The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meta-Analysis
3. Results
3.1. Effects of Elevated CO2 on Mycorrhizal Fungal Mycelium
3.2. Effects of N Addition on Mycorrhizal Fungal Mycelium
3.3. Effects of P Addition on Mycorrhizal Fungal Mycelium
3.4. Effects of Other Environmental Factors on Mycorrhizal Fungal Mycelium
4. Discussion
4.1. The Responses of MFM to Elevated CO2
4.2. The Responses of MFM to N Addition
4.3. The Responses of MFM to P Addition, Organic Matter Addition, and Warming
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The List of the Data Sources
- Alberton, O.; Kuyper, T.W. Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Glob. Chang. Biol. 2009, 15, 166–175, doi:10.1111/j.1365-2486.2008.01714.x.
- Alberton, O.; Kuyper, T.W.; Gorissen, A. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 2007, 296, 159–172, doi:10.1007/s11104-007-9306-5.
- Clark, N.M.; Rillig, M.C.; Nowak, R.S. Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. J. Arid Environ. 2009, 73, 834–843, doi:10.1016/j.jaridenv.2009.03.004.
- Fortuna, P.; Avio, L.; Morini, S.; Giovannetti, M. Fungal biomass production in response to elevated atmospheric CO 2 in a Glomus mosseae–Prunus cerasifera model system. Mycol. Prog. 2012, 11, 17–26, doi:10.1007/s11557-010-0721-2.
- Fransson, P.M.; Taylor, A.F.; Finlay, R.D. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Mycorrhiza 2005, 15, 25–31, doi:10.1007/s00572-003-0289-7.
- Fransson, P.M.; Anderson, I.C.; Alexander, I.J. Does carbon partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with fungal species? Plant Soil 2007, 291, 323–333, doi:10.1007/s11104-007-9203-y.
- Garcia, M.O.; Ovasapyan, T.; Greas, M.; Treseder, K.K. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil 2008, 303, 301–310, doi:10.1007/s11104-007-9509-9.
- Ineichen, K.; Wiemken, V.; Wiemken, A. Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ. 1995, 18, 703-707, doi:10.1111/j.1365-3040.1995.tb00572.x.
- Kasurinen, A.; Keinänen, M.M.; Kaipainen, S.; Nilsson, L.O.; Vapaavuori, E.; Kontro, M.H.; Holopainen, T. Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Glob. Chang. Biol. 2005, 11, 1167–1179, doi:10.1111/j.1365-2486.2005.00970.x.
- Klamer, M.; Roberts, M.S.; Levine, L.H.; Drake, B.G.; Garland, J.L. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 2002, 68, 4370–4376, doi:10.1128/AEM.68.9.4370-4376.2002.
- Klironomos, J.; Rillig, M.; Allen, M.; Zak, D.; Kubiske, M.; Pregitzer, K. Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Glob. Chang. Biol. 1997, 3, 473–478, doi:10.1046/j.1365-2486.1997.00085.x.
- Lussenhop, J.; Treonis, A.; Curtis, P.S.; Teeri, J.A.; Vogel, C.S. Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 1998, 113, 247–251, doi:10.1007/s004420050375.
- Markkola, A.M.; Ohtonen, A.; Ahonen-Jonnarth, U.; Ohtonen, R. Scots pine responses to CO2 enrichment—I. Ectomycorrhizal fungi and soil fauna. Environ. Pollut. 1996, 94, 309–316, doi:10.1016/S0269-7491(96)00090-5.
- Parrent, J.L.; Vilgalys, R. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol. 2007, 176, 164–174, doi:10.1111/j.1469-8137.2007.02155.x.
- Rillig, M.C.; Allen, M.F. Arbuscular mycorrhizae of Gutierrezia sarothrae and elevated carbon dioxide: evidence for shifts in C allocation to and within the mycobiont. Soil Biol. Biochem. 1998, 30, 2001–2008, doi:10.1016/S0038-0717(98)00073-X.
- Rouhier, H.; Read, D. Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ. Exp. Bot. 1998, 40, 237–246, doi:10.1016/S0098-8472(98)00039-2.
- Rouhier, H.; Read, D.J. Plant and fungal responses to elevated atmospheric CO2 in mycorrhizal seedlings of Betula pendula. Environ. Exp. Bot. 1999, 42, 231–241, doi:10.1016/S0098-8472(99)00039-8.
- Weigt, R.B.; Raidl, S.; Verma, R.; Rodenkirchen, H.; Göttlein, A.; Agerer, R. Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 2011, 21, 375–391, doi:10.1007/s00572-010-0343-1.
