The Impact of Paraffin-Thermal Modification of Beech Wood on Its Biological, Physical and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood
2.2. Paraffin
2.3. Paraffin-Thermal Modification
2.4. Attack by Wood-Decaying Fungi
2.5. Attack by the Mold Aspergillus niger
2.6. Soaking and Swelling
2.7. Impact Bending Strength and Brinell Hardness
3. Results and Discussion
3.1. The Rot Resistance
3.2. The Mold Resistance
3.3. The Soaking and Swelling Resistance
3.4. The Impact Bending Strength and Brinell Hardness
4. Conclusions
- Paraffin-thermal modification resulted in a significant increase in the rot resistance of beech wood to decaying fungi—the brown-rot fungus Poria placenta by 71.4%–98.4% and the white-rot fungus Trametes versicolor by 50.1%–99.5%. The lowest weight loss, less than 1%, was observed in the case of beech wood specimens modified in paraffin at a temperature of 210 °C for 3 h or 4 h.
- The mold resistance of paraffin-thermally modified beech wood to the microscopic fungus Aspergillus niger increased significantly in the first days of testing. However, on the final 21st day of the mold test, the growth intensity of A. niger reduced only in the case of specimens modified under the most severe modification regimes.
- The soaking and volume swelling of beech wood reduced markedly as a result of paraffin-thermal modification—the soaking was reduced in all cases by more than 30% and the volume swelling was reduced by 26.8%–62.9%. The specimens of beech wood modified at a temperature of 210 °C for 3 h or 4 h were the most resistant to swelling. On the contrary, soaking was not affected by the temperature and the time of modification.
- Mechanical properties of beech wood got worse as a result of an increase in temperature and time of modification. There was a decrease in the impact bending strength in the range from 17.8% to 48.3% and in the Brinell hardness in the range from 2.4% to 63.9%.
- Generally, beech wood modified with hot paraffin showed significantly better resistance to wood-decaying fungi, slightly better resistance to mold growth, and reduced soaking and swelling. Wood modified this way can be used as a material for making products especially in the demanding interior projects, e.g., sauna, bathroom, kitchen paneling, as well as in exterior projects, e.g., facade or swimming pool panels. However, due to lower values of the impact bending strength and Brinell hardness, the wood modified this way is not convenient for load-bearing structural elements and in projects where good mechanical properties are necessary.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kúdela, J.; Čunderlík, I. Bukové Drevo—Štruktúra, Vlastnosti, Použitie (Beech Wood—Structure, Properties and Usage); Technical University in Zvolen: Zvolen, Slovakia, 2012; p. 152. ISBN 978-80-228-2318-0. [Google Scholar]
- Klement, I.; Vilkovská, T. Color characteristic of red false heartwood and mature wood of beech (Fagus sylvatica L.) determining by different chromacity coordinates. Sustainability 2019, 11, 690. [Google Scholar] [CrossRef] [Green Version]
- Klement, I.; Vilkovská, T.; Uhrín, M.; Barański, J.; Konopka, A. Impact of high temperature drying process on beech wood containing tension wood. Open Eng. 2019, 9, 2391–5439. [Google Scholar] [CrossRef]
- EN 350. Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Hill, C.A.S. Wood Modification—Chemical, Thermal and Other Processes; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. 260. [Google Scholar] [CrossRef]
- Reinprecht, L. Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Ltd.: Chichester, UK, 2016; p. 357. ISBN 978-1-119-10653-1. [Google Scholar]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Reinprecht, L.; Vidholdová, Z. TermoDřevo-ThermoWood; Šmíra print s.r.o.: Ostrava, Czech Republic, 2011; p. 89. ISBN 978-80-87427-05-7. [Google Scholar]
- Srinivas, K.; Pandey, K.K. Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. J. Wood Chem. Technol. 2012, 32, 30416. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar]
- Kocaefe, D.; Huang, X.; Kocaefe, Y. Dimensional Stabilization of Wood. Curr. For. Rep. 2015, 1, 151–161. [Google Scholar] [CrossRef]
- Rapp, A.O.; Sailer, M. Oil heat treatment of wood in Germany—State of the art. In Review on Heat Treatments of Wood; Rapp, A.P., Ed.; BFH: Hamburg, Germany, 2001; pp. 45–62. ISBN 3-926301-02-3. [Google Scholar]
- Hasan, M.; Despot, R.; Šafran, B.; Lacić, R.; Peršinović, M. Oil heat treatment of alder wood for increasing biological durability of wood. Drv. Ind. 2008, 65, 143–150. [Google Scholar] [CrossRef]
- Rapp, A.O.; Sailer, M. Oil-heat-treatment of wood—Process and properties. Drv. Ind. 2001, 52, 63–70. [Google Scholar]
- Yilgör, N.; Kartal, S.N. Heat Modification of wood: Chemical properties and resistance to mold and decay fungi. For. Prod. J. 2010, 60, 357–661. [Google Scholar] [CrossRef]
- Wang, J.Y.; Cooper, P.A. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz als Roh-und Werkstoff 2005, 63, 417–422. [Google Scholar] [CrossRef]
- Reinprecht, L.; Vidholdová, Z. Mould resistance, water resistance and mechanical properties of OHT-thermowoods. In Proceedings of the Final Conference of COST Action E37, Bordeaux, France, 29–30 September 2008; UGent—Faculty of Bioscience Engineering—Laboratory of Wood Technology: UGent, Belgium; pp. 159–165. [Google Scholar]
- Dubey, M.K.; Pang, S.; Chauhan, S.; Walker, J. Dimensional stability, fungal resistance and mechanical propertiesof radiate pine after combined thermos-mechanical compression and oil heat-treatment. Holzforschung 2016, 70, 793–800. [Google Scholar] [CrossRef]
- Scholz, G.; Krause, A.; Militz, H. Capillary water uptake and mechanical properties of wax soaked Scots pine. In Proceedings of the European Conference on Wood