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Abstract: In this paper, we address the problem of detecting and tracking targets with a low 

signal-to-noise ratio (SNR) by exploiting hybrid differential evolution (HDE) in the particle 

filter track-before-detect (PF-TBD) context. Firstly, we introduce the Bayesian  

PF-TBD method and its weaknesses. Secondly, the HDE algorithm is regarded as a novel 

particle updating strategy, which is proposed to optimize the performance of the PF-TBD 

algorithm. Thirdly, we combine the systematic resampling approach to enhance the 

performance of the proposed algorithm. Then, an improved PF-TBD algorithm based on the 

HDE method is proposed. Experiment results indicate that the proposed method has better 

performance in detecting and tracking than previous algorithms when the targets have a  

low SNR. 

Keywords: track-before-detect; particle filter; hybrid differential evolution 

 

1. Introduction  

The traditional target detection approach is called track-after-detect (TAD); it involves the application 

of a detection threshold at every scan, which leads to a loss of information, as some sensor responses my 

fail to pass the detection threshold. Additionally, TAD methods cannot detect the targets with a low 

signal-to-noise (SNR) under 10 dB [1]. An alternative approach is called track-before-detect (TBD) [2], 
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which jointly processes the raw sensor data (infrared sensor, radar, passive sonar, etc.) without a 

threshold and jointly declares the presence of a target and its track. This is acceptable if the SNR is low. 

A large number of TBD algorithms have been developed in the past several decades including direct 

maximum likelihood [3], the Hough transform [4], dynamic programming [5,6], and so on. These 

methods generally require discretization of the state space and are very computationally intensive. 

Recently, the popularity of the particle filter (PF) method has increased due to its flexibility to handle 

cases where the dynamic and observation models are non-linear and/or non-Gaussian [7]. Particle filter 

track-before-detect (PF-TBD) was first proposed by Salmond [8], in parallel with the work by  

Boers [9]. These algorithms have since been extended in [10–12], which form a single target filter for 

two targets. The literature [10] presents a performance comparison of three particle filters using several 

different particle proposal densities designed for a single target. In [11], a new model for solving the 

problem of detecting a single target arrival and tracking its state in a TBD context is presented. The 

work in [12] shows a modeling setup and algorithm for a multiple target recursive Bayesian TBD 

application in a radar context. Phase information is used to improve the PF-TBD algorithm in the 

literature [13]. In [14], the PF is replaced by a cost-reference particle filter (CRPF). However, these 

proposals have some disadvantages in terms of computational complexity. 

In this paper, an improved PF-TBD algorithm is proposed, which exploits a novel particle updating 

strategy that regards the particle updating process as an optimization problem using the hybrid 

differential evolution (HDE) algorithm [15,16] before the resampling process. It can be drawn from this 

strategy that we can reduce effectively the particle impoverishment and optimize the performance of 

weak target detection. Simulation results are presented to demonstrate the validity of the algorithm. 

The remainder of this paper is organized as follows. The TBD system model is introduced in 

Section 2. In Section 3, first of all, we introduce the Bayesian PF-TBD approach and its weaknesses. 

Then, the HDE algorithm is given, and an improved PF-TBD algorithm is proposed. We evaluate the 

performance of the proposed algorithm in Section 4. At last, conclusions and pointers for future 

research are presented in Section 5. 

2. TBD System Setup  

In this section, we will describe the models that will be used in the TBD application, the target 

dynamics models and the measurement models. 

2.1. Target Dynamic Model  

The target state is represented by a five-dimensional state vector T
kkkkkk Iyyxx ][ =x , where ),( kk yx , 

),( kk yx   and kI  represent the position and velocity in the x and y dimensions and the intensity  

of the target at time k, respectively. k is the time index. A constant-velocity (CV) model is widely used 

as an example.  

