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Abstract: Thematic mapping provides today’s analysts with an essential geospatial science tool
for conveying spatial information. The advancement of remote sensing and computer science
technologies has provided classification methods for mapping at both pixel-based and object-based
analysis, for increasingly complex environments. These thematic maps then serve as vital resources
for a variety of research and management needs. However, to properly use the resulting thematic map
as a decision-making support tool, an assessment of map accuracy must be performed. The methods
for assessing thematic accuracy have coalesced into a site-specific multivariate analysis of error,
measuring uncertainty in relation to an established reality known as reference data. Ensuring
statistical validity, access and time constraints, and immense costs limit the collection of reference
data in many projects. Therefore, this research proposes evaluating the feasibility of adopting the
low-cost, flexible, high-resolution sensor-capable Unmanned Aerial Systems (UAS, UAV, or Drone)
platform for collecting reference data to use in thematic map accuracy assessments for complex
environments. This pilot study analyzed 377.57 ha of New England forests, over six University of
New Hampshire woodland properties, to compare the similarity between UAS-derived orthomosaic
samples and ground-based continuous forest inventory (CFI) plot classifications of deciduous, mixed,
and coniferous forest cover types. Using an eBee Plus fixed-wing UAS, 9173 images were acquired
and used to create six comprehensive orthomosaics. Agreement between our UAS orthomosaics
and ground-based sampling forest compositions reached 71.43% for pixel-based classification and
85.71% for object-based classification reference data methods. Despite several documented sources
of uncertainty or error, this research demonstrated that UAS are capable of highly efficient and
effective thematic map accuracy assessment reference data collection. As UAS hardware, software,
and implementation policies continue to evolve, the potential to meet the challenges of accurate and
timely reference data collection will only increase.

Keywords: Unmanned Aerial Systems (UAS); structure from motion (SfM); Unmanned Aerial
Vehicles (UAV); Photogrammetry; Thematic Mapping; Accuracy Assessment; Reference Data;
Forest Sampling; Remote Sensing

1. Introduction

Growing dissidence over the causes and impacts of environmental change in the modern era has
forced an ever-increasing need for data accuracy and certainty. Studied patterns of global change such
as habitat augmentation, loss of biodiversity, invasive species spread, and other systems imbalances
have designated humans as a ubiquitous disturbance for the natural world, leading to the current
‘Anthropocene’ era [1–3]. Degrading natural systems also causes noted pressures on human economies
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and quality of life through diminished potential for ecosystem services [4]. These services include
life sustaining functions such as nutrient regulation, primary production products in agriculture
and forestry, water quality management, and disease mitigation [1,2,5]. Modeling natural systems
requires us to undergo the inherently difficult task of finding representative characteristics. Forested
landscapes comprising high compositional and structural diversity (i.e., complexity), such as those in
the Northeastern United States, further impede these efforts [6]. In many cases, land cover allows us
this ability to represent fundamental constructs of the earth’s surface [7]. We can then employ remote
sensing as a tool to collect land cover data at scales sufficient to overcome environmental issues [8–10].

Remote sensing provides the leading source of land use and land cover data, supported by its
scales of coverage, adaptability, and prolific modifications [7,11,12]. The classification of remote sensed
imagery traditionally referred to as thematic mapping, labels objects and features in defined groups
based on the relationship of their attributes [13,14]. This process incorporates characteristics reflected
within the source imagery and motivations of the project, to recognize both natural and artificial
patterns and increase our ability to make informed decisions [13,15,16].

In the digital age, the process of image classification has most often been performed on a per
pixel basis. Pixel-based classification (PBC) algorithms utilize spectral reflectance values to assign
class labels based on specified ranges. More refined classification techniques have also been formed to
integrate data such as texture, terrain, and observed patterns based on expert knowledge [17–19].

Technologies have recently advanced to allow users a more holistic, human vision matching,
approach to image analysis in the form of object-based image analysis (OBIA). Object-based
classification (OBC) techniques work beyond individual pixels to distinguish image objects (i.e.,
polygons, areas, or features), applying additional data parameters to each individual unit [10,20,21].
OBC methods can also benefit users by reducing the noise found in land cover classifications at high
spatial resolution using class-defining thresholds of spectral variability and area [22]. The specific
needs of the project and the characteristics of the remote sensing data help guide the decision between
which classification method would be most appropriate for creating a desired thematic layer [15,23].

