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Abstract:

 In this paper, we consider several variants of the pattern matching with mismatches problem. In particular, given a text [image: there is no content] and a pattern [image: there is no content], we investigate the following problems: (1) pattern matching with mismatches: for every [image: there is no content] output, the distance between P and [image: there is no content]; and (2) pattern matching with k mismatches: output those positions i where the distance between P and [image: there is no content] is less than a given threshold k. The distance metric used is the Hamming distance. We present some novel algorithms and techniques for solving these problems. We offer deterministic, randomized and approximation algorithms. We consider variants of these problems where there could be wild cards in either the text or the pattern or both. We also present an experimental evaluation of these algorithms. The source code is available at http://www.engr.uconn.edu/∼man09004/kmis.zip.
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1. Introduction

The problem of string matching has been studied extensively due to its wide range of applications from Internet searches to computational biology. String matching can be defined as follows. Given a text [image: there is no content] and a pattern [image: there is no content], with letters from an alphabet Σ, find all of the occurrences of the pattern in the text. This problem can be solved in [image: there is no content] time by using well-known algorithms (e.g., KMP[1]). A variation of this problem is to search for multiple patterns at the same time. An algorithm for this version is given in [2].

A more general formulation allows “don't care” or “wild card” characters in the text and the pattern. A wild card matches any character. An algorithm for pattern matching with wild cards is given in [3] and has a runtime of [image: there is no content]. The algorithm maps each character in Σ to a binary code of length [image: there is no content]. Then, a constant number of convolution operations is used to check for mismatches between the pattern and any position in the text. For the same problem, a randomized algorithm that runs in [image: there is no content] time with high probability is given in [4]. A slightly faster randomized [image: there is no content] algorithm is given in [5]. A simple deterministic [image: there is no content] time algorithm based on convolutions is given in [6].

A more challenging formulation of the problem is pattern matching with mismatches. This formulation appears in two versions: (1) for every alignment of the pattern in the text, find the distance between the pattern and the alignment; or (2) identify only those alignments where the distance between the pattern and the text is less than a given threshold. The distance metric can be the Hamming distance, edit distance, [image: there is no content] metric, and so on. The problem has been generalized to use trees instead of sequences or to use sets of characters instead of single characters (see [7]).

A survey of string matching with mismatches is given in [8]. A description of practical on-line string searching algorithms can be found in [9].

The Hamming distance between two strings A and B, of equal length, is defined as the number of positions where the two strings differ and is denoted by [image: there is no content].

In this paper, we are interested in the following two problems, with and without wild cards.

1. Pattern matching with mismatches: Given a text [image: there is no content] and a pattern [image: there is no content], output [image: there is no content], for every i,1≤i≤n-m+1.

2. Pattern matching with k mismatches (or the k mismatches problem): Take the same input as above, plus an integer k. Output all i, [image: there is no content], for which [image: there is no content].


1.1. Pattern Matching with Mismatches

For pattern matching with mismatches, a naive algorithm computes the Hamming distance for every alignment of the pattern in the text, in time [image: there is no content]. A faster algorithm, in the absence of wild cards, is Abrahamson's algorithm [10] that runs in [image: there is no content] time. Abrahamson's algorithm can be extended to solve pattern matching with mismatches and wild cards, as we prove in Section 2.2.1. The new algorithm runs in [image: there is no content] time, where g is the number of non-wild card positions in the pattern. This gives a simpler and faster alternative to an algorithm proposed in [11].

In the literature, we also find algorithms that approximate the number of mismatches for every alignment. For example, an approximate algorithm for pattern matching with mismatches, in the absence of wild cards, that runs in [image: there is no content] time, where r is the number of iterations of the algorithm, is given in [12]. Every distance reported has a variance bounded by [image: there is no content] where [image: there is no content] is the exact number of matches for alignment i.

Furthermore, a randomized algorithm that approximates the Hamming distance for every alignment within an ϵ factor and runs in [image: there is no content] time, in the absence of wild cards, is given in [13]. Here, c is a small constant. We extend this algorithm to pattern matching with mismatches and wild cards, in Section 2.3. The new algorithm approximates the Hamming distance for every alignment within an ϵ factor in time [image: there is no content] with high probability.

Recent work has also addressed the online version of pattern matching, where the text is received in a streaming model, one character at a time, and it cannot be stored in its entirety (see, e.g., [14,15,16]). Another version of this problem matches the pattern against multiple input streams (see, e.g., [17]). Another interesting problem is to sample a representative set of mismatches for every alignment (see, e.g., [18]).



1.2. Pattern Matching with K Mismatches

For the k mismatches problem, without wild cards, two algorithms that run in [image: there is no content] time are presented in [19,20]. A faster algorithm, that runs in [image: there is no content] time, is given in [11]. This algorithm combines the two main techniques known in the literature for pattern matching with mismatches: filtering and convolutions. We give a significantly simpler algorithm in Section 2.2.3, having the same worst case run time. The new algorithm will never perform more operations than the one in [11] during marking and convolution.

An intermediate problem is to check if the Hamming distance is less or equal to k for a subset of the aligned positions. This problem can be solved with the Kangaroo method proposed in [11] at a cost of [image: there is no content] time per alignment, using [image: there is no content] additional memory. We show how to achieve the same run time per alignment using only [image: there is no content] additional memory, in Section 2.2.2.

Further, we look at the version of k mismatches where wild cards are allowed in the text and the pattern. For this problem, two randomized algorithms are presented in [17]. The first one runs in [image: there is no content] time, and the second one in [image: there is no content] time. Both are Monte Carlo algorithms, i.e., they output the correct answer with high probability. The same paper also gives a deterministic algorithm with a run time of [image: there is no content]. Furthermore, a deterministic [image: there is no content] time algorithm is given in [21]. We present a Las Vegas algorithm (that always outputs the correct answer), in Section 2.4.3, which runs in time [image: there is no content] with high probability.