- Wiemken, V.; Ineichen, K.; Boller, T. Development of ectomycorrhizas in model beech–spruce ecosystems on siliceous and calcareous soil: a 4-year experiment with atmospheric CO2 enrichment and nitrogen fertilization. Plant Soil 2001, 234, 99–108, doi:10.1023/A:1010500400263.
- Hagerberg, D.; Thelin, G.; Wallander, H. The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil 2003, 252, 279-290.
- Potila, H.; Wallander, H.; Sarjala, T. Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability. Plant Soil 2009, 316, 139–150, doi:10.1007/s11104-008-9766-2.
- Bahr, A.; Ellström, M.; Bergh, J.; Wallander, H. Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 2015, 390, 323–335, doi:10.1007/s11104-015-2408-6.
- Ekblad, A.; Mikusinska, A.; Ågren, G.I.; Menichetti, L.; Wallander, H.; Vilgalys, R.; Bahr, A.; Eriksson, U. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytol. 2016, 211, 874–885, doi:10.1111/nph.13961.
- Hendricks, J.J.; Mitchell, R.J.; Kuehn, K.A.; Pecot, S.D.; Sims, S.E. Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol. 2006, 171, 179–186.
- Hendricks, J.J.; Mitchell, R.J.; Kuehn, K.A.; Pecot, S.D. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytol. 2016, 209, 1693–1704.
- Kårén, O.; Nylund, J.-E. Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can. J. Bot. 1997, 75, 1628–1642.
- Leppälammi-Kujansuu, J.; Ostonen, I.; Strömgren, M.; Nilsson, L.O.; Kleja, D.; Sah, S.; Helmisaari, H.-S. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant soil 2013, 366, 287–303, doi:10.1007/s11104-012-1431-0.
- Li, Y.J.; Zhu, L.Y.; Yin, H.J.; Liu, Q.; Jiang, X.M.; Zhao, C.Z. Effects of 3-year continuous night-time warming and nitrogen fertilization on ectomycorrhizae of Picea asperata and the ectomycorrhizal fungal diversity. Acta Ecol. Sin. 2015, 35, 2967–2977, doi:10.5846/stxb201308292172. (In Chinese with English Abstract)
- Li, L.; McCormack, M.L.; Chen, F.; Wang, H.; Ma, Z.; Guo, D. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manag. 2019, 433, 64–72.
- Mayor, J.R.; Mack, M.C.; Schuur, E.A. Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biol. Biochem. 2015, 88, 247–256, doi:10.1016/j.soilbio.2015.05.028.
- Nilsson, L.O.; Wallander, H. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phyto. 2003, 158, 409–416, doi:10.1046/j.1469-8137.2003.00728.x.
- Sims, S.E.; Hendricks, J.J.; Mitchell, R.J.; Kuehn, K.A.; Pecot, S.D. Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 2007, 17, 299–309.
- Treseder, K.K.; Allen, M.F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol. 2002, 155, 507–515, doi:10.1046/j.1469-8137.2002.00470.x.
- van Diepen, L.T.; Lilleskov, E.A.; Pregitzer, K.S.; Miller, R.M. Simulated nitrogen deposition causes a decline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems 2010, 13, 683-695, doi:10.1007/s10021-010-9347-0.
- Wallander, H.; Nylund, J.E. Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol. 1992, 120, 495–503.
- Wallander, H.; Ekblad, A.; Bergh, J. Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For. Ecol. Manag. 2011, 262, 999–1007, doi:10.1016/j.foreco.2011.05.035.
- Cheng, L.; Chen, W.; Adams, T.S.; Wei, X.; Li, L.; McCormack, M.L.; DeForest, J.L.; Koide, R.T.; Eissenstat, D.M. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 2016, 97, 2815–2823.
- Clemmensen, K.E.; Michelsen, A.; Jonasson, S.; Shaver, G.R. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol. 2006, 171, 391–404, doi:10.1111/j.1469-8137.2006.01778.x.
- Olsson, P.A.; Wilhelmsson, P. The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant Soil 2000, 226, 161–169, doi:10.1023/A:1026565314345.
- Liu, B.; Li, H.; Zhu, B.; Koide, R.T.; Eissenstat, D.M.; Guo, D. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 2015, 208, 125–136, doi:10.1111/nph.13434.
- Hammer, E.C.; Nasr, H.; Wallander, H. Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol. Biochem. 2011, 43, 2332–2337, doi:10.1016/j.soilbio.2011.07.004.