Outside of the progression of classification algorithms, novel remote sensing and computer vision
technologies have inspired new developments in high-resolution three-dimensional (3D) and digital
planimetric modeling. Photogrammetric principles have been applied to simultaneously correct
for sensor tilt, topographic displacement in the scene, relief displacement, and even lens geometric
distortions [24,25]. To facilitate this process, Structure from Motion (SfM) software packages isolate
and match image tie points (i.e., keypoints) within high-resolution images with sizeable latitudinal
and longitudinal overlap to form 3D photogrammetric point clouds and orthomosaic models [25–27].
Techniques for accurate and effective SfM modeling have been refined, even in complex natural
environments, to expand the value of these products [28–30].

The appropriate use of these emergent remote sensing data products establishes a need for
understanding their accuracy and sources of error. Validating data quality is a necessary step
for incorporating conclusions drawn from remote sensing within the decision-making process.
Spatial data accuracy is an aggregation of two distinct characteristics: positional accuracy and thematic
accuracy [10]. Positional accuracy is the difference in locational agreement between a remotely
sensed data layer and known ground points, calculated through Root Mean Square Error (RMSE) [31].
Thematic accuracy expresses a more complex measure of error, evaluating the agreement for the
specific labels, attributes, or characteristics between what is on the ground and the spatial data product,
typically in the form of an error matrix [10].

The immense costs and difficulty of validating mapping projects have brought about several
historic iterations of methods for quantitatively evaluating thematic accuracy [10]. Being once an
afterthought, the assessment of thematic accuracy has matured from a visual, qualitative process
into a multivariate evaluation of site-specific agreement [10]. Site-specific thematic map accuracy
assessments utilize an error matrix (i.e., contingency table or confusion matrix) to evaluate individual
class accuracies and the relations among sources of uncertainty [23,32]. While positional accuracy
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holds regulated standards for accuracy tolerance, thematic mapping projects must establish their own
thresholds for amount and types of justifiable uncertainty. Within thematic accuracy two forms of error
exist: errors of commission (i.e., user’s accuracy) and errors of omission (i.e., producer’s accuracy) [33].
Commission errors represent the user’s ability to accurately classify ground characteristics [10].
Omission errors assesses if the known ground reference points have been accurately captured by
the thematic layer for each class [33]. For most uses, commission errors are favored because the
false addition of area to classes of interest is of less consequence than erroneously missing critical
features [10]. The error matrix presents a robust quantitative analysis tool for assessing thematic map
accuracy of classified maps created through both pixel-based and object-based classification methods.

Collecting reference data, whether using higher-resolution remotely sensed data,
ground sampling, or previously produced sources, must be based on a sound statistical sample design.
Ground sampling stands out as the most common reference data collection procedure. However,
such methods generally come with an inherent greater associated cost. During the classification
process, reference data can be used for two distinct purposes, depending on the applied classification
algorithm. Reference data can be used to train the classification (training data), generating the
decision tree ruleset which forms the thematic layer. Secondly, reference data are used as the source of
validation (validation data) during the accuracy assessment. These two forms of reference data must
remain independent to ensure the process is statistically valid [10].

There are also multiple methods for collecting ground reference data, such as: visual interpretation
of an area, GPS locational confirmation, or full-record data sampling with precise positioning.
The procedures of several professional and scientific fields have been adopted to promote the objective
and efficient collection of reference data. Forest mensuration provides such a foundation for obtaining
quantifiable information in forested landscapes, with systematic procedures that can mitigate biases
and inaccuracies of sampling [34,35]. For many decades now, forest mensuration (i.e., biometrics)
has provided the most accurate and precise observations of natural characteristics through the use of
mathematical principles and field-tested tools [34–36]. To observe long-term or large area trends
in forest environments, systematic Continuous Forest Inventory (CFI) plot networks have been
established. Many national agencies (e.g., the U.S. Forest Service) have such a sampling design
(e.g., Forest Inventory and Analysis (FIA) Program) for monitoring large land areas in a proficient
manner [37]. Despite these sampling designs for efficient and effective reference data collection,
the overwhelming costs of preforming a statistically valid accuracy assessment is a considerable
limitation for most projects [10,23].

The maturation of remote sensing technologies in the 21st century has brought with it the
practicality of widespread Unmanned Aerial Systems (UAS) applications. This low-cost and
flexible platform generates on-demand, high-resolution products to meet the needs of society [38,39].
UAS represent an interconnected system of hardware and software technologies managed by a
remote pilot in command [30,40]. Progressing from mechanical contraptions, UAS now assimilate
microcomputer technologies that allow them to operate for forestry sampling [29,41], physical
geography surveys [42], rangeland mapping [43], humanitarian aid [44], precision agriculture [45],
and many other applications [12,39,46].