An algorithm for k mismatches with wild cards in either the text or the pattern (but not both) is given in [22]. This algorithm runs in [image: there is no content] time.



1.3. Our Results

The contributions of this paper can be summarized as follows.

For pattern matching with mismatches:


	An algorithm for pattern matching with mismatches and wild cards that runs in [image: there is no content] time, where g is the number of non-wild card positions in the pattern; see Section 2.2.1.


	A randomized algorithm that approximates the Hamming distance for every alignment, when wild cards are present, within an ϵ factor in time [image: there is no content] with high probability; see Section 2.3.




For pattern matching with k mismatches:


	An algorithm for pattern matching with k mismatches, without wild cards, that runs in [image: there is no content] time; this algorithm is simpler and has a better expected run time than the one in [11]; see Section 2.2.3.


	An algorithm that tests if the Hamming distance is less than k for a subset of the alignments, without wild cards, at a cost of [image: there is no content] time per alignment, using only [image: there is no content] additional memory; see Section 2.2.2.


	A Las Vegas algorithm for the k mismatches problem with wild cards that runs in time [image: there is no content] with high probability; see Section 2.4.3.




The rest of the paper is organized as follows. First, we introduce some notations and definitions. Then, we describe the exact, deterministic algorithms for pattern matching with mismatches and for k mismatches. Then, we present the randomized and approximate algorithms: first the algorithm for approximate counting of mismatches in the presence of wild cards, then the Las Vegas algorithm for k mismatches with wild cards. Finally, we present an empirical run time comparison of the deterministic algorithms and conclusions.




2. Materials and Methods


2.1. Some Definitions

Given two strings [image: there is no content] and [image: there is no content] (with [image: there is no content]), the convolution of T and P is a sequence [image: there is no content] where [image: there is no content]=∑j=1m[image: there is no content][image: there is no content], for [image: there is no content]. This convolution can be computed in [image: there is no content] time using the fast Fourier transform. If the convolutions are applied on binary inputs, as is often the case in pattern matching applications, some speedup techniques are presented in [23].

In the context of randomized algorithms, by high probability, we mean a probability greater or equal to [image: there is no content] where n is the input size and ϵ is a probability parameter usually assumed to be a constant greater than 0. The run time of a Las Vegas algorithm is said to be [image: there is no content] if the run time is no more than [image: there is no content] with probability greater or equal to [image: there is no content] for all [image: there is no content], where c and [image: there is no content] are some constants and for any constant [image: there is no content].

In the analysis of our algorithms, we will employ the following Chernoff bounds.

Chernoff bounds [24]: These bounds can be used to closely approximate the tail ends of abinomial distribution.

A Bernoulli trial has two outcomes, namely success and failure, the probability of success being p. A binomial distribution with parameters n and p, denoted as [image: there is no content], is the number of successes in n independent Bernoulli trials.

Let X be a binomial random variable whose distribution is [image: there is no content]. If m is any integer [image: there is no content], then the following are true:



Prob.[X>m]≤npmmem-np



(1)






Prob.[X>(1+δ)np]≤e-δ2np/3; and 



(2)






Prob.[X<(1-δ)np]≤e-δ2np/2



(3)




for any [image: there is no content].


2.2. Deterministic Algorithms

In this section, we present deterministic algorithms for pattern matching with mismatches. We start with a summary of two well-known techniques for counting matches: convolution and marking (see, e.g., [11]). In terms of notation, [image: there is no content] is the substring of T between i and j and [image: there is no content] stands for [image: there is no content]. Furthermore, the value at position i in array X is denoted by [image: there is no content].

Convolution: Given a string S and a character α, define string [image: there is no content], such that [image: there is no content][i]=1 if [image: there is no content], and 0 otherwise. Let [image: there is no content]. Then, [image: there is no content] gives the number of matches between P and [image: there is no content] where the matching character is α. Then, [image: there is no content] is the total number of matches between P and [image: there is no content].

Marking: Given a character α, let [image: there is no content] be the set of positions where character α is found in P (i.e., [image: there is no content]). Note that, if [image: there is no content], then the alignment between P and [image: there is no content] will match [image: there is no content], for all [image: there is no content]. This gives the marking algorithm: for every position i in the text, increment the number of matches for alignment [image: there is no content], for all [image: there is no content]. In practice, we are interested in doing the marking only for certain characters, meaning we will do the incrementing only for the positions [image: there is no content] where [image: there is no content]. The algorithm then takes [image: there is no content] time. The pseudocode is given in Algorithm 1.




	Algorithm 1: [image: there is no content]
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2.2.1. Pattern Matching with Mismatches

For pattern matching with mismatches, without wild cards, Abrahamson [10] gave the following [image: there is no content] time algorithm. Let A be a set of the most frequent characters in the pattern: (1) using convolutions, count how many matches each character in A contributes to every alignment; (2) using marking, count how many matches each character in [image: there is no content] contributes to every alignment; and (3) add the two numbers to find for every alignment, the number of matches between the pattern and the text. The convolutions take [image: there is no content] time. A character in [image: there is no content] cannot appear more than [image: there is no content] times in the pattern; otherwise, each character in A has a frequency greater than [image: there is no content], which is not possible. Thus, the run time for marking is [image: there is no content]. If we equate the two run times, we find the optimal [image: there is no content], which gives a total run time of [image: there is no content].