- Labidi, S.; Nasr, H.; Zouaghi, M.; Wallander, H. Effects of compost addition on extra-radical growth of arbuscular mycorrhizal fungi in Acacia tortilis ssp. raddiana savanna in a pre-Saharan area. Appl. Soil Ecol. 2007, 35, 184–192, doi:10.1016/j.apsoil.2006.04.009.
- Chen, W.; Koide, R.T.; Adams, T.S.; DeForest, J.L.; Cheng, L.; Eissenstat, D.M. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. USA 2016, 113, 8741–8746, doi:10.1073/pnas.1601006113.
- Vaidya, G.S.; Shrestha, K.; Khadge, B.R.; Johnson, N.C.; Wallander, H. Organic matter stimulates bacteria and arbuscular mycorrhizal fungi in Bauhinia purpurea and Leucaena diversifolia plantations on eroded slopes in Nepal. Restor. Ecol. 2008, 16, 79–87, doi:10.1111/j.1526-100X.2007.00264.x.
- Hagerberg, D.; Wallander, H. The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiol. Ecol. 2002, 39, 139–146.
- Majdi, H.; Truus, L.; Johansson, U.; Nylund, J.-E.; Wallander, H. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For. Ecol. Manag. 2008, 255, 2109–2117.
References
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008. [Google Scholar]
- Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 2014, 505, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Hagenbo, A.; Clemmensen, K.E.; Finlay, R.D.; Kyaschenko, J.; Lindahl, B.D.; Fransson, P.; Ekblad, A. Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequence. New Phytol. 2017, 214, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Hagenbo, A.; Hadden, D.; Clemmensen, K.E.; Grelle, A.; Manzoni, S.; Mölder, M.; Ekblad, A.; Fransson, P. Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a Pinus sylvestris chronosequence. J. Ecol. 2019, 107, 2808–2822. [Google Scholar] [CrossRef]
- Hagerberg, D.; Thelin, G.; Wallander, H. The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 2003, 252, 279–290. [Google Scholar] [CrossRef]
- Sims, S.E.; Hendricks, J.J.; Mitchell, R.J.; Kuehn, K.A.; Pecot, S.D. Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 2007, 17, 299–309. [Google Scholar] [CrossRef]
- Majdi, H.; Truus, L.; Johansson, U.; Nylund, J.-E.; Wallander, H. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For. Ecol. Manag. 2008, 255, 2109–2117. [Google Scholar] [CrossRef]
- Rouhier, H.; Read, D.J. Plant and fungal responses to elevated atmospheric CO2 in mycorrhizal seedlings of Betula pendula. Environ. Exp. Bot. 1999, 42, 231–241. [Google Scholar] [CrossRef]
- Rousseau, J.; Sylvia, D.; Fox, A. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 1994, 128, 639–644. [Google Scholar] [CrossRef]
- Joner, E.J.; Jakobsen, I. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol. Biochem. 1995, 27, 1153–1159. [Google Scholar] [CrossRef]
- Bahr, A.; Ellström, M.; Bergh, J.; Wallander, H. Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 2015, 390, 323–335. [Google Scholar] [CrossRef]
- Simard, S.W.; Jones, M.D.; Durall, D.M. Carbon and nutrient fluxes within and between mycorrhizal plants. In Mycorrhizal Ecology; van der Heijden, M., Sander, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–74. [Google Scholar]
- Wallander, H.; Ekblad, A.; Bergh, J. Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For. Ecol. Manag. 2011, 262, 999–1007. [Google Scholar] [CrossRef]
- Godbold, D.L.; Hoosbeek, M.R.; Lukac, M.; Cotrufo, M.F.; Janssens, I.A.; Ceulemans, R.; Polle, A.; Velthorst, E.J.; Scarascia-Mugnozza, G.; De Angelis, P.; et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 2006, 281, 15–24. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Fransson, P.M.A.; Taylor, A.F.S.; Finlay, R.D. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Mycorrhiza 2005, 15, 25–31. [Google Scholar] [CrossRef]
- Wallander, H.; Ekblad, A.; Godbold, D.; Johnson, D.; Bahr, A.; Baldrian, P.; Björk, R.; Kieliszewska-Rokicka, B.; Kjøller, R.; Kraigher, H. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biol. Biochem. 2013, 57, 1034–1047. [Google Scholar] [CrossRef]
- Mohan, J.E.; Cowden, C.C.; Baas, P.; Dawadi, A.; Frankson, P.T.; Helmick, K.; Hughes, E.; Khan, S.; Lang, A.; Machmuller, M.; et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: Mini-review. Fungal Ecol. 2014, 10, 3–19. [Google Scholar] [CrossRef]
- Ekblad, A.; Wallander, H.; Godbold, D.; Cruz, C.; Johnson, D.; Baldrian, P.; Björk, R.; Epron, D.; Kieliszewska-Rokicka, B.; Kjøller, R. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant Soil 2013, 366, 1–27. [Google Scholar] [CrossRef]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Clim. Chang. 2010, 100, 433–461. [Google Scholar] [CrossRef]