The added potential of the UAS platform has supported a wide diversity of data collection
initiatives. UAS-SfM products provide analytical context beyond that of traditional raw imagery,
with products including photogrammetric point clouds, Digital Surface Models (DSM), and planimetric
(or orthomosaic) surfaces. While it is becoming increasingly common to use high-spatial resolution
satellite imagery for reference data to assess maps generated from medium to coarse resolution
imagery, UAS provide a new opportunity at even higher spatial resolutions. To properly apply the
practice of using high-resolution remote sensing imagery as a source of validation data [36,47,48],
our research focuses on if UAS provide the potential for collecting thematic map accuracy assessment
reference data of a necessary quality and operational efficiency to endorse their use. To do this,
we evaluated the agreement between the UAS-collected samples and the ground-based CFI plot
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composition. Specifically, this pilot study investigated if UAS are capable of effectively and efficiently
collecting reference data for use in assessing the accuracy of thematic maps created from either a (1)
pixel-based or (2) object-based classification approach.

2. Materials and Methods

This research conducted surveys of six woodland properties comprising 522.85 ha of land,
377.57 ha of which were forest cover, in Southeastern New Hampshire (Figure 1). The University of
New Hampshire (UNH) owns and manages these six properties, as well as many others, to maintain
research integrity for natural communities [49]. These properties contain a wide diversity of structural
and compositional diversity, ranging in size from 17 ha to 94.7 ha of forested land cover. Each property
also contains a network of CFI plots for measuring landscape scale forest characteristics over time.
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Figure 1. Woodland property boundaries for the six study areas. From North to South (with total
area): Kingman Farm (135.17 ha), Moore Field (47.76 ha), College Woods (101.17 ha), West Foss Farm
(52.27 ha), East Foss Farm (62.32 ha), and Thompson Farm (118.17 ha).

The systematic network of CFI ground sampling plots was established for each of the six woodland
properties to estimate landscape level biophysical properties. These plot networks are sampled on
a regular interval, not to exceed 10 years in reoccurrence. Kingman Farm presents the oldest data
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(10 years since previous sampling) and East Foss Farm, West Foss Farm, and Moore Field each being
sampled most recently in 2014. CFI plots were located at one plot per hectare (Figure 2), corresponding
to the minimum management unit size. Each plot location used an angle-wedge prism sampling
protocol to identify the individual trees to be included in the measurement at that location. Those trees
meeting the optical displacement threshold (i.e., “in” the plot) were then measured for diameter at
breast height (dbh), a species presence count, and the tree species itself, through horizontal point
sampling guidelines [35]. Prism sampling formed variable radius plots in relation to the basal area
factor (BAF) applied. The proportional representation of species under this method is not unbiased
with the basal area of the species with a larger dbh being overestimated, while those with smaller dbh
are underestimated. Since photo interpretation of the plots is also performed from above this bias
tends to hold here as well since the largest canopy trees are the ones most viewed. Therefore, the use
of this sampling method is effective here.
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Figure 2. Woodland property continuous forest inventory (CFI) plot networks totaling 354 horizontal
point sampling plots over 377.57 ha of forested land. Pictured are (Top left to bottom right): (a) Kingman
Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East Foss Farm, and (f) West
Foss Farm.
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The UNH Office of Woodland and Natural Areas forest technicians used the regionally
recommended BAF 4.59 m2 (or 20 ft2) prism [50]. Additionally, a nested plot “Big BAF” sampling
integration applied a BAF 17.2176 m2 (or 75 ft2) prism to identify a subset of trees for expanded
measurements. These ‘measure’ trees for had their height, bearing from plot center, distance from plot
center, crown dimensions, and number of silvicultural logs present recorded.

Basal area was used to characterize species distributions and proportions throughout the
woodland properties [34,35]. For our study, this meant quantifying the percentage of coniferous
species basal area comprising each sample. For the six observed study areas a total of 31 tree species
were observed (Table S1). Instead of a species specific classification, our analysis centered on the
conventional Deciduous Forest, Mixed Forest, and Coniferous Forest partitioning defined by Justice et
al., [5] and MacLean et al., [6]. Here we used the Anderson et al., [7] classification scheme definition
for forests, being any area with 10 percent or greater aerial tree-crown density, which has the ability to
produce lumber, and influences either the climate or hydrologic regime. From this scheme we defined:

• “Coniferous” as any land surface dominated by large forest vegetation species, and managed as
such, comprising an overstory canopy with a greater than or equal to 65% basal area per unit area
coniferous species composition

• “Mixed Forest” being any land surface dominated by large forest vegetation species, and managed
as such, comprising an overstory canopy, which is less than 65% and greater than 25% basal area
per unit area coniferous species in composition.

