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Abstract:

 This paper is devoted to the semilocal convergence, using centered hypotheses, of a third order Newton-type method in a Banach space setting. The method is free of bilinear operators and then interesting for the solution of systems of equations. Without imposing any type of Fréchet differentiability on the operator, a variant using divided differences is also analyzed. A variant of the method using only divided differences is also presented.
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1. Introduction

For the approximation of a solution of a nonlinear equation [image: there is no content], Newton-type methods are the first option. Under some regularity assumptions, the methods are at least second order convergent. The classical third order schemes, such as Halley or Chebyshev methods, evaluate second order Fréchet derivatives [1,2,3]. These evaluations are very time-consuming for systems of equations. Indeed, let us observe that for a nonlinear system of m equations and m unknowns, the first Fréchet derivative is a matrix with [image: there is no content] entries, while the second Fréchet derivative has [image: there is no content] entries. This implies a huge amount of operations in order to evaluate every iteration. In particular, these methods are hardly used in practice.

In this paper we study the following two-step method [4,5] that improves the order of Newton’s method up to third order, but without evaluating any second Fréchet derivative:



[image: there is no content]



(1)




The basic advantage of this method is that, as the matrix that appears at each iteration is the same, only one [image: there is no content] decomposition is computed. In most real problems, the computational cost of solving a linear system is more expensive than some extra evaluations of the operator. Moreover, from a dynamical point of view [6] the method seem better than the classical two-point Newton method, that is



[image: there is no content]



(2)




since the regions of non convergence are reduced.
The main assumption for obtaining convergence of third order iterative methods [2,7,8], is a Lipschitz condition in the second Fréchet derivatives,



[image: there is no content]



(3)




With this hypothesis, and by choosing an initial guess such that [image: there is no content] exists and [image: there is no content] is sufficiently close to zero, cubic convergence is obtained. The Lipschitz condition (3) can be relaxed to a p-Hölder condition



[image: there is no content]



(4)




or even to some ω-condition


[image: there is no content]



(5)




where ω:R+⟶R+ is a nondecreasing continuous function.
By means of this type of conditions we can ensure the convergence of the scheme (1).

Alternatively, since the scheme (1) only uses first derivatives, we could also consider the possibility of obtaining convergence by assuming the main condition just in the first derivatives, instead of in the second derivatives. There are many theories on the local and semilocal convergence of Newton’s type methods, see for instance [9,10,11,12,13,14,15,16,17,18].

Following [19,20,21,22], in [5] the semilocal convergence of (1) under ω-conditioned divided differences was analyzed. Remember that a continuous bounded linear operator [image: there is no content] associated to a nonlinear operator [image: there is no content], is called a divided difference of first order for the operator F on the points x and y if [image: there is no content]. If F is Fréchet differentiable, then [image: there is no content] for all [image: there is no content]. Moreover, a divided difference satisfies an ω-condition if



||[x,y;F]−[v,w;F]||≤ω(||x−v||,||y−w||),x,y,v,w∈B



(6)




where ω:R+×R+⟶R+ is a continuous function, which is nondecreasing in both variables.
In this paper, following [23], we expand the applicability of (1) relaxing the hypotheses of convergence. We also analyze a modification of scheme (1) using divided differences:



[image: there is no content]



(7)




Here, the parameters [image: there is no content] can be considered as a control of the good approximation to the first Fréchet derivative. For this method we are able to obtain convergence without assuming any Fréchet differentiability in the operator F.

Other higher order methods, in some cases with a better behavior in the real case, have been proposed during the last few years [24,25,26,27]. The main advantage of the schemes studied in this paper is that it is not necessary to evaluate any bilinear operator (second order Fréchet derivatives or their approximations using divided differences).

The rest of the paper includes the semilocal convergence of both schemes using centered hypotheses expanding their applicability.



2. Semilocal Convergence Using Centered Hypotheses

Convergence theorems for Newton-type methods establish sufficient conditions on the operator and the first approximation to the solution in order to ensure that the sequence of iterates converges to a solution of the equation. In some works such as [19,20,21,22,28], convergence is established by assuming as a main hypothesis that the divided difference satisfies an ω-condition (6). In [5] we extend this theory to the method (1). Now we expand the applicability using centered hypotheses.

As pointed out in [5], we observe that this type of strategies to derive convergence are not applicable to the scheme (1) directly. The problem is the sign ‘+’ in the first step. In general, the iteration [image: there is no content] is not closer to the solution than [image: there is no content]. In order to obtain convergence, we rewrite the scheme as a Newton-secant type method of one step, instead of the original two steps version of the scheme.

