	
miles750.col

	
27

	
27

	
a,b




	
miles1000.col

	
20

	
20

	
a,b




	
miles1500.col

	
10

	
10

	
a,b




	
mulsol.i.1.col

	
121

	
121

	
a,b




	
mulsol.i.2.col

	
133

	
133

	
a,b




	
mulsol.i.3.col

	
129

	
129

	
a,b




	
mulsol.i.4.col

	
130

	
130

	
a,b




	
mulsol.i.5.col

	
131

	
131

	
a,b




	
myciel3.col

	
8

	
8

	
a,b




	
myciel4.col

	
16

	
16

	
a,b




	
myciel6.col

	
61

	
61

	
a,b




	
myciel7.col

	
122

	
122

	
a




	
queen5_5.col

	
7

	
7

	
a,b,c,d,e




	
queen6_6.col

	
9

	
9

	
a,b,c,d,e




	
queen7_7.col

	
11

	
11

	
a,b,c,d




	
queen8_8.col

	
13

	
13

	
a,b




	
queen8_12.col

	
16

	
16

	
a,b




	
queen9_9.col

	
14

	
14

	
a,b




	
queen10_10.col

	
16

	
16

	
a,b




	
queen11_11.col

	
18

	
18

	
a,b




	
queen12_12.col

	
20

	
19

	
a,b




	
queen13_13.col

	
21

	
21

	
a,b




	
queen14_14.col

	
23

	
22

	
a,b




	
queen15_15.col

	
25

	
24

	
a,b




	
queen16_16.col

	
26

	
25

	
a,b




	
school1.col

	
77

	
75

	
a




	
school1_nsh.col

	
71

	
67

	
a




	
zeroin.i.1.col

	
139

	
139

	
a




	
zeroin.i.2.col

	
160

	
160

	
a




	
zeroin.i.3.col

	
156

	
156

	
a








Procedures used in Table 8: a: NewkLS FVS; b: k-opt-LS; c: VNS1; d: VNS2; e: SA.










Table 8 shows that NewKLS_FVS obtains the best result for all the tested instances, and k-opt-LS obtains 34 best results. From the report, it can be seen that they both perform better than other test procedures for the feedback vertex set problem.





6. Concluding Remarks


This paper addresses an NP-complete problem, the feedback vertex set problem, which is inspired by many applications, such as deadlock detection in operating systems and relational database systems of an operating system. An efficient local search algorithm, NewkLS_FVS, is proposed to solve this problem, and it was compared with popular heuristics, such as variable depth search and simulated annealing. From the experiments on random graphs and DIMACS benchmarks, it can be seen that NewkLS_FVS is able to obtain better solutions than the variable depth search, and it has good performance by setting the parameter, tabu tenure, to a suitable value.
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