• “Deciduous”, any land surface dominated by large forest vegetation species, and managed as
such, comprising an overstory canopy, which is less than or equal to 25% basal area per unit area
coniferous species in composition.

The presented classification ensured that samples were mutually exclusive, totally exhaustive,
hierarchical, and produced objective repeatability [7,14].

The original ground-based datasets were collected for general-purpose analysis and research and
so, needed to be cleaned, recoded, and refined using R Studio, version 3.3.2 [51]. We used R Studio to
isolate individual tree dbh measurements in centimeters and then compute basal area for the deciduous
or coniferous species in centimeters squared. Of the original 359 CFI plots, six contained no recorded
trees and were removed from the dataset, leaving 353 for analysis. Additionally, standing dead trees
were removed due to the time lag between ground sampling and UAS operations. Percent coniferous
composition by plot was calculated for the remaining locations based on the classification scheme.

Once classified individually as either Coniferous, Mixed, or Deciduous in composition, the CFI
plot network was used to delineate forest management units (stands). Leaf-off, natural color,
NH Department of Transportation imagery with a 1-foot spatial resolution (0.3 × 0.3 m) [52] provided
further visual context for delineating the stand edges (Figure 3). Non-managed forests and non-forested
areas were also identified and removed from the study areas.

UAS imagery was collected using the eBee Plus (SenseFly Parrot Group, Cheseaux-sur-Lausanne,
Switzerland), fixed-wing platform, during June and July 2017. The SenseFly eBee Plus operated under
autonomous flight missions, in eMotion3 software version 3.2.4 (senseFly SA, Cheseaux-Lausanne,
Switzerland), for approximately 45 minutes per battery. This system deployed the sensor optimized
for drone applications (S.O.D.A), a 20 megapixel, 1in (2.54 cm) global shutter, natural color, proprietary
sensor designed for photogrammetric analysis. In total, the system weighed 1.1 kg (Figure 4).
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bottom right): (a) Kingman Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East
Foss Farm, and (f) West Foss Farm.

UAS mission planning was designed to capture plot- and stand- level forest composition.
Our team predefined mission blocks which optimized image collection while minimizing time outside
of the study area. For larger properties (e.g., College Woods) up to six mission blocks were required
based on legal restrictions to comprehensively image the study area. We used the maximum allowable
flying height of 120 m above the forest canopy with an 85% forward overlap, and 75% side overlap for
all photo missions [30,53]. This flying height was set relative to a statewide LiDAR dataset canopy
height model provided by New Hampshire GRANIT [54]. Further characteristics such as optimal sun
angle (e.g., around solar noon), perpendicular wind directions, and consistent cloud coverage were
considered during photo missions to maintain image quality and precision [28,30].
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Figure 4. eBee Plus Unmanned Aerial System (UAS) with the sensor optimized for drone applications
(S.O.D.A) and eMotion3 flight planning software.

Post-flight processing began with joining the spatial data contained within the onboard flight
log (.bb3 or .bbx) to each individual captured image. Next, we used Agisoft PhotoScan 1.3.2 [55] for
a high accuracy photo alignment, image tie point calibration, medium-dense point cloud formation,
and planimetric model processing workflow [30]. For all processing, we used a Dell Precision 7910,
running an Intel Xeon E5-2697 v4 (18 core) CPU, with 64 GB of RAM, and a NVIDIA Quadro M4000
graphics card. Six total orthomosaics were created.

For each classification method, UAS reference data were extracted from the respective woodland
property orthomosaic. West Foss Farm was used solely for establishing training data samples to
guide the photo interpretation processes. In total, there were six sampling methods for comparing the
ground-based and UAS derived reference data (Table 1) (Figures S1–S6).

Table 1. Six total methods used for UAS reference data collection, between Pixel-based (PBC) and
Object-based (OBC) classification approaches.