- Parrent, J.L.; Vilgalys, R. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol. 2007, 176, 164–174. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.-P.; Cornelissen, J.H.C. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 2015, 24, 371–382. [Google Scholar] [CrossRef]
- Leppälammi-Kujansuu, J.; Ostonen, I.; Strömgren, M.; Nilsson, L.O.; Kleja, D.B.; Sah, S.P.; Helmisaari, H.S. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant Soil 2013, 366, 287–303. [Google Scholar] [CrossRef]
- Bryanin, S.V.; Makoto, K. Fire-derived charcoal affects fine root vitality in a post-fire Gmelin larch forest: Field evidence. Plant Soil 2017, 416, 409–418. [Google Scholar] [CrossRef]
- Sun, H.; Santalahti, M.; Pumpanen, J.; Köster, K.; Berninger, F.; Raffaello, T.; Jumpponen, A.; Asiegbu, F.O.; Heinonsalo, J. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol. 2015, 81, 7869–7880. [Google Scholar] [CrossRef] [PubMed]
- Hammer, E.C.; Nasr, H.; Wallander, H. Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol. Biochem. 2011, 43, 2332–2337. [Google Scholar] [CrossRef]
- Mahmood, S.; Finlay, R.D.; Erland, S.; Wallander, H. Solubilisation and colonisation of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiol. Ecol. 2001, 35, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Hagerberg, D.; Wallander, H. The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiol. Ecol. 2002, 39, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Labidi, S.; Nasr, H.; Zouaghi, M.; Wallander, H. Effects of compost addition on extra-radical growth of arbuscular mycorrhizal fungi in Acacia tortilis ssp. raddiana savanna in a pre-Saharan area. Appl. Soil Ecol. 2007, 35, 184–192. [Google Scholar] [CrossRef]
- Vallack, H.; Leronni, V.; Metcalfe, D.; Högberg, P.; Ineson, P.; Subke, J.-A. Application of nitrogen fertilizer to a boreal pine forest has a negative impact on the respiration of ectomycorrhizal hyphae. Plant Soil 2012, 352, 405–417. [Google Scholar] [CrossRef]
- Nillson, L.O.; Wallander, H. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol. 2003, 158, 409–416. [Google Scholar] [CrossRef]
- Johnson, N.C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 2010, 185, 631–647. [Google Scholar] [CrossRef]
- Lin, G.G.; McCormack, M.L.; Guo, D.L. Similar soil carbon sequestration potential but contrasting mode of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol. 2017, 213, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Terrer, C.; Vicca, S.; Hungate, B.A.; Phillips, R.P.; Prentice, I.C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 2016, 353, 72–74. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Sun, H.; Yang, W.; Xu, H. The response patterns of arbuscular mycorrhizal and ectomycorrhizal symbionts under elevated CO2: A meta-analysis. Front. Microbiol. 2018, 9, 1248. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, J.C.C.; Harris, P.J. The effect of soil phosphorus on the external mycelium growth of arbuscular mycorrhizal fungi during the early stages of mycorrhiza formation. Plant Soil 1994, 166, 271–280. [Google Scholar] [CrossRef]
- Mayor, J.R.; Mack, M.C.; Schuur, E.A. Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biol. Biochem. 2015, 88, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Hu, B.; Qi, K.; Chen, W.; Pang, X.; Bao, W.; Tian, G. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. Eur. J. Soil Biol. 2016, 72, 35–41. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Michelsen, A.; Jonasson, S.; Shaver, G.R. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol. 2006, 171, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Weigt, R.B.; Raidl, S.; Verma, R.; Rodenkirchen, H.; Göttlein, A.; Agerer, R. Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 2011, 21, 375–391. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- van Groenigen, K.J.; Osenberg, C.W.; Hungate, B.A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 2011, 475, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Senior, A.M.; Grueber, C.E.; Kamiya, T.; Lagisz, M.; O’Dwyer, K.; Santos, E.S.A.; Nakagawa, S. Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications. Ecology 2016, 97, 3293–3299. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, M.R.; Tscharntke, T.; Aguilar, R.; Batáry, P. Responses of insect herbivores and herbivory to habitat fragmentation: A hierarchical meta-analysis. Ecol. Lett. 2017, 20, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Mett, M.; Ishida, T.A.; Bahram, M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol. 2013, 199, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B.; et al. Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Chang. Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberton, O.; Kuyper, T.W.; Gorissen, A. Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated CO2. New Phytol. 2005, 167, 859–868. [Google Scholar] [CrossRef]
- Wiemken, V.; Ineichen, K.; Boller, T. Development of ectomycorrhizas in model beech-spruce ecosystems on siliceous and calcareous soil: A 4-year experiment with atmospheric CO2 enrichment and nitrogen fertilization. Plant Soil 2001, 234, 99–108. [Google Scholar] [CrossRef]
- Cairney, J.W.G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 2012, 47, 198–208. [Google Scholar] [CrossRef]
- Pickles, B.J.; Egger, K.N.; Massicotte, H.B.; Green, D.S. Ectomycorrhizas and climate change. Fungal Ecol. 2012, 5, 73–84. [Google Scholar] [CrossRef]
- Johnson, D.W. Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2. Ecology 2006, 87, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Gehring, C.A.; Mueller, R.C.; Whitham, T.G. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 2006, 149, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Soudzilovskaia, N.A.; van der Heijden, M.G.A.; Cornelissen, J.H.C.; Makarov, M.I.; Onipchenko, V.G.; Maslov, M.N.; Akhmetzhanova, A.A.; van Bodegom, P.M. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 2015, 208, 280–293. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.G. Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 1994, 165, 55–65. [Google Scholar] [CrossRef]
- Lilleskov, E.; Hobbie, E.; Horton, T. Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 2011, 4, 174–183. [Google Scholar] [CrossRef]
- Wallander, H. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. In Nutrient Uptake and Cycling in Forest Ecosystems, Proceedings of the CEC/IUFRO Symposium Nutrient Uptake and Cycling in Forest Ecosystems, Halmstad, Sweden, 7–10 June 1993; Nilsson, L.O., Hüttl, R.F., Johansson, U.T., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 243–248. [Google Scholar] [CrossRef]
- Bahr, A.; Ellström, M.; Akselsson, C.; Ekblad, A.; Mikusinska, A.; Wallander, H. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biol. Biochem. 2013, 59, 38–48. [Google Scholar] [CrossRef]
- Sterkenburg, E.; Bahr, A.; Brandström Durling, M.; Clemmensen, K.E.; Lindahl, B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015, 207, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Greaver, T.; Clark, C.; Compton, J.; Vallano, D.; Talhelm, A.; Weaver, C.; Band, L.; Baron, J.S.; Davidson, E.; Tague, C. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Chang. 2016, 6, 836–843. [Google Scholar] [CrossRef]
- Castaño, C.; Alday, J.G.; Parladé, J.; Pera, J.; de Aragón, J.M.; Bonet, J.A. Seasonal dynamics of the ectomycorrhizal fungus Lactarius vinosus are altered by changes in soil moisture and temperature. Soil Biol. Biochem. 2017, 115, 253–260. [Google Scholar] [CrossRef]
- Wurzburger, N.; Wright, S.J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 2015, 96, 2137–2146. [Google Scholar] [CrossRef] [Green Version]
- Rosenvald, K.; Ostonen, I.; Uri, V.; Varik, M.; Tedersoo, L.; Lõhmus, K. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. Eur. J. For. Res. 2013, 132, 219–230. [Google Scholar] [CrossRef]
- Børja, I.; De Wit, H.A.; Steffenrem, A.; Majdi, H. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiol. 2008, 28, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Gower, S.T.; McMurtrie, R.E.; Murty, D. Aboveground net primary production decline with stand age: Potential causes. Trends Ecol. Evol. 1996, 11, 378–382. [Google Scholar] [CrossRef]
- Jagodzinski, A.M.; Ziolkowski, J.; Warnkowska, A.; Prais, H. Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands. PLoS ONE 2016, 11, e0148668. [Google Scholar] [CrossRef] [PubMed]