The discrete-time system dynamics of this model is of the form:  

1k k k−= +x Fx w  (1)

where kw  is the zero mean Gaussian noise process with covariance CVQ  and CVF  is the process 

transition matrix, which are defined by: 
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where CVT  is the sampling period, 1q and 2q  are the power spectral density of the acceleration noise 

and the noise in the rate of change of target return intensity, respectively.  
The presence of a target in the data is denoted by a target existence variable kE , a target existing in 

the data, 1kE = , otherwise 0kE = . The probability of target existence is modeled as a two-state Markov 

chain, the probability transition matrix of which is defined by: 

1

1
d b

d b

P P

P P

− 
Π =  − 

 (4)

where bP  and dP  denote the probability of target birth and death, respectively. 

2.2. Measurement Model  

Generally, we use the results of the sensor signal processing, which are a series of images, and the 

signal is assumed to be two-dimensional images [8−10], each frame consisting of n cells in the x 
dimension and m cells in the y dimension. The measurement at time k is the intensity of each cell in 

the image, which is given by ( , ){ : 1,..., ; 1,..., }i j
k kz z i n j m= = = . As in Chapter 11 of [7], for each cell, the 

measurement model can be defined as follows: 

( , ) ( , )
( , )

( , )

( ) 1

0

i j i j
i j k k k k

k i j
k k

h v E
z

v E

 + =
=  =

x
 (5)

where ( , )( )i j
k kh x  is a contribution from the intensity of the target in the cell ),( ji  and 

),( ji
kv  is the 

measurement noise in the cell, which is a known Gaussian distribution with zero mean, variance 2σ . In 
this work, we adopt the sensor point spread function, a point target of intensity kI  at position ( , )k kx y ; 

the contribution to cell ),( ji  can be written as: 

2 2
( , )

2 2

( ) ( )
( ) exp

2 2
x y k k k yi j

k k

I x i x y i
h

π
 Δ Δ − Δ + − Δ

= −  Σ Σ 
x  (6)

Here, the parameter Σ  represents the extent of blurring and xΔ  and yΔ  denote the size of a cell in 

the x and y  dimensions, respectively. Then, the set of complete measurements up to time k  is 

denoted by },...,{ 1 kzz=Z . 
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Under the assumptions of Gaussian measurement noise, which is independent of cell-to-cell, the 

likelihood function in the presence and absence of a target can be written as: 
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Then: 
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The likelihood ratio for the cell is: 
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where: 
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3. Hybrid Differential Evolution Particle Filter Track-Before-Detect Algorithm 

In this section, we give a derivation of the PF-based TBD algorithm and analyze the weaknesses of 

the PF-TBD, and then, an improved algorithm based on HDE is proposed. 

3.1. Bayesian Particle Filter Track-Before-Detect  

The main problem of TBD can be formulated in the framework of recursive Bayesian estimation in 

different expansion forms. The target state is not defined when the target does not exist in the data, 
where 0kE = . Then, target detection and tracking can be implemented based on the posterior density 

)|,( kkk ZExp  when the target does exist, where 1=kE . 
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The predicted target state can be written in terms of the target and existence at the previous time, giving: 
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where )( kb xp  is the prior density of a target when it has appeared in the data between time 1−k  and k. 

The algorithm proceeds by constructing two sets of particles. The first set, the birth particles, estimate 
( )1/ 1, 0,k k k kp x E E Z−= = , that is the case where the target did not exist in the data at time 1−k , but does at 

time k. The second set, the continuing particles, estimates ( )1/ 1, 1,k k k kp x E E Z−= =  , which is the case 

where the target has continued to exist in the data k−1 to k. Both sets of particles require a proposal 

distribution. For the continuing particles, the target dynamics are used in Equation (4). For the birth 

particles, a uniform distribution can be used. Then, the former is approximated using interacting sets of 

particles, and the calculation of the latter is based on the particle weights in these two sets. 

Additionally, the estimate of the probability of existence can be calculated by particle weights in these 

two sets. State estimation can be obtained after resampling from these combined sets. There are three 

main resampling methods: multinomial resampling, residual resampling and systematic resampling [17]. 