Classification Approach

Pixel-based Classification Object-based Classification
1. Stratified Random Distribution 3. Stratified Random, Individual Subsamples
2. CFI-plot Positionally Dependent 4. Stratified Random, Image Object Majority Agreement

5. CFI-plot Dependent, Individual Subsamples
6. CFI-plot Dependent, Image Object Majority Agreement

For the first pixel-based classification reference data collection method (method one),
90 × 90 m extents were partitioned into 30 × 30 m grids, and positioned at the center of each
forest stand. The center 30 × 30 m area then acted as the effective area for visually classifying the given
sample. Using an effective area in this way both precluded misregistration errors between the reference
data and the thematic layer, and ensured that the classified area was fully within the designated
stand boundary [10]. The second PBC reference data collection method (method two) used this same
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90 × 90 m partitioned area but positionally aligned it with CFI-plot locations, avoiding overlaps with
boundaries and other samples.

The first of four object-based classification reference data collection methods (method three) used
a stratified random distribution for establishing a maximum number of 30 × 30 m interpretation
areas (subsamples) within each forest stand. In total, 268 of these samples were created throughout
35 forest stands while remaining both spatially independent and maintaining at least two samples
per forest stand. Similar to both PBC sampling methods, this and other OBC samples used 30 × 30 m
effective areas for visually interpreting their classification. The second OBC reference data collection
method (method four) used these previous 30 × 30 m classified areas as subsamples to represent the
compositional heterogeneity at the image object (forest stand) level [5,10]. Forest stands which did not
convey a clear majority, based on the subsamples, were classified based on a decision ruleset shown
in Table 2.

Table 2. Decision support ruleset for forest stands (image objects) classification of split decision areas.

Class 1 Class 2 Resulting Classification

Coniferous Mixed Coniferous
Deciduous Mixed Deciduous
Coniferous Deciduous Mixed

For the remaining two OBC reference data collection methods, we assessed individual 30 × 30 m
samples (method five) and the overall forest stand classifications (method six) by direct comparison
with the CFI-plots location compositions. An internal buffer of 21.215 m (the hypotenuse of the
30 × 30 m effective area) was applied to each forest stand to eliminate CFI-plots that were subject to
stand boundary overlap. This process resulted in 202 subsamples for 28 stands within the interior
regions of the five classified woodland properties.

For each of the six orthomosaic sampling procedures we relied on photo interpretation for deriving
their compositional cover type classification. Using a confluence of evidence within the imagery,
including morphological and spatial distribution patterns, the relative abundance of coniferous and
deciduous species was identified [24,56]. Supporting this process was the training data collected
from West Foss Farm (Figure S7). A photo interpretation key was generated for plots with distinct
compositional proportions, set at the distinctions between coniferous, deciduous, and mixed forest
classes. During the visual classification process, a blind interpretation method was used so that ground
data bias or location was not influential.

Error matrices were used to quantify the agreement between the UAS orthomosaic and
ground-based thematic map reference data samples. Sample units for both PBC and OBC across
all six approaches followed this method. These site-specific assessments reported producer’s, user’s,
and overall accuracies for the five analyzed woodland properties [33].

3. Results

UAS imagery across the six woodland properties was used to generate six orthomosaics with
a total land cover area of 398.71 ha. These UAS-SfM models represented 9173 images (Figure 5).
The resulting ground sampling distances (gsd) were: Kingman Farm at 2.86 cm, Moore Field at 3.32 cm,
East Foss Farm at 3.54 cm, West Foss Farm at 3.18 cm, Thompson Farm at 3.36 cm, and College Woods
at 3.19 cm, for an average pixel size of 3.24 cm. The use of Agisoft PhotoScan for producing these
orthomosaics does not report XY positional errors. Additional registration of the woodland areas
modeled to another geospatial data layer could determine relative error.
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Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East Foss Farm, (f) West Foss Farm.

In our first analysis of pixel-based classification thematic map accuracy assessment reference data
agreement, 29 sample units were located at the center of the forest stands. This method represented
the photo interpretation potential of classifying forest stands from UAS image products. Overall
agreement between ground-based and UAS-based reference data samples was 68.97% (Table 3).
Producer’s accuracy was highest for deciduous stands, while user’s accuracy was highest for coniferous
forest stands.
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Table 3. Stratified random sampling PBC thematic map error matrix. Ground (reference) data
are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.
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For our second PBC reference data analysis, in which orthomosaic samples were registered with
CFI-plot locations, 19 samples were assessed. Reference data classification agreement was 73.68%
(Table 4), with both user’s and producer’s accuracies highest for coniferous forest stands.