An Example: Consider the case of T=231141234421132 and P=1234. Since each character in the pattern occurs an equal number of times, we can pick A arbitrarily. Let [image: there is no content]. In Step 1, convolution is used to count the number of matches contributed by each character in A. We obtain an array [image: there is no content], such that [image: there is no content] is the number of matches contributed by characters in A to the alignment of P with [image: there is no content], for [image: there is no content]. In this example, [image: there is no content]. In Step 2, we compute, using marking, the number of matches contributed by the characters 3 and 4 to each alignment between T and P. We get another array [image: there is no content], such that [image: there is no content] is the number of matches contributed by 3 and 4 to the alignment between [image: there is no content] and P, for [image: there is no content]. Specific to this example, [image: there is no content]. In Step 3, we add [image: there is no content] and [image: there is no content] to get the number of matches between [image: there is no content] and P, for [image: there is no content]. In this example, this sum yields: [image: there is no content].

For pattern matching with mismatches and wild cards, a fairly complex algorithm is given in [11]. The run time of this algorithm is [image: there is no content] where g is the number of non-wild card positions in the pattern. The problem can also be solved through a simple modification of Abrahamson's algorithm, in time [image: there is no content], as pointed out in [17]. We now prove the following result:


Theorem 1. 
Pattern matching with mismatches and wild cards can be solved in [image: there is no content] time, where g is the number of non-wild card positions in the pattern.




Proof. 
Ignoring the wild cards for now, let A be the set of the most frequent characters in the pattern. As above, count matches contributed by characters in A and [image: there is no content] using convolution and marking, respectively. By a similar reasoning as above, the characters used in the marking phase will not appear more than [image: there is no content] times in the pattern. If we equate the run times for the two phases, we obtain [image: there is no content] time. We are now left to count how many matches are contributed by the wild cards. For a string S and a character α, define [image: there is no content] as [image: there is no content][i]=1-[image: there is no content][i]. Let w be the wild card character. Compute [image: there is no content]. Then, for every alignment i, the number of positions that have a wild card either in the text, or the pattern, or both, is [image: there is no content]. Add [image: there is no content] to the previously-computed counts and output. The total run time is [image: there is no content].  [image: there is no content]





2.2.2. Pattern Matching with K Mismatches

For the k mismatches problem, without wild cards, an [image: there is no content] time algorithm that requires [image: there is no content] additional space is presented in [19]. Another algorithm, that takes [image: there is no content] time and uses only [image: there is no content] additional space, is presented in [20]. We define the following problem, which is of interest in the discussion.


Problem 1. 
Subset k mismatches: Given a text T of length n, a pattern P of length m, a set of positions [image: there is no content] and an integer k, output the positions [image: there is no content] for which Hd(P,[image: there is no content])≤k.



The subset k mismatches problem becomes the regular k mismatches problem if [image: there is no content]. Thus, it can be solved by the [image: there is no content] algorithms mentioned above. However, if [image: there is no content], then the [image: there is no content] algorithms are too costly. A better alternative is to use the Kangaroo method proposed in [11]. The Kangaroo method can verify if Hd(P,[image: there is no content])≤k in [image: there is no content] time for any i. The method works as follows. Build a suffix tree of [image: there is no content] and enhance it to support [image: there is no content] lowest common ancestor (LCA) queries. For a given i, perform an LCA query to find the position of the first mismatch between P and [image: there is no content]. Let this position be j. Then, perform another LCA to find the first mismatch between [image: there is no content] and [image: there is no content], which is the second mismatch of alignment i. Continue to “jump” from one mismatch to the next, until the end of the pattern is reached or we have found more than k mismatches. The Kangaroo method can process [image: there is no content] positions in [image: there is no content] time, and it uses [image: there is no content] additional memory for the LCA enhanced suffix tree. We now prove the following result:


Theorem 2. 
Subset k mismatches can be solved in [image: there is no content] time using only [image: there is no content]additional memory.




Proof. 
The algorithm is the following. Build an LCA-enhanced suffix tree of the pattern. Scan the text from left to right: (1) find the longest unscanned region of the text that can be found somewhere in the pattern, say starting at position i of the pattern; call this region of the text R; therefore, R is identical to [image: there is no content].; and (2) for every alignment in S that overlaps R, count the number of mismatches between R and the alignment, within the overlap region. To do this, consider an alignment in S that overlaps R, such that the beginning of R aligns with the j-th character in the pattern. We want to count the number of mismatches between R and [image: there is no content]. However, since R is identical to [image: there is no content], we can simply compare [image: there is no content] and [image: there is no content]. This comparison can be done efficiently by jumping from one mismatch to the next, like in the Kangaroo method. Repeat from Step 1 until the entire text has been scanned. Every time we process an alignment, in Step 2, we either discover at least one additional mismatch or we reach the end of the alignment. This is true, because, otherwise, the alignment would match the text for more than [image: there is no content] characters, which is not possible, from the way we defined R. Every alignment for which we have found more than k mismatches is excluded from further consideration to ensure [image: there is no content] time per alignment. It takes [image: there is no content] time to build the LCA enhanced suffix tree of the pattern and [image: there is no content] additional time to scan the text from left to right. Thus, the total run time is [image: there is no content] with [image: there is no content] additional memory. The pseudocode is given in Algorithm 2.  [image: there is no content]





2.2.3. An [image: there is no content] Time Algorithm for K Mismatches

For the k mismatches problem, without wild cards, a fairly complex [image: there is no content] time algorithm is given in [11]. The algorithm classifies the inputs into several cases. For each case, it applies a combination of marking followed by a filtering step, the Kangaroo method, or convolutions. The goal is to not exceed [image: there is no content] time in any of the cases. We now present an algorithm with only two cases that has the same worst case run time. The new algorithm can be thought of as a generalization of the algorithm in [11], as we will discuss later. This generalization not only greatly simplifies the algorithm, but it also reduces the expected run time. This happens because we use information about the frequency of the characters in the text and try to minimize the work done by convolutions and marking.