To a certain extent, the resampling process is introduced to improve the degradation phenomenon of 

the particles. However, it also brought some problems. Particles that have higher weights will be 

reproduced many times. Additionally, those that have lower weights will fade away. Then, all particles 

will collapse to a small area, which will lead to the sample point sets not being sufficient after several 

iterations. The sample point sets are described the a posteriori probability density function. In the  

PF-TBD algorithm, if the particles collapse into a small area at time k, most of the particles, after the 

resampling process, are “the continuing particles”. This leads to these particles, which are produced by 

the state transition equation at time 1+k , also collapsing into a small area. Moreover, if the area 

deviates from the true location, the target will be lost. 

3.2. Improved PF-TBD-Based on the HDE Algorithm 

In this paper, to improve the particle impoverishment problem, produced by the resampling process, 

a novel particle updating strategy is proposed before the resampling process to overcome the problem. 

We regard the particle updating process as an optimization problem using the HDE algorithm to 

increase the diversity of particles and to avoid the particles collapsing into a small area. 

The HDE algorithm based on the simulated annealing (SA) method is utilized for the search 

capability of the SA to enhance the convergence capability of differential evolution (DE) in later 

periods and to improve the robustness of the DE algorithm [15,16]. It uses the Metropolis criterion of 

the SA algorithm to replace the section step of the DE algorithm. It seems that the computation of the 

HDE step is more complicated than DE. However, the HDE algorithm can achieve better results than 

DE with much lower iterations [15,16]. The HDE algorithm saves time to make up for its complexity. 
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Therefore, we choose the better optimized performance of HDE to obtain sampling particles that 

conform more to the true state distribution. 

3.2.1. Hybrid Differential Evolution Algorithm 

The HDE algorithm relies on the initial population generation, mutation, recombination and the new 

selection to probe the search space through iterative progress until the termination criteria are met.  

Detailed steps are presented accordingly in the sequel.  

Step 1: Creating the initial population. 
The first step of HDE is to create the initial population samples (the number of generations is 0=g ) 

in n dimensional space as follows: 

))(1,0()0( L
ij

U
ijij

L
ijij xxrandxx −+=  (14)

where njNPi ,...,2,1;,...,2,1 == , and NP  is the population size. U
ijx  and L

ijx  denote the upper and 

lower limits of the j-th variable in the population respectively. )1,0(ijrand  represents a  

uniformly-distributed random value within [0, 1]. 

Step 2: Mutation operation. 

The function of mutation in HDE is to maintain the diversity of a population. A typical HDE 

mutation sample formulation is: 

))()(()()( 21 gxgxFgxgh jrjrmijij −⋅+=  (15)

where g  represents the g-th generation, and ( )ijh g  are the mutated vector samples. 1 2r r i≠  ≠  and 1r , 

2r  are randomly-selected integers within NP , },...,2,1{2,1 NPrr ∈ . mF  is the scaling factor. 

Step 3: Crossover operation. 

The basic crossover process is a discrete recombination, which employs a crossover constant 
[0,1]C ∈   to determine if the newly-generated individual samples are to be recombined. The 

expression of the crossover process is given in Equation (16): 





>
≤

=
Crandgx

Crandgh
gv

ij

ij
ij )1,0()(

)1,0()(
)(  (16)

where )(gvij  are the trial vector samples. 

Step 4: New selection operation. 

The HDE algorithm adopts the Metropolis criterion of the SA algorithm to select whether to accept 

the trial vector samples. We construct the parameter about fitness function values 
))(())(( gxfgvff ijij −=Δ , and then, we decide the trial vector samples by the Metropolis criterion. 

Metropolis criterion: if 0<Δ f , the trial vector sample is accepted. If 0>Δ f , we calculate an 

acceptance probability ( ) exp( )
SA

f
P f

T

Δ
Δ = −  and generate a pseudo-random number r . If rfP ≥Δ )( , the 

trial vector sample is accepted; otherwise, the point is discarded. 

Step 5: Cool down operation. 
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In this step, the cool down operation of the SA algorithm is executed. We defined ρ⋅= SASA TT ; here, 

SAT  is an annealing temperature, and )1,0(∈ρ  is an annealing control parameter.  