Table 4. CFI plot-registered PBC thematic map error matrix. Ground (reference) data are
represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.
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 Coniferous Mixed Deciduous Total User’s Accuracy 
Coniferous 56 1 4 61 91.80% 
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Four total OBC reference data error matrices were generated; two for the individual subsamples
and two for the forest stands or image objects. Using the stratified random distribution for subsamples,
our analysis showed an overall agreement of 63.81% between the ground-based forest stands and UAS
orthomosaics across 268 samples. Producer’s accuracy was highest for deciduous forests while user’s
accuracy was highest for mixed forest (Table 5).

Table 5. Stratified randomly distributed OBC reference data subsample error matrix. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.
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Table 7. CFI plot-registered UAS orthomosaic subsample thematic map error matrix.  Ground 
(reference) data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are 
derived from the corresponding orthomosaic. 

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 
Coniferous 56 1 4 61 91.80% 

Mixed 41 38 17 96 39.58% 
Deciduous 6 8 31 45 68.89% 

At the forest stand level, the majority agreement of the stratified randomly distributed subsamples
presented a 71.43% agreement when compared to the ground-based forest stands (Table 6). For the
35 forest stands analyzed, user’s accuracy was 100% for coniferous forest stands. Producer’s accuracy
was highest for deciduous stands at 81.82%.
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Table 6. OBC sample unit thematic map error matrix for stratified randomly distributed subsamples.
Ground (reference) data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data
are derived from the corresponding orthomosaic.
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Next, UAS orthomosaic subsamples that were positionally aligned with individual CFI plots
were assessed. A total of 202 samples were registered, with a 61.88% classification agreement (Table 7).
User’s accuracy was again highest for coniferous stands at 91.80%. Producer’s accuracy for these
subsamples was highest in mixed forest, with an 80.85% agreement.

Table 7. CFI plot-registered UAS orthomosaic subsample thematic map error matrix. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

Forests 2018, 9, x FOR PEER REVIEW  13 of 18 

 

Table 7. CFI plot-registered UAS orthomosaic subsample thematic map error matrix.  Ground 
(reference) data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are 
derived from the corresponding orthomosaic. 

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 

Coniferous 56 1 4 61 91.80% 
Mixed 41 38 17 96 39.58% 

Deciduous 6 8 31 45 68.89% 
Total 103 47 52 202  

Producer’s Accuracy 54.37% 80.85% 59.62%  Overall Accuracy = 125/202 or 61.88% 

Table 8. UAS forest stand thematic map error matrix for CFI plot-registered samples. Ground 
(reference) data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are 
derived from the corresponding orthomosaic. 

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 

Coniferous 6 1 0 7 85.71% 
Mixed 1 11 1 13 84.62% 

Deciduous 0 1 7 8 87.50% 
Total 7 13 8 28  

Producer’s Accuracy 85.71% 84.62% 87.50%  Overall Accuracy = 24/28 or 85.71% 

4. Discussion 

This research set out to gauge whether UAS could adequately collect reference data for use in 
thematic map accuracy assessments, of both pixel-based and object-based classifications, for complex 
forest environments. To create UAS based comparative reference data samples, six independent 
orthomosaic models, totaling 398.71 ha of land area were formed from 9173 images (Figure 5). The 
resulting average gsd was 3.24 cm. For the six comparative analyses of UAS and ground-based 
reference data (Table 1), 581 samples were used.  

Beginning with PBC, the resulting agreement for stratified randomly distributed samples was 
68.97% (Table 3). For this sampling technique, we experienced high levels of commission errors, 
especially between the coniferous and mixed forest types. One reason for this occurrence could have 
been the perceived dominance, visual bias, of the conifer canopies within the orthomosaic samples. 
Mixed forests experienced the greatest mischaracterization here. The CFI plot-registered PBC method 
generated a slightly higher overall accuracy at 73.68% (Table 4). The mixed forest samples still posed 
issues for classification. Coniferous samples however, showed much improved agreement with 
ground-based classifications.  

Next, we looked at the object-based classification reference data samples. Stratified randomly 
distributed subsamples had an agreement of 63.81% (Table 5). While at the forest stand level 
agreement to the ground-based composition was 71.43% (Table 6). As before, mixed forest samples 
showed the highest degree of error. CFI plot-registered OBC subsamples have a 61.88% agreement 
(Table 7). For forest stand classifications based on these plot-registered subsamples, agreement was 
85.71% (Table 8). Mixed forests once again led to large amounts of both commission and omission 
error. Other than OBC subsample assessments, our results showed a continuously lower accuracy for 
the stratified randomly distributed techniques. The patchwork composition of the New England 
forest landscape could be a major reason for this difficulty. 