	Algorithm 2: Subset k mismatches([image: there is no content])
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We will now give the intuition for this algorithm. For any character [image: there is no content], let [image: there is no content] be its frequency in the pattern and [image: there is no content] be its frequency in the text. Note that in the marking algorithm, a specific character α will contribute to the runtime a cost of [image: there is no content]×[image: there is no content]. On the other hand, in the case of convolution, a character α costs us one convolution, regardless of how frequent α is in the text or the pattern. Therefore, we want to use infrequent characters for marking and frequent characters for convolution. The balancing of the two will give us the desired runtime.

A position j in the pattern where [image: there is no content] is called an instance of α. Consider every instance of character α as an object of size 1 and cost [image: there is no content]. We want to fill a knapsack of size [image: there is no content] at a minimum cost and without exceeding a given budget B. The [image: there is no content] instances will allow us to filter some of the alignments with more than k mismatches, as will become clear later. This problem can be optimally solved by a greedy approach, where we include in the knapsack all of the instances of the least expensive character, then all of the instances of the second least expensive character, and so on, until we have [image: there is no content] items or we have exceeded B. The last character considered may have only a subset of its instances included, but for the ease of explanation, assume that there are no such characters.

Note: Even though the above is described as a knapsack problem, the particular formulation can be optimally solved in linear time. This formulation should not be confused with other formulations of the knapsack problem that are NP-complete.

Case (1): Assume we can fill the knapsack at a cost [image: there is no content]. We apply the marking algorithm for the characters whose instances are included in the knapsack. It is easy to see that the marking takes time [image: there is no content] and creates C marks. For alignment i, if the pattern and the text match for all of the [image: there is no content] positions in the knapsack, we will obtain exactly [image: there is no content] marks at position i. Conversely, any position that has less than k marks must have more than k mismatches, so we can filter it out. Therefore, there will be at most [image: there is no content] positions with k marks or more. For such positions, we run subset k mismatches to confirm which of them have less than k mismatches. The total runtime of the algorithm in this case is [image: there is no content].

Case (2): If we cannot fill the knapsack within the given budget B, we do the following: for the characters we could fit in the knapsack, we use the marking algorithm to count the number of matches that they contribute to each alignment. For characters not in the knapsack, we use convolutions to count the number of matches that they contribute to each alignment. We add the two counts and get the exact number of matches for every alignment.

Note that at least one of the instances in the knapsack has a cost larger than [image: there is no content] (if all of the instances in the knapsack had a cost less or equal to [image: there is no content], then we would have at least [image: there is no content] instances in the knapsack). Furthermore, note that all of the instances not in the knapsack have a cost at least as high as any instance in the knapsack, because we greedily fill the knapsack starting with the least costly instances. This means that every character not in the knapsack appears in the text at least [image: there is no content] times. This means that the number of characters not in the knapsack does not exceed [image: there is no content]. Therefore, the total cost of convolutions is [image: there is no content]. Since the cost of marking was [image: there is no content], we can see that the best value of B is the one that equalizes the two costs. This gives [image: there is no content]. Therefore, the algorithm takes [image: there is no content] time. If [image: there is no content], we can employ a different algorithm that solves the problem in linear time, as in [11]. For larger k, [image: there is no content], so the run time becomes [image: there is no content]. We call this algorithm knapsack k mismatches. The pseudocode is given in Algorithm 3. The following theorem results.


Theorem 3. 
Knapsack k mismatches has worst case run time [image: there is no content].[image: there is no content]






	Algorithm 3: Knapsack k mismatches([image: there is no content])
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We can think of the algorithm in [11] as a special case of our algorithm where, instead of trying to minimize the cost of the [image: there is no content] items in the knapsack, we just try to find [image: there is no content] items for which the cost is less than [image: there is no content]. As a result, it is easy to verify the following:


Theorem 4. 
Knapsack k mismatches spends at most as much time as the algorithm in [11] to do convolutions and marking.




Proof. 
Observation: In all of the cases presented below, knapsack k mismatches can have a run time as low as [image: there is no content], for example if there exists one character α with [image: there is no content]=O(k) and [image: there is no content]=O(n/k).



Case 1: [image: there is no content]. The algorithm in [11] chooses [image: there is no content] instances of distinct characters to perform marking. Therefore, for every position of the text, at most one mark is created. If the number of marks is M, then the cost of the marking phase is [image: there is no content]. The number of remaining positions after filtering is no more than [image: there is no content], and thus, the algorithm takes [image: there is no content] time. Our algorithm puts in the knapsack 2k instances, of not necessarily different characters, such that the number of marks B is minimized!Therefore, [image: there is no content], and the total runtime is [image: there is no content].

Case 2: [image: there is no content]. The algorithm in [11] performs one convolution per character to count the total number of matches for every alignment, for a run time of [image: there is no content]. In the worst case, knapsack k mismatches cannot fill the knapsack at a cost [image: there is no content], so it defaults to the same run time. However, in the best case, the knapsack can be filled at a cost B as low as [image: there is no content] depending on the frequency of the characters in the pattern and the text. In this case, the runtime will be [image: there is no content].

Case 3: [image: there is no content]. A symbol that appears in the pattern at least [image: there is no content] times is called frequent.

Case 3.1: There are at least [image: there is no content] frequent symbols. The algorithm in [11] chooses [image: there is no content] instances of [image: there is no content] frequent symbols to do marking and filtering at a cost M≤2n[image: there is no content]. Since knapsack k mismatches will minimize the marking time B, we have [image: there is no content], so the run time is the same as for [11] only in the worst case.