When the new population is propagated, Step 2 to Step 5 is repeated until the pre-specified 

temperature 0T  is reached. 

3.2.2. Proposed Method 

Firstly, the particle updating process is optimized by the HDE algorithm. The importance-sampling 

particles are regarded as the initial population of the HDE algorithm, and the corresponding weights 

are treated as the fitness functions of the target vectors, respectively. The HDE resampling scheme 

recombines the particles by using an iterative process of mutation, crossover and the simulated 

annealing operator. Then, a new set of diverse particles is propagated. Secondly, the systematic 

resampling is chosen to be executed. 

The proposed algorithm exploits a hybrid estimation technique, where the state is expanded to 

include the existence variable T
k

T
kk E ][xs = . Given a set of particles describing the joint posterior 

density at time 1−k , { }M

n
n
k

n
k ws 111, =−−  with uniform weights, N  is the particle number. Then, the 

proposed algorithm contains the following steps: 

Step 1: Calculate the target existence variable: { } { } ][][ 11 ∏= == ，1-kk

N

n
nN

n
n EE . 

Step 2: Create a set of particles. These are two possible situations. 

(i) Set the ‘birth particle’ state as a sample from the proposal density 

k 1~ ( / 1, 0, )n n n
b k k k kq E E z−= =x x . The target’s location ),( n

k
n
k yx  is uniform over the sensor  

field-of-view. Its velocity and intensity are assumed to be uniform as follows 

min max(( , ) / ) [ , ]n n
b k k kq x y z U v v=  , min max( / ) [ , ]b k kq I z U I I= , where minv  and maxv are the minimum and 

the maximum of the target velocity, respectively. minI  and maxI are the minimum and the 

maximum of the target intensity, respectively.  
(ii) Set the “survival particle” state sampled from the proposal k 1~ ( / 1, 1, )n n n

b k k k kq E E z−= =x x . 

That is, the “survival particle” kx  is sampled according to the target state transition  

Equation (1). 

(iii) For each particle, compute the un-normalized weight 
n
kw

~
 by using the likelihood ratio

kw ( / , 1)n n n
k k kl z x E= = .  

Step 3: Optimize the sample particles by HDE. The sampling particles are regarded as the initial 

population of the HDE algorithm, and the corresponding weights are regarded as the fitness 

functions. According to the HDE algorithm, the process is iterated until the optimal population 

is found or a pre-specified condition is reached, then we can get the optimal set of particles 

{ }N

n
n

k
n w 1

~, =′′
kx . 

Step 4: Normalize the weights of each particle: 

( )
==

=′=′=′′=′
N

n

n
k

n
kk

n
k

n
kk

N

n

nnn ExzlExzl
11

)1,|(/)1,|(~/~
kkk www . 



Algorithms 2015, 8 972 

 

 

Step 5: Resample the particles: { } { } ],[]/1,[ 11

N

n
n

k
nN

n
n wxsamplesystematicNx == ′′−= kk re . 

Step 6: Output the state estimation: an estimate of the target state can be made from the set of 

particles resulting from the time algorithm above. 

The posterior density of target existence at time k is { }kP 1 /k kP E Z
Δ
= = , and then, the probability 

of existence is given by 1ˆ0,/ˆ
1

≤≤=
=

kk PP NE
N

n

n
k . Additionally, the target state can be estimated by 
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4. Simulation Results  

We use the following simulated measurement data to test the performance of the proposed 

algorithm, which is widely used in the current study and some representative PF-TBD  

algorithms [2–6]. Meanwhile, the CV (constant velocity) and CT (coordinate turn) motion models are 

used for testing.  