As part of our analysis we wanted to understand the sources of intrinsic uncertainty for UAS 
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Forest stand level classification agreement, based on the positionally registered orthomosaic
samples was 85.71%. In total, 28 forest stands were assessed (Table 8). User’s and producer’s accuracies
for all three classes varied marginally, ranging from 84.62% to 87.51%. Commission and omission error
were both lowest for deciduous forest stands.

Table 8. UAS forest stand thematic map error matrix for CFI plot-registered samples. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.
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(Table 7). For forest stand classifications based on these plot-registered subsamples, agreement was 
85.71% (Table 8). Mixed forests once again led to large amounts of both commission and omission 
error. Other than OBC subsample assessments, our results showed a continuously lower accuracy for 
the stratified randomly distributed techniques. The patchwork composition of the New England 
forest landscape could be a major reason for this difficulty. 

As part of our analysis we wanted to understand the sources of intrinsic uncertainty for UAS 
reference data collection [10,18]. The compositional and structural complexity, although not to the 
degree of tropical forests, made working with even the three classes difficult. Visual interpretation 
was especially labored by this heterogeneity. To aid the interpretation process, branching patterns 
and species distribution trends were used [24,56]. All visual based classification was performed by 
the same interpreter, who has significant experience in remote sensing photo interpretation as well 
as local knowledge of the area. Another source of error could have been from setting fixed areas for 
UAS-based reference data samples while the CFI plots established variable radius areas [35]. Our 
30x30m effective areas looked to capture the majority of ground measured trees, providing snapshots 
of similarly sized sampling areas. Lastly, there were possible sources of error stemming from the CFI 
plot ground sampling procedures. Some woodlots, such as Kingman Farm, were sampled up to 10 
years ago. Slight changes in composition could have occurred. Also, GPS positional error for the CFI 
plots was a considerable concern given the dense forest canopies. Error in GPS locations were 
minimized by removing points close to stand boundaries and by using pixel clusters when possible.  

4. Discussion

This research set out to gauge whether UAS could adequately collect reference data for use in
thematic map accuracy assessments, of both pixel-based and object-based classifications, for complex
forest environments. To create UAS based comparative reference data samples, six independent
orthomosaic models, totaling 398.71 ha of land area were formed from 9173 images (Figure 5).
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The resulting average gsd was 3.24 cm. For the six comparative analyses of UAS and ground-based
reference data (Table 1), 581 samples were used.

Beginning with PBC, the resulting agreement for stratified randomly distributed samples was
68.97% (Table 3). For this sampling technique, we experienced high levels of commission errors,
especially between the coniferous and mixed forest types. One reason for this occurrence could
have been the perceived dominance, visual bias, of the conifer canopies within the orthomosaic
samples. Mixed forests experienced the greatest mischaracterization here. The CFI plot-registered PBC
method generated a slightly higher overall accuracy at 73.68% (Table 4). The mixed forest samples still
posed issues for classification. Coniferous samples however, showed much improved agreement with
ground-based classifications.

Next, we looked at the object-based classification reference data samples. Stratified randomly
distributed subsamples had an agreement of 63.81% (Table 5). While at the forest stand level agreement
to the ground-based composition was 71.43% (Table 6). As before, mixed forest samples showed
the highest degree of error. CFI plot-registered OBC subsamples have a 61.88% agreement (Table 7).
For forest stand classifications based on these plot-registered subsamples, agreement was 85.71%
(Table 8). Mixed forests once again led to large amounts of both commission and omission error.
Other than OBC subsample assessments, our results showed a continuously lower accuracy for the
stratified randomly distributed techniques. The patchwork composition of the New England forest
landscape could be a major reason for this difficulty.

As part of our analysis we wanted to understand the sources of intrinsic uncertainty for UAS
reference data collection [10,18]. The compositional and structural complexity, although not to the
degree of tropical forests, made working with even the three classes difficult. Visual interpretation
was especially labored by this heterogeneity. To aid the interpretation process, branching patterns and
species distribution trends were used [24,56]. All visual based classification was performed by the
same interpreter, who has significant experience in remote sensing photo interpretation as well as local
knowledge of the area. Another source of error could have been from setting fixed areas for UAS-based
reference data samples while the CFI plots established variable radius areas [35]. Our 30x30m effective
areas looked to capture the majority of ground measured trees, providing snapshots of similarly
sized sampling areas. Lastly, there were possible sources of error stemming from the CFI plot ground
sampling procedures. Some woodlots, such as Kingman Farm, were sampled up to 10 years ago.
Slight changes in composition could have occurred. Also, GPS positional error for the CFI plots was
a considerable concern given the dense forest canopies. Error in GPS locations were minimized by
removing points close to stand boundaries and by using pixel clusters when possible.