Case 3.2: There are A<[image: there is no content] frequent symbols. The algorithm in [11] first performs one convolution for each frequent character for a run time of [image: there is no content]. Two cases remain:

Case 3.2.1: All of the instances of the non-frequent symbols number less than [image: there is no content] positions. The algorithm in [11] replaces all instances of frequent characters with wild cards and applies a [image: there is no content] algorithm to count mismatches, where g is the number of non-wild card positions. Since [image: there is no content], the run time for this stage is O(n[image: there is no content]logm), and the total run time is O(Anlogm+n[image: there is no content]logm). Knapsack k mismatches can always include in the knapsack all of the instances of non-frequent symbols, since their total cost is no more than O(n[image: there is no content]), and in the worst case, do convolutions for the remaining characters. The total run time is O(Anlogm+n[image: there is no content]). Of course, depending on the frequency of the characters in the pattern and text, knapsack k mismatch may not have to do any convolutions.

Case 3.2.2: All of the instances of the non-frequent symbols number at least [image: there is no content] positions. The algorithm in [11] chooses [image: there is no content] instances of infrequent characters to do marking. Since each character has a frequency less than [image: there is no content], the time for marking is M<2n[image: there is no content], and there are no more than [image: there is no content] positions left after filtering. Knapsack k mismatches chooses characters in order to minimize the time B for marking, so again [image: there is no content].  [image: there is no content]




2.3. Approximate Counting of Mismatches

The algorithm of [13] takes as input a text [image: there is no content] and a pattern [image: there is no content] and approximately counts the Hamming distance between [image: there is no content] and P for every [image: there is no content]. In particular, if the Hamming distance between [image: there is no content] and P is [image: there is no content] for some i, then the algorithm outputs [image: there is no content] where [image: there is no content]≤[image: there is no content]≤(1+ϵ)[image: there is no content] for any [image: there is no content] with high probability (i.e., a probability of [image: there is no content]. The run time of the algorithm is [image: there is no content]. In this section, we show how to extend this algorithm to the case where there could be wild cards in the text and/or the pattern.

Let Σ be the alphabet under concern, and let [image: there is no content]. The algorithm runs in phases, and in each phase, we randomly map the elements of Σ to [image: there is no content]. A wild card is mapped to a zero. Under this mapping, we transform T and P to [image: there is no content] and [image: there is no content], respectively. We then compute a vector C where [image: there is no content]. This can be done using [image: there is no content] convolution operations (as in Section 2.4.1; see also [17]). A series of r such phases (for some relevant value of r) is done, at the end of which, we produce estimates on the Hamming distances. The intuition is that if a character x in [image: there is no content] is aligned with a character y in [image: there is no content], then across all of the r phases, the expected contribution to C from these characters is r if [image: there is no content] (assuming that x and y are non-wild cards). If [image: there is no content] or if one or both of x and y are a wild card, the contribution to C is zero.




	Algorithm 4:
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Analysis: Let x be a character in T, and let y be a character in P. Clearly, if [image: there is no content] or if one or both of x and y are a wild card, the contribution of x and y to any [image: there is no content] is zero. If x and y are non-wild cards and if [image: there is no content], then the expected contribution of these to any [image: there is no content] is 1. Across all of the r phases, the expected contribution of x and y to any [image: there is no content] is r. For a given x and y, we can think of each phase as a Bernoulli trial with equal probabilities for success and failure. A success refers to the possibility of [image: there is no content]. The expected number of successes in r phases is [image: there is no content]. Using Chernoff bounds (Equation 2), this contribution is no more than [image: there is no content] with probability [image: there is no content]. The probability that this statement holds for every pair [image: there is no content] is [image: there is no content]. This probability will be [image: there is no content] if [image: there is no content]. Similarly, we can show that for any pair of non-wild card characters, the contribution of them to any [image: there is no content] is no less than [image: there is no content] with probability [image: there is no content] if [image: there is no content].

Put together, for any pair [image: there is no content] of non-wild cards, the contribution of x and y to any [image: there is no content] is in the interval [image: there is no content] with probability [image: there is no content] if [image: there is no content]. Let [image: there is no content] be the Hamming distance between [image: there is no content] and P for some i ([image: there is no content]. Then, the estimate [image: there is no content] on [image: there is no content] will be in the interval (1±ϵ)[image: there is no content] with probability [image: there is no content]. As a result, we get the following Theorem.


Theorem 5. 
Given a text T and a pattern P, we can estimate the Hamming distance between [image: there is no content] and P, for every i,1≤i≤(n-m+1), in [image: there is no content] time. If [image: there is no content] is the Hamming distance between [image: there is no content] and P, then the above algorithm outputs an estimate that is in the interval (1±ϵ)[image: there is no content] with high probability.



Observation 1. In the above algorithm, we can ensure that [image: there is no content]≥[image: there is no content] and [image: there is no content]≤(1+ϵ)[image: there is no content] with high probability by changing the estimate computed in Step 3 of Algorithm 4 to C[i][image: there is no content].

Observation 2. As in [13], with [image: there is no content] pre-processing, we can ensure that Algorithm 4 never errs (i.e., the error bounds on the estimates will always hold).



2.4. A Las Vegas Algorithm for K Mismatches


2.4.1. The 1 Mismatch Problem

Problem definition: For this problem, also, the inputs are two strings T and P with [image: there is no content][image: there is no content] and possible wild cards in T and P. Let [image: there is no content] stand for the substring [image: there is no content], for any i, with [image: there is no content]. The problem is to check if the Hamming distance between [image: there is no content] and P is exactly 1, for [image: there is no content]. The following Lemma is shown in [17].


Lemma 1. 
The 1 mismatch problem can be solved in [image: there is no content] time using a constant number of convolution operations.