The simulated measurement data consists of a total of 30 frames, with the target appearing in the 

data at Frame 7 and disappearing at Frame 22. Each frame consists of an array of 20 × 20 pixels, 
20== mn ; each cell has unit dimensions y 1xΔ = Δ = . The probabilities of birth and death are set as

0.05b dP P= = . The standard deviation of the target spread function is 0.7 = . The target initial state 

was given by 0 [4.2 0.45 7.2 0.25 20]Tx = . The birth particles proposal functions ),0(~ nUxb
k , 

~ (0, )b

ky U m , ~ ( 1,1)b

kx U − , )1,1(~ −Uyb
k  and ~ (10,30)bI U

k
. Set the observation noise variance 2σ  to get 

a different SNR, which is defined by 







=

2

2

10
σ
I

SNR log . For example, if the SNR is 6 dB, the standard 

deviation of the background noise level in each pixel is 10=σ  units. The HDE parameters were set 
according to [16]. 0.9mF = ; 6.0=C ; the annealing initial temperature 100SAT = ; the annealing parameter 

9.0=ρ ; and the pre-specified temperature 50 =T . 

For the CV model, the transition matrix CVF  is given by Equation (2) and CVQ  by  

Equation (3), with 
1 0.001q = , 

2 0 .0 1q = , 1CVT =  and the target detection threshold 6.0=thr . 

For the CT model, the system dynamics model function is given by Equation (1), and the 
covariances of noise process CTQ  and the process transition matrix CTF  are defined by: 
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where )(kw  is the turn rate, CTT  is the sampling period and 1q  and 2q  are the power spectral density 

of the acceleration noise and the noise in the rate of change of target return intensity, respectively. 

Here, their values are set the same as in CV model. The turn angle is 4°, 1CTT = ; and the target 

detection threshold 7.0=thr . 

For convenience, in the experimental results, the proposed algorithm is marked as HDE PF-TBD; 

PF-TBD with the systematic resampling method is marked as SystematicR PF-TBD; and that using the 

multinomial resampling method is marked MultinomialR PF-TBD. We use exactly the same set of data 

and the same filter parameters. The number of particles used by each algorithm was set to 6000. The 

algorithm performance is gauged on an average over 100 Monte Carlo simulations. 

4.1. Scenario-CV 

Two sampled measurement images with SNR 6 dB are shown in Figure 1 in different frames: 

Frames 15 and 18. This shows that the target exists at Frames 15 and 18, but it is indistinguishable 

from the background noise. If using the TAD algorithm, this will inevitably lead to a loss of 

information at low SNR. 

 
(a) (b) 

Figure 1. (a) Sampled image at Frame 15; (b) sampled image at Frame 18. 

4.1.1. Detection Performance Analysis 

The detection performance of the proposed algorithm (HDE PF-TBD) is evaluated in simulations 

with the probability of existence. The average of the probability of detection with different SNRs of 

the three algorithms is compared in Table 1. Figure 2 shows the results in terms of the probability of 

existence at different frame times.  
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Table 1. The average of the probability of detection for the constant velocity (CV) model. 

R, resampling; PF, particle filter; TBD, track-before-detect; HDE, hybrid  

differential evolution. 

Algorithm 9 dB 6 dB 3 dB 1 dB 

MultinomialR PF-TBD 0.770 0.657 0.423 0.217 

SystematicR PF-TBD 0.774 0.682 0.498 0.300 

HDE PF-TBD 0.875 0.765 0.628 0.395 

 

 
(a) (b) 

 
(c) (d) 

Figure 2. (a) Probability of the existence at SNR = 9 dB for the CV model; (b) probability 

of existence at SNR= 6 dB for the CV model; (c) probability of existence at SNR = 3 dB 

for the CV model; (d) probability of existence at SNR = 1 dB for the CV model. 

The target exists if the probability of existence is higher than 0.6, which a tested and sensible value 

and is plotted as a horizontal line in Figure 2. Moreover, the asterisk signs at the bottom of the figures 

indicate the time of the presence of the target. It can be seen from Figure 2 that for SNR = 1, 3, 6, 9 dB, 

three algorithms have target presence and absence declaration delays, and each algorithm follows the 

true existence of the target much more closely for the higher SNR cases, with performance degrading 

as SNR reduces. The HDE PF-TBD algorithm provides higher target detection confidence than the 

other two algorithms. Furthermore, the HDE PF-TBD algorithm performs very well among the four 
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SNR values, in other words with less target presence and absence declaration delays than others. From 

Figure 2, we also can see that the probability of the existence of the proposed algorithm has a large 

increase when the SNR is 3 dB and 1 dB. For clarity, the data statistics of Table 1 have proven that the 

HDE PF-TBD has better detection sensitivity when the SNR is lower. 