By using the definition of divided differences and the original form of the method



[image: there is no content]



(8)




we obtain the following Newton-secant formula:


xn+1=[image: there is no content]+F′([image: there is no content])−1(F([image: there is no content])−F([image: there is no content]))=[image: there is no content]+F′([image: there is no content])−1([[image: there is no content],[image: there is no content];F]([image: there is no content]−[image: there is no content]))=[image: there is no content]+F′([image: there is no content])−1([[image: there is no content],[image: there is no content];F](−F′([image: there is no content])−1F([image: there is no content])))=[image: there is no content]−F′([image: there is no content])−1[[image: there is no content],[image: there is no content];F]F′([image: there is no content])−1F([image: there is no content])



(9)




We will use the following notations:



Γn=F′([image: there is no content])Φn=Γn[[image: there is no content],[image: there is no content]+Γn−1F([image: there is no content]);F]−1Γn








Theorem 1 Let [image: there is no content]be two Banach spaces. Let B be a convex open subset of X, and suppose that there exists a first order divided difference of the Fréchet differentiable operator [image: there is no content]satisfying



||[x,y;F]−[v,w;F]||≤ω(||x−v||,||y−w||),x,y,v,w∈B



(10)




and


||[image: there is no content]−[x0,x0;F]||≤[image: there is no content](||x−x0||,||y−x0||),x,y∈B



(11)




where ω:R+×R+⟶R+[image: there is no content]:R+×R+⟶R+are continuous functions, nondecreasing in both variables, such that [image: there is no content]and [image: there is no content]. By definition [image: there is no content].
Let [image: there is no content]. Assume that

(1) [image: there is no content].

(2) [image: there is no content].

(3) The equation



[image: there is no content]



(12)




has a smallest positive root R, where [image: there is no content].
If [image: there is no content]and [image: there is no content], then [image: there is no content]and the method (9) is well defined, it remains in [image: there is no content]and converges to the unique solution of [image: there is no content]in [image: there is no content]¯.

Proof.

From the initial hypothesis, it follows that [image: there is no content] is well defined and



||[image: there is no content]−x0||≤η<R








Thus, [image: there is no content]∈B(x0,R).

Since [image: there is no content] is a nondecreasing function, we have



||I−Γ0−1Γ1||≤||Γ0−1||·||Γ0−Γ1||≤||Γ0−1||[image: there is no content](||[image: there is no content]−x0||,||[image: there is no content]−x0||)≤β[image: there is no content](η,η)≤β[image: there is no content](R,R)<1








Hence, [image: there is no content] is well defined and



||[image: there is no content]Γ0||≤11−β[image: there is no content](η,η)||[image: there is no content]||≤β1−β[image: there is no content](η,η)








In particular, [image: there is no content] and [image: there is no content] are well defined.

Similarly,



||I−Γ0−1[x0,y0;F]||≤β[image: there is no content](0,η)≤β[image: there is no content](R,R)<1








Hence, [image: there is no content] is well defined and



||[image: there is no content]||≤β1−β[image: there is no content](0,η)








By the definition of the method (9) and of the divided differences, we get



F([image: there is no content])=F([image: there is no content])−F(x0)+F(x0)=F([image: there is no content])−F(x0)−Φ0([image: there is no content]−x0)=([[image: there is no content],x0;F]−Φ0)([image: there is no content]−x0)








Thus,



||[image: there is no content]−[image: there is no content]||=||[image: there is no content]F([image: there is no content])||=||[image: there is no content]Γ1[image: there is no content]F([image: there is no content])||≤||[image: there is no content]Γ1||·||[image: there is no content]F([image: there is no content])||≤||[image: there is no content]Γ1||·||[image: there is no content]([[image: there is no content],x0;F]−Φ0)||·||[image: there is no content]−x0||








Now, we need to bound the first two terms adequately.


	A bound for ||[image: there is no content]([[image: there is no content],x0;F]−Φ0)||

From



||I−[image: there is no content]Γ0||=||[image: there is no content]([x0,y0;F]−Γ0)||≤||[image: there is no content]||·||[x0,y0;F]−Γ0||≤β[image: there is no content](0,η)1−β[image: there is no content](0,η)<1








we obtain



||[image: there is no content]([[image: there is no content],x0;F]−Φ0)||=||[image: there is no content]([[image: there is no content],x0;F]−Φ0+Γ0−Γ0)||≤||[image: there is no content]||·||[[image: there is no content],x0;F]−Γ0||+||[image: there is no content]Γ0||·||[image: there is no content]Γ0−I||≤β[image: there is no content](η,0)1−β[image: there is no content](η,η)+β[image: there is no content](0,η)(1−β[image: there is no content](η,η))(1−β[image: there is no content](0,η))=β[image: there is no content](η,η)2−2β[image: there is no content](η,η)·4−β[image: there is no content](η,η)2−β[image: there is no content](η,η)<1