The algorithm: Assume that each wild card in the pattern as well as the text is replaced with a zero. Furthermore, assume that the characters in the text, as well as the pattern are integers in the range [image: there is no content] where Σ is the alphabet of concern. Let [image: there is no content] stand for the “error term” introduced by the character [image: there is no content] in [image: there is no content] and the character [image: there is no content] in P, and its value is ([image: there is no content]-[image: there is no content])2[image: there is no content][image: there is no content]. Furthermore, let [image: there is no content]=∑j=1m[image: there is no content]. There are four steps in the algorithm:


	Compute [image: there is no content] for [image: there is no content]. Note that [image: there is no content] will be zero if [image: there is no content] and P match (assuming that a wild card can be matched with any character). [image: there is no content]=∑j=1m([image: there is no content]-[image: there is no content])2[image: there is no content][image: there is no content]=∑j=1mti+j-13[image: there is no content]+∑j=1m[image: there is no content]pj3-2∑j=1mti+j-12pj2. Thus, this step can be completed with three convolution operations.


	Compute [image: there is no content] for [image: there is no content], where [image: there is no content]=∑j=1m[image: there is no content]([image: there is no content]-[image: there is no content])2[image: there is no content][image: there is no content] (for [image: there is no content]. Like Step 1, this step can also be completed with three convolution operations.


	Let [image: there is no content]=[image: there is no content]/[image: there is no content] if [image: there is no content]≠0, for [image: there is no content]. Note that if the Hamming distance between [image: there is no content] and P is exactly one, then [image: there is no content] will give the position in the text where this mismatch occurs.


	If for any i ([image: there is no content]), [image: there is no content]≠0 and if (t[image: there is no content]-p[image: there is no content]-i+1)2t[image: there is no content]p[image: there is no content]-i+1=[image: there is no content], then we conclude that the Hamming distance between [image: there is no content] and P is exactly one.




Note: If the Hamming distance between [image: there is no content] and P is exactly 1 (for any i), then the above algorithm will not only detect it, but also will identify the position where there is a mismatch. Specifically, it will identify the integer j, such that [image: there is no content]≠[image: there is no content].

An example. Consider the case where Σ={1,2,3,4,5,6},T=56462*33451*12555643 and P=2563. Here, * represents the wild card.

In Step 1, we compute [image: there is no content], for 1[image: there is no content][image: there is no content]. For example, [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]. Note that since [image: there is no content] is a wild card, it matches with any character in the pattern. Furthermore, [image: there is no content].

In Step 2, we compute [image: there is no content], for [image: there is no content]. For instance, [image: there is no content]; [image: there is no content].

In Step 3, the value of [image: there is no content]=[image: there is no content]/[image: there is no content] is computed for [image: there is no content]. For example, [image: there is no content]; [image: there is no content].

In Step 4, we identify all of the positions in the text corresponding to a single mismatch. For instance, we note that [image: there is no content] and [image: there is no content]. As a result, Position 5 in the text correspondsto 1 mismatch.



2.4.2. The Randomized Algorithms of [17]

Two different randomized algorithms are presented in [17] for solving the k mismatches problem. Both are Monte Carlo algorithms. In particular, they output the correct answers with high probability. The run times of these algorithms are [image: there is no content] and [image: there is no content], respectively. In this section, we provide a summary of these algorithms.

The first algorithm has [image: there is no content] sampling phases, and in each phase, a 1 mismatch problem is solved. Each phase of sampling works as follows. We choose [image: there is no content] positions of the pattern uniformly at random. The pattern P is replaced by a string [image: there is no content] where |[image: there is no content]|=m, the characters in [image: there is no content] in the randomly chosen positions are the same as those in the corresponding positions of P, and the rest of the characters in [image: there is no content] are set to wild cards. The 1 mismatch algorithm of Lemma 1 is run on T and [image: there is no content]. In each phase of random sampling, for each i, we get to know if the Hamming distance between [image: there is no content] and [image: there is no content] is exactly 1, and, if so, identify the j, such that [image: there is no content]≠pj′.

As an example, consider the case when the Hamming distance between [image: there is no content] and P is k (for some i). Then, in each phase of sampling, we would expect to identify exactly one of the positions (i.e., j) where [image: there is no content] and P differ (i.e., [image: there is no content]≠[image: there is no content]). As a result, in an expected k phases of sampling, we will be able to identify all of the k positions in which [image: there is no content] and P differ. It can be shown that if we make [image: there is no content] sampling phases, then we can identify all of the k mismatches with high probability [17]. It is possible that the same j might be identified in multiple phases. However, we can easily keep track of this information to identify the unique j values found in all of the phases.

Let the number of mismatches between [image: there is no content] and P be [image: there is no content] (for [image: there is no content]. If [image: there is no content]≤k, the algorithm of [17] will compute [image: there is no content] exactly. If [image: there is no content]>k, then the algorithm will report that the number of mismatches is [image: there is no content] (without estimating [image: there is no content]), and this answer will be correct with high probability. The algorithm starts off by first computing [image: there is no content] values for every [image: there is no content]. A list [image: there is no content] of all of the mismatches found for [image: there is no content] is kept, for every i. Whenever a mismatch is found between [image: there is no content] and P (say in position [image: there is no content] of the text), the value of [image: there is no content] is reduced by [image: there is no content]. If at any point in the algorithm, [image: there is no content] becomes zero for any i, this means that we have found all of the [image: there is no content] mismatches between [image: there is no content] and P, and [image: there is no content] will have the positions in the text where these mismatches occur. Note that if the Hamming distance between [image: there is no content] and P is much larger than k (for example, close or equal to m), then the probability that in a random sample we isolate a single mismatch is very low. Therefore, if the number of sample phases is only [image: there is no content], the algorithm can only be Monte Carlo. Even if [image: there is no content] is less or equal to k, there is a small probability that we may not be able to find all of the [image: there is no content] mismatches. Call this algorithm Algorithm 5 If for each i, we either get all of the [image: there is no content] mismatches (and hence, the corresponding [image: there is no content] is zero) or we have found more than k mismatches between [image: there is no content] and P, then we can be sure that we have found all of the correct answers (and the algorithm will become Las Vegas).