 
(a) (b) 

Figure 3. (a) Probability of existence at SNR = 0 dB for the CV model; (b) probability of 

existence at SNR = −1 dB for the CV model.  

Moreover, it can be seen from Figure 3 that for SNR = 0, −1 dB, all three algorithms suffer a poor 

detection performance. However, compared to SystematicR PF-TBD and the MultinomialR  

PF-TBD, the HDE PF-TBD algorithm can detect the target at the end of the frames where the target 

exists. It is demonstrated that the proposed approach has a larger detectable and traceable SNR range 

and is capable of resolving large noise in the target. Meanwhile, it also proves that the improvements 

in the proposed algorithm can effectively enhance the detection sensitivity and that the proposed 

algorithm is more suitable for detecting weak targets with low SNR. 

4.1.2. Tracking Performance Analysis 

To measure the estimation accuracy of the proposed algorithm, we introduce the root mean squared 

error ( RMSE ) in the position and its mean 
————

RMSE  for different SNRs. Additionally, the RMSE  for M 

simulations with different frames at time k is defined as: 

( ) ( )( )
1/2

2 2

, , , ,
1

1
ˆ ˆ

M

k m k m k m k m
m

RMSE x x y y
M =

 = − + −  
  (19)

where mkx ,  and mky ,  are the true values of the target state and mkx ,ˆ  and mky ,ˆ  are defined as the 

estimation of the target state. We only consider the frames in which the target exists, and the period 

length is L. The 
————

RMSE  can be shown as: 

————

1

1 L

i
i

RMSE RMSE
L =

=   (20)
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The results in terms of mean RMSE for the different SNR values of the three algorithms are 

compared in Table 2. Figure 4 shows the results in terms of RMSE in position with corresponding 

frames for different SNR values.  

Table 2. The average of the RMSE for different SNRs for the CV model. 

Algorithm 9 dB 6 dB 3 dB 1 dB 

MultinomialR PF-TBD 2.1757 2.4715 2.7528 3.0814 

SystematicR PF-TBD 1.9771 2.3427 2.6222 3.0622 

HDE PF-TBD 1.3810 1.5971 1.8221 2.3595 

 

 
(a) (b) 

 
(c) (d) 

Figure 4. (a) RMSE in position at SNR = 9 dB for the CV model; (b) RMSE in position at 

SNR = 6 dB for the CV model; (c) RMSE in position at SNR = 3 dB for the CV model;  

(d) RMSE in the position of existence at SNR = 1 dB for the CV model. 

As expected, the tracking accuracy of each algorithm degrades as the SNR reduces. Meanwhile, the 

proposed algorithm shows a better performance on the low SNR target than the other two algorithms in 

Figure 4. It is can be seen that the proposed algorithm has much lower RMSE when the target began to 

appear. It is demonstrated that the HDE PF-TBD algorithm can more accurately estimate the initial 

location of the target appearance. Moreover, from Table 2, it can be clearly seen that the estimation 
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accuracy of the proposed algorithm is always superior to that of the other two algorithms. Although the 

RMSE of the proposed method approximates the other two algorithms at Frames 16 and 17 when the 

SNR is 1 dB, the tracking accuracy of the HDE PF-TBD algorithm is still higher than the other two 

algorithms in the whole frame range where the target exists. Therefore, the proposed algorithm is 

capable of tracking the target with low SNR, and it outperforms the SystematicR PF-TBD and the 

MultinomialR PF-TBD. 

4.2. Scenario-CT 

Similarly, we also analyze detection and tracking performance under the CT model. The average of 

the detection probability of detection with different SNRs of the three algorithms for 100 Monte Carlo 

simulations (MC) is compared in Table 3. Figure 5 shows the results in terms of the probability of 

existence in different frame times for 100 MC. 

Table 3. The average detection probability for the CT model. 