	A bound for ||[image: there is no content]Γ1||

First, note that



||y1−[image: there is no content]||=||Γ1−1F([image: there is no content])||=||Γ1−1([[image: there is no content],x0;F]−Φ0)([image: there is no content]−x0)||≤||Γ1−1([[image: there is no content],x0;F]−Φ0)||·||([image: there is no content]−x0)||<η








Besides, we have



||I−Γ1−1[[image: there is no content],y1;F]||=||Γ1−1(Γ1−[[image: there is no content],y1;F])||≤||Γ1−1||·||Γ1−[[image: there is no content],y1;F]||≤βω(0,η)1−β[image: there is no content](η,η)<1








Thus, we get



||[[image: there is no content],y1;F]−1Γ1||≤11−βω(0,η)1−β[image: there is no content](η,η)=11−β2ω(η,η)1−β[image: there is no content](η,η)=2−2β[image: there is no content](η,η)2−β(ω(η,η)+2[image: there is no content](η,η))








and



||[[image: there is no content],y1;F]−1||≤β1−β[image: there is no content](η,η)·2−2β[image: there is no content](η,η)2−β(ω(η,η)+2[image: there is no content](η,η))=2β2−β(ω(η,η)+2[image: there is no content](η,η))








Finally



||I−Γ1−1Φ1||=||I−[[image: there is no content],y1;F]−1Γ1||≤||[[image: there is no content],y1;F]−1||·||[[image: there is no content],y1;F]−Γ1||≤βω(η,η)2−β(ω(η,η)+2[image: there is no content](η,η))<1








and therefore



||[image: there is no content]Γ1||≤11−βω(η,η)2−β(ω(η,η)+2[image: there is no content](η,η))=2−β(ω(η,η)+2[image: there is no content](η,η))2−2β(ω(η,η)+[image: there is no content](η,η))








On the other hand, the relation



2−β(ω(η,η)+2[image: there is no content](η,η))2−2β(ω(η,η)+[image: there is no content](η,η))·β[image: there is no content](η,η)2−2β[image: there is no content](η,η)·4−β[image: there is no content](η,η)2−β[image: there is no content](η,η)<β[image: there is no content](η,η)1−β(ω(η,η)+[image: there is no content](η,η))








is equivalent to



(2−β(ω(η,η)+2[image: there is no content](η,η)))(4−β[image: there is no content](η,η))<4(1−β[image: there is no content](η,η))(2−β[image: there is no content](η,η))








By definition [image: there is no content] then



(2−β(ω(η,η)+2[image: there is no content](η,η)))(4−β[image: there is no content](η,η))<(2−β([image: there is no content](η,η)+2[image: there is no content](η,η)))(4−β[image: there is no content](η,η))








Moreover



(2−β([image: there is no content](η,η)+2[image: there is no content](η,η)))(4−β[image: there is no content](η,η))<4(1−β[image: there is no content](η,η))(2−β[image: there is no content](η,η))








since



−2β[image: there is no content](η,η)−(β[image: there is no content](η,η))2<0








Therefore,



||[image: there is no content]−[image: there is no content]||=||[image: there is no content]F([image: there is no content])||=||[image: there is no content]Γ1Γ1−1F([image: there is no content])||≤||[image: there is no content]Γ1||·||Γ1−1([[image: there is no content],x0;F]−Φ0)||·||[image: there is no content]−x0||≤2−β(ω(η,η)+2[image: there is no content](η,η))2−2β(ω(η,η)+[image: there is no content](η,η))·β[image: there is no content](η,η)2−2β[image: there is no content](η,η)·4−β[image: there is no content](η,η)2−β[image: there is no content](η,η)||[image: there is no content]−x0||≤β[image: there is no content](η,η)1−β(ω(η,η)+[image: there is no content](η,η))||[image: there is no content]−x0||≤Mη








Then, using [image: there is no content] and [image: there is no content], we obtain



||[image: there is no content]−x0||≤(M+1)η<R








Thus, [image: there is no content]∈B(x0,R).




By using the same arguments together with an induction strategy we can prove the following facts:


	||[image: there is no content]−x0||≤∑k=0n−1Mkη<R, that is, [image: there is no content]∈B(x0,R)


	From the estimate



||[image: there is no content]−xn−1||≤Mn−1||[image: there is no content]−x0||








we conclude that {[image: there is no content]} is a Cauchy sequence, and hence it converges to some [image: there is no content].


	Since



||F([image: there is no content])||≤||Γn||·||[image: there is no content]−xn−1||








and ||[image: there is no content]−xn−1||→0 when [image: there is no content], we obtain that [image: there is no content]. Let us remark that, by [image: there is no content], ||Γn||≤||Γ0||+[image: there is no content](R,R).