An example. Consider the example of Σ={1,2,3,4,5,6},T=56462*33451*12555643 and P=2563. Here, * represents the wild card.

As has been computed before, [image: there is no content] and [image: there is no content]. Let [image: there is no content]. In each phase, we choose 2 random positions of the pattern.

In the first phase let the two positions chosen be 2 and 3. In this case, [image: there is no content]=*56*. We run the 1 mismatch algorithm with T and [image: there is no content]. At the end of this phase we realize that t3≠p2;[image: there is no content]≠p2;t7≠p3;t11≠p2;t11≠p3;t13≠p3;t16≠p3; and [image: there is no content] The corresponding [image: there is no content] values will be decremented by [image: there is no content] values. Specifically, if ti≠[image: there is no content], then E[image: there is no content] is decremented by [image: there is no content]. For example, since [image: there is no content], we decrement [image: there is no content] by [image: there is no content]. [image: there is no content] becomes zero, and hence, [image: there is no content] is output as a correct answer. Likewise, since [image: there is no content], we decrement [image: there is no content] by [image: there is no content]. Now, [image: there is no content]becomes 32.

In the second phase, let the two positions chosen be 1 and 2. In this case [image: there is no content]=25**. At the end of this phase, we learn that [image: there is no content]. Here, again, relevant [image: there is no content] values are decremented. For instance, since [image: there is no content], [image: there is no content] is decremented by [image: there is no content]. The value of [image: there is no content] now becomes zero, and hence, [image: there is no content] is output as a correct answer; and so on.

If the distance between [image: there is no content] and P (for some i) is [image: there is no content], then out of all of the phases attempted, there is a high probability that all of these mismatches between [image: there is no content] and P will be identified.

The authors of [17] also present an improved algorithm whose run time is [image: there is no content]. The main idea is the observation that if [image: there is no content]=k for any i, then in [image: there is no content] sampling steps, we can identify [image: there is no content] mismatches. There are several iterations where in each iteration [image: there is no content] sampling phases are done. At the end of each iteration, the value of k is changed to [image: there is no content]. Let this algorithm be called Algorithm The Randomized Algorithms 6.



2.4.3. A Las Vegas Algorithm

In this section, we present a Las Vegas algorithm for the k mismatches problem when there are wild cards in the text and/or the pattern. This algorithm runs in time [image: there is no content]. This algorithm is based on the algorithm of [17]. When the algorithm terminates, for each i ([image: there is no content], either we would have identified all of the [image: there is no content] mismatches between [image: there is no content] and P or we would have identified more than k mismatches between [image: there is no content] and P.

Algorithm 5 will be used for every i for which [image: there is no content]≤2k. For every i for which [image: there is no content]>2k, we use the following strategy. Let 2ℓk<[image: there is no content]≤2ℓ+1k (where 1≤ℓ≤logm[image: there is no content]). Let w=logm[image: there is no content]. There will be w phases in the algorithm, and in each phase, we perform [image: there is no content] sampling steps. Each sampling step in phase ℓ involves choosing [image: there is no content] positions of the pattern uniformly at random (for [image: there is no content]). As we show below, if for any i, [image: there is no content] is in the interval [image: there is no content], then at least k mismatches between [image: there is no content] and P will be found in phase ℓ with high probability. The pseudocode for the algorithm is given in Algorithm 7.


Theorem 6. 
Algorithm 7 runs in time [image: there is no content][image: there is no content] if Algorithm 6 is used in Step 1. It runs in time [image: there is no content] if Step 1 uses Algorithm 5.






	Algorithm 7:
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Proof. 
As shown in [17], the run time of Algorithm 5 is [image: there is no content], and that of Algorithm 6 is [image: there is no content]. The analysis will be done with respect to an arbitrary [image: there is no content]. In particular, we will show that after the specified amount of time, with high probability, we will either know [image: there is no content] or realize that [image: there is no content]>k. It will then follow that the same statement holds for every [image: there is no content] (for [image: there is no content].



Consider phase ℓ of Step 2 (for an arbitrary [image: there is no content]). Let 2ℓk<[image: there is no content]≤2ℓ+1k for some i. Using the fact that [image: there is no content], the probability of isolating one of the mismatches in one run of the samplingstep is:



m-[image: there is no content]m/(2ℓ+1k)-1[image: there is no content]mm/(2ℓ+1k)≥m-2ℓ+1km/(2ℓ+1k)-12ℓkmm/(2ℓ+1k)≥12e



(4)




As a result, using Chernoff bounds (Equation (3) with [image: there is no content], for example), it follows that if [image: there is no content] sampling steps are made in phase ℓ, then at least [image: there is no content] of these steps will result in the isolation of single mismatches (not all of them need be distinct) with high probability (assuming that [image: there is no content]). Moreover, we can see that at least [image: there is no content] of these mismatches will be distinct. This is because the probability that [image: there is no content] of these are distinct is ≤[image: there is no content][image: there is no content]/[image: there is no content][image: there is no content][image: there is no content][image: there is no content] using the fact that [image: there is no content]≥2k. This probability will be very low when [image: there is no content].

In the above analysis, we have assumed that [image: there is no content]. If this is not the case, in any phase of Step 2, we can do [image: there is no content] sampling steps, for some suitable constant c. In this case, also we can perform an analysis similar to that of the above case using Chernoff bounds. Specifically, we can show that with high probability, we will be able to identify all of the mismatches between [image: there is no content] and P. As a result, each phase of Step 2 takes [image: there is no content] time. We have [image: there is no content] phases. Thus, the run time of Step 2 is [image: there is no content]. Furthermore, the probability that the condition in Step 3 holds is very high.