Algorithm 9 dB 6 dB 3 dB 1 dB 

MultinomialR PF-TBD 0.747 0.621 0.378 0.275 

SystematicR PF-TBD 0.768 0.648 0.399 0.284 

HDE PF-TBD 0.827 0.743 0.501 0.367 

The target exists if the probability of existence is higher than 0.7, which is plotted as a horizontal 

line in Figure 5. It can be seen from Figure 5 that, for SNR =1, 3, 6, 9 dB, the three algorithms also 

have target presence and absence declaration delays, and each algorithm follows the true existence of 

the target much more closely for the higher SNR cases, with performance degrading as SNR reduces 

under the CT model. For the CT model, the HDE PF-TBD algorithm provides higher target detection 

confidence than the other two algorithms. Moreover, the HDE PFTBD algorithm has less target 

presence delays than the others. Meanwhile, we also can see that the probability of existence of the 

proposed algorithm has a large increase when the SNR is 3 dB and 1 dB. For clarity, the data statistics 

of Table 3 have proven that the HDE PF-TBD has better detection sensitivity when the SNR is lower. 

 
(a) (b) 

Figure 5. Cont. 
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(c) (d) 

Figure 5. (a) Probability of existence at SNR = 9 dB for the coordinate turn (CT) model; 

(b) probability of existence at SNR = 6 dB for the CT model; (c) probability of existence at 

SNR = 3 dB for the CT model; (d) probability of existence at SNR = 1 dB for the  

CT model. 

Table 4. The average RMSE at different SNRs for the CT model. 

Algorithm 9 dB 6 dB 3 dB 1 dB 

MultinomialR PF-TBD 1.910 2.1556 2.7044 2.909 

SystematicR PF-TBD 1.745 1.8739 2.6258 2.81 

HDE PF-TBD 1.433 1.4477 2.3836 2.3541 

The results in terms of mean RMSE for the different SNR values of the three algorithms for the CT 

model are compared in Table 4. Figure 6 shows the results in terms of RMSE in position with 

corresponding frames for different SNR values for the CT model.  

 

 
(a) (b) 

Figure 6. Cont. 
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(c) (d) 

Figure 6. (a) RMSE in position at SNR = 9 dB for the CT model; (b) RMSE in position at 

SNR = 6 dB for the CT model; (c) RMSE in position at SNR = 3 dB for the CT model;  

(d) RMSE in the position of existence at SNR = 1 dB for the CT model. 

For the CT model, it can be clearly seen from Table 4 and Figure 6 that the proposed algorithm also 

shows a better performance on the low SNR target than the other two algorithms. Although the RMSE 

of the proposed method is a little higher than the other two algorithms at Frame 10 when SNR is 9 dB, 

the tracking accuracy of the HDE PF-TBD algorithm is still higher than other two algorithms in the 

whole frame range that the target exists. Therefore, as can be seen from the two aspects of detection 

and tracking, the proposed algorithm is also capable of tracking the target with the CT motion model 

and low SNR, and it outperforms SystematicR PF-TBD and MultinomialR PF-TBD. 

5. Conclusions 

In this paper, a novel particle filter track-before-detect algorithm based on hybrid differential 

evolution was developed. Firstly, we exploit a hybrid differential evolution as a novel particle updating 

strategy for overcoming the shortcoming of the particle impoverishment. Secondly, in order to reduce 

the influence of the particle degeneracy, the systematic resampling method is chosen for the proposed 

method. Finally, the proposed algorithm combines a more effective particle initiation method, which 

only places the particles in the highest intensity bins of the data. The proposed algorithm not only can 

make full use of the data information, but also decreases the particle degeneracy and enhances the 

diversity of particles. The detection and tracking of the performance advantage of the proposed 

algorithm have been demonstrated by two cases of a low signal-to-noise point target against a 

background of Gaussian noise with the CV and CT motion models, respectively. What is more, the 

proposed method is much more efficient than previous methods. Future work will continue to enhance 

the detection accuracy of the proposed algorithm and to explore the implementation of multiple targets 

within this framework. 
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