One of the first difficulties encountered in this project was in the logistics of flight planning.
While most practitioners may strive for flight line orientation in a cardinal direction, we were limited
at some locations due to FAA rules and abutting private properties [30,57]. As stated in the methods,
UAS training missions and previously researched advice were used to guide comprehensive coverage
of the woodland properties [28]. A second difficulty in UAS reference data collection was that even
with a sampling area of 377.57 ha, the minimum statistically valid sample size for a thematic mapping
accuracy assessment was not reached [10]. Forest stand structure and arrangement limited the number
of samples for most assessments to below the recommended samples size of approximately 30 per
class. A considerably larger, preferably continuous, forested land area would be needed to generate a
sufficient sampling design. Limited sample sizes also brought into perspective the restriction from
a more complex classification scheme. Although some remote sensing studies have performed to a
species-specific classification, Justice et al., [5] and MacLean et al., [6] have both shown that a broader,
three class, scheme has potential for understanding local forest composition.

Despite the still progressing nature of UAS data collection applications, this study has made
the potential for cost reductions apparent. The volume of data collected and processed in only a
few weeks opened the door for potential future research in digital image processing and computer
vision. Automated classification processing, multiresolution segmentation [20], or machine learning
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were a consideration but could not be implemented in this study. A continuing goal is to integrate
the added context of the digital surface model (DSM), texture, and multispectral image properties
into automated forest classifications. We hope that in future studies more precise ground data can
be collected, to alleviate the positional registration error and help match exact trees. Additionally,
broader analyses should be conducted to establish a comparison for UAS-based reference data to other
forms of ground-based sampling protocols (e.g., FIA clustered sampling or fixed-area plots). Lastly,
multi-temporal imagery could benefit all forms of UAS classification and should be studied further.

In well under a months’ time, this pilot study collected nearly 400 ha of forest land cover
data to a reasonable accuracy. With added expert knowledge-driven interpretation or decreased
landscape heterogeneity, this platform could prove to be a significant benefit to forested area research
and management. Dense photogrammetric point clouds and ultra-high-resolution orthomosaic
models were obtained, with the possibility of incorporating multispectral imagery in the future.
These ultra-high resolution products have the potential now to provide an accessible alternative to
reference data collected using high-spatial resolution satellite-based imagery. For the objective of
collecting reference data which can train and validate environmental models, it must be remembered
that reference data itself is not without intrinsic error [58]. As hardware and software technologies
continue to improve, the efficiency and effectiveness of these methods will continue to grow [39].
UAS positional accuracy assessment products are gaining momentum [12,59,60]. Providing examples
to the benefits of UAS should also support further legislative reform, better matching the needs of
practitioners. FAA RPIC guidelines remain a sizeable limitation for UAS mapping of continuous,
remote, or structurally complex areas [39,57,61]. We should also remember that these technologies
should be used to augment and enhance data collection initiatives, and not replace the human element
in sampling.

5. Conclusions

The collection of reference data for the training and validation of earth systems models bares
considerable costs yet remains an essential component for prudent decision-making. The objectives of
this pilot study were to determine if the application of UAS could enhance or support the collection of
thematic map accuracy assessment reference data for both pixel-based and object-based classification
of complex forests. Comparative analyses quantified the level of agreement between ground-based
CFI plot compositions and that of UAS-SfM orthomosaic samples. Despite diminished agreement
from mixed forest areas, PBC showed 68.97% agreement for stratified randomly distributed samples
and 73.86% for CFI plot-registered samples. For OBC classifications, forest stands reached 71.43%
agreement for stratified randomly distributed samples and 85.71% for CFI plot-registered samples.
Our results demonstrated the ability to comprehensively map nearly 400 ha of forest area, using a
UAS, in only a few weeks’ time. They also showed the significant benefit that could be gained from
deploying UAS to capture forest landscape composition. Low sample sizes, positional error in the CFI
plot measurements, and photo interpretation insensitivity could have led to heightened commission
and omission errors. Along with these sources of uncertainty, our results should be considered with
the understanding that all reference data has intrinsic error and that UAS are not presented to be
total replacements of in situ data collection initiatives. The continual advancement of the platform
however, should be the basis for investigating their use in a greater number of environments, for the
comparison to more varied ground-based reference data frameworks, and with the inclusion of more
technologically advanced classification procedures.
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