Therefore, the run time of the entire algorithm is [image: there is no content][image: there is no content] if Algorithm 6 is used in Step 1 or [image: there is no content] if Algorithm 5 is used in Step 1.  [image: there is no content]





3. Results

The above algorithms are based on symbol comparison, arithmetic operations or a combination of both. Therefore, it is interesting to see how these algorithms compare in practice.

In this section, we compare deterministic algorithms for pattern matching. Some of these algorithms solve the pattern matching with mismatches problem, and others solve the k mismatches problem. For the sake of comparison, we treated all of them as algorithms for the k mismatches problem, which is a special case of the pattern matching with mismatches problem.

We implemented the following algorithms: the naive [image: there is no content] time algorithm, Abrahamson's algorithm [10], subset k mismatches (Section 2.2.2) and knapsack k mismatches (Section 2.2.3). For subset k mismatches, we simulate the suffix tree and LCA extensions by a suffix array with an LCP (longest common prefix; [25]) table and data structures to perform RMQ queries (range minimum queries; [26]) on it. This adds a [image: there is no content] factor to preprocessing. For searching in the suffix array, we use a simple forward traversal with a cost of [image: there is no content] per character. The traversal uses binary search to find the interval of suffixes that start with the first character of the pattern. Then, another binary search is performed to find the suffixes that start with the first two characters of the pattern, and so on. However, more efficient implementations are possible (e.g., [27]). For subset k mismatches, we also tried a simple [image: there is no content] time pre-processing using dynamic programming to precompute LCPs and hashing to quickly determine whether a portion of the text is present in the pattern. This method takes more preprocessing time, but it does not have the [image: there is no content] factor when searching. Knapsack k mismatches uses subset k mismatches as a subroutine, so we have two versions of it, as well.

We tested the algorithms on protein, DNA and English inputs generated randomly. We randomly selected a substring of length m from the text and used it as the pattern. The algorithms were tested on an Intel Core i7 machine with 8 GB of RAM, Linux Mint 17.1 Operating System and gcc 4.8.2. All convolutions were performed using the fftw[28] library Version 3.3.3. We used the suffix array algorithm RadixSAof [29].

Figure Figure 1 shows run times for varying the length of the text n. All algorithms scale linearly with the length of the text. Figure 2 shows run times for varying the length of the pattern m. Abrahamson's algorithm is expensive, because, for alphabet sizes smaller than [image: there is no content], it computes one convolution for every character in the alphabet. The convolutions proved to be expensive in practice, so Abrahamson's algorithm was competitive only for DNA data, where the alphabet is small. Figure 3 shows runtimes for varying the maximum number of mismatches k allowed. The naive algorithm and Abrahamson's algorithm do not depend on k; therefore, their runtime is constant. Subset k mismatch, with its [image: there is no content] runtime, is competitive for relatively small k. Knapsack k mismatch, on the other hand, scaled very well with k. Figure 4 shows runtimes for varying the alphabet from four (DNA) to 20 (protein) to 26 (English). As expected, Abrahamson's algorithm is the most sensitive to the alphabet size.

Figure 1. Run times for pattern matching on DNA, protein and English alphabet data, when the length of the text (n) varies. The length of the pattern is [image: there is no content]. The maximum number of mismatches allowed is [image: there is no content]. Our algorithms are subset k mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing (Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).
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Figure 2. Run times for pattern matching on DNA, protein and English alphabet data, when the length of the pattern (m) varies. The length of the text is [image: there is no content] millions. The maximum number of mismatches allowed is [image: there is no content] of the pattern length. Our algorithms are subset k mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing (Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).
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Figure 3. Run times for pattern matching on DNA, protein and English alphabet data, when the maximum number of mismatches allowed (k) varies. The length of the text is [image: there is no content] millions. The length of the pattern is [image: there is no content]. Our algorithms are subset k mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing (Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).
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Figure 4. Run times for pattern matching when the size of the alphabet varies from four (DNA) to 20 (protein) to 26 (English). The length of the text is [image: there is no content] millions. The length of the pattern is [image: there is no content] in the first graph and [image: there is no content] in the second. The maximum number of mismatches allowed is [image: there is no content] in the first graph and [image: there is no content] in the second. Our algorithms are subset k mismatch with hashing-based preprocessing (Section 2.2.2), subset k mismatch with suffix array preprocessing (Section 2.2.2), knapsack k mismatch with hashing-based preprocessing (Section 2.2.3) and knapsack k mismatch with suffix array preprocessing (Section 2.2.3).



[image: Algorithms 08 00248 g004 1024]







Overall, the naive algorithm performed well in practice, most likely due to its simplicity and cache locality. Abrahamson's algorithm was competitive only for small alphabet size or for large k. Subset k mismatches performed well for relatively small k. In most cases, the suffix array version was slower than the hashing-based one with [image: there is no content] time pre-processing because of the added [image: there is no content] factor when searching in the suffix array. It would be interesting to investigate how the algorithms compare with a more efficient implementation of the suffix array. Knapsack k mismatches was the fastest among the algorithms compared, because in most cases, the knapsack could be filled with less than the given “budget”, and thus, the algorithm did not have to perform any convolution operations.









4. Conclusions

We have introduced several deterministic and randomized, exact and approximate algorithms for pattern matching with mismatches and the k mismatches problems, with or without wild cards. These algorithms improve the run time, simplify or extend previous algorithms wild cards. We have also implemented the deterministic algorithms. An empirical comparison of these algorithms showed that the algorithms based on character comparison outperform those based on convolutions.
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