Moreover, if [image: there is no content] is another solution of [image: there is no content] in [image: there is no content]¯, we have



||I−Γ0−1[x*,[image: there is no content];F]||≤||Γ0−1||·||Γ0−[x*,[image: there is no content];F]||≤β[image: there is no content](R,R)<1








Therefore, the operator [x*,[image: there is no content];F] is invertible. In particular, we have x*=[image: there is no content].




The main restriction in the theorem [image: there is no content] replaces the original restriction used in [5] that writes [image: there is no content].

We can find simple numerical examples where only the centered hypotheses are satisfied, see for instance [23].



3. A Variant Using Only Divided Differences

For applications involving not Fréchet differentiable operators, we can consider a modification of the proposed method by using divided differences. Specifically, we will consider



[image: there is no content]=[image: there is no content]+[[image: there is no content]−[image: there is no content]F([image: there is no content]),[image: there is no content]+[image: there is no content]F([image: there is no content]);F]−1F([image: there is no content])xn+1=[image: there is no content]−[[image: there is no content]−[image: there is no content]F([image: there is no content]),[image: there is no content]+[image: there is no content]F([image: there is no content]);F]−1F([image: there is no content])



(13)




where [image: there is no content]∈[0,1] is computed in practice to satisfy


tolc<<||[image: there is no content]F([image: there is no content])||≤toluser








Here, [image: there is no content] is related to the computer precision and [image: there is no content] is a free parameter for the user, see [20,29].

Denoting



Υn=[[image: there is no content]−[image: there is no content]F([image: there is no content]),[image: there is no content]+[image: there is no content]F([image: there is no content]);F]








and


Ψn=Υn[[image: there is no content],[image: there is no content];F]−1Υn








the method (13) can be written alternatively as


xn+1=[image: there is no content]−Ψn−1F([image: there is no content])



(14)




By using a similar strategy to the one in Section 2, we can derive its semilocal convergence, but in this case without assuming any differentiability of the operator.

A possible theorem should be:

Theorem 2 Let [image: there is no content]be two Banach spaces. Let B be a convex open subset of X, and suppose that there exists a first order divided difference of the operator [image: there is no content]satisfying



||[x,y;F]−[v,w;F]||≤ω(||x−v||,||y−w||),x,y,v,w∈B



(15)




and


||[image: there is no content]−[x0,x0;F]||≤[image: there is no content](||x−x0||,||y−x0||),x,y∈B



(16)




where ω:R+×R+⟶R+[image: there is no content]:R+×R+⟶R+are continuous functions, nondecreasing in both variables, such that [image: there is no content]and [image: there is no content]. By definition [image: there is no content].
Let [image: there is no content]. Assume that

(1) [image: there is no content].

(2) [image: there is no content].

(3) The equation



t(1−m1−β(ω(t+2toluser,t+2toluser)+[image: there is no content](t+2toluser,t+2toluser)))−η=0



(17)




has a smallest positive root R, where m=β[image: there is no content](η+toluser,η+toluser).
If β(ω(R+2toluser,R+2toluser)+2[image: there is no content](R+2toluser,R+2toluser))<1and [image: there is no content], then M:=m1−β(ω(R+2toluser,R+2toluser)+[image: there is no content](R+2toluser,R+2toluser))∈(0,1)and the method (14) is well defined, it remains in [image: there is no content]and converges to the unique solution of [image: there is no content]in [image: there is no content]¯.



4. Numerical Example

We consider



x(s)=1+∫01G(s,t)x(t)2dt,s∈[0,1]



(18)




where [image: there is no content] and the kernel G is the Green function in [image: there is no content].
We use a discretization process and transform Equation (18) into a finite dimensional problem and we obtain the following system of nonlinear equations:



F(x)≡x−1−Avx=0,F:R8→R8



(19)




where


a=([image: there is no content],[image: there is no content],…,x8)T,1=(1,1,…,1)T,A=(aij)i,j=18,vx=(x12,x22,…,x82)T








We use the divided difference of first order of F as [image: there is no content], where [image: there is no content] with [image: there is no content].

If we choose the starting points [image: there is no content] and [image: there is no content], method (9)) with the max-norm, we obtain [image: there is no content], [image: there is no content],



[image: there is no content]










[image: there is no content]








and


[image: there is no content]








The solutions of Equation (12) are



r1=0.488915…andr2=5.70809….








Then, by denoting [image: there is no content] it is easy to see that the following condition is verified



[image: there is no content]








and


[image: there is no content]








So, all the conditions of Theorem 1 are satisfied and a consequence we can ensure the convergence of method (9).
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