- Korkama, T.; Fritze, H.; Pakkanen, A.; Pennanen, T. Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol. 2007, 173, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Berner, C.; Johansson, T.; Wallander, H. Long-term effect of apatite on ectomycorrhizal growth and community structure. Mycorrhiza 2012, 22, 615–621. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Peay, K.G.; Bruns, T.D. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 2009, 90, 2098–2107. [Google Scholar] [CrossRef]
- Potila, H.; Wallander, H.; Sarjala, T. Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability. Plant Soil 2009, 316, 139–150. [Google Scholar] [CrossRef]
- Ekblad, A.; Wallander, H.; Nasholm, T. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas. New Phytol. 1998, 138, 143–149. [Google Scholar] [CrossRef]
- Li, L.; McCormack, M.L.; Chen, F.; Wang, H.; Ma, Z.; Guo, D. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manag. 2019, 433, 64–72. [Google Scholar] [CrossRef]
- Bakker, M.; Jolicoeur, E.; Trichet, P.; Augusto, L.; Plassard, C.; Guinberteau, J.; Loustau, D. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol. 2009, 29, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gundersen, P.; Zhang, T.; Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 2012, 44, 31–38. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, F.; Zou, B.; Chen, Y.; Zhao, J.; Mo, Q.; Li, Y.; Li, X.; Xia, H. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol. Fertil. Soils 2015, 51, 207–215. [Google Scholar] [CrossRef]
- Wallander, H.; Thelin, G. The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol. Biochem. 2008, 40, 2517–2522. [Google Scholar] [CrossRef]
- Ryan, M.H.; Chilvers, G.A.; Dumaresq, D.C. Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 1994, 160, 33–40. [Google Scholar] [CrossRef]
- Guénon, R.; Day, T.A.; Velazco-Ayuso, S.; Gros, R. Mixing of Aleppo pine and Holm oak litter increases biochemical diversity and alleviates N limitations of microbial activity. Soil Biol. Biochem. 2017, 105, 216–226. [Google Scholar] [CrossRef]
- Courty, P.-E.; Buée, M.; Diedhiou, A.G.; Frey-Klett, P.; Le Tacon, F.; Rineau, F.; Turpault, M.-P.; Uroz, S.; Garbaye, J. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biol. Biochem. 2010, 42, 679–698. [Google Scholar] [CrossRef]
- Rustad, L.; Campbell, J.; Marion, G.; Norby, R.; Mitchell, M.; Hartley, A.; Cornelissen, J.; Gurevitch, J.; GCTE-NEWS. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 2001, 126, 543–562. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Wang, J.; Li, D.; Shi, Z.; Liu, Y.; Xu, J.; Hong, P.; Yu, H.; Zhao, Z. Contrasting responses of heterotrophic and root-dependent respiration to soil warming in a subtropical plantation. Agric. For. Meteorol. 2017, 247, 221–228. [Google Scholar] [CrossRef]
- Fujimura, K.E.; Egger, K.N.; Henry, G.H. The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME J. 2008, 2, 105–114. [Google Scholar] [CrossRef]
Mycorrhizal Fungal Mycelium Estimation Methods and Treatment Settings | ||
---|---|---|
Estimation methods | Measurement index | |
Biomarker | Chitin; ergosterol; glomalin; PLFA 16: 1ω5c; PLFA 18: 2ω6, 9 | Fungal mycelium biomass |
Non-biomarker | Agar film; fan-like manner; gridline intersection; membrane-filter | Fungal mycelium length |
Experimental treatment settings | ||
Organic matter addition | Compost; litter; organic fertilizer; wood ash | |
Elevated CO2 | Experimental soil plant atmosphere system; free air CO2 enrichment (FACE); microcosm; open top chamber (OTC) | |
Nitrogen (N) addition | Ammonium nitrate; ammonium sulfate; sodium nitrate; urea | |
Phosphorus (P) addition | Apatitle; sodium dihydrogen phosphate; superphosphate; triple superphosphate | |
Potassium (K) addition | Biotite; Osmocote | |
Warming | Greenhouse; heating cable; infrared heating |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zong, S.; Li, M.-H. The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors. Forests 2019, 10, 973. https://doi.org/10.3390/f10110973
Wang C, Zong S, Li M-H. The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors. Forests. 2019; 10(11):973. https://doi.org/10.3390/f10110973
Chicago/Turabian StyleWang, Cunguo, Shengwei Zong, and Mai-He Li. 2019. "The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors" Forests 10, no. 11: 973. https://doi.org/10.3390/f10110973
APA StyleWang, C., Zong, S., & Li, M. -H. (2019). The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors. Forests, 10(11), 973. https://doi.org/10.3390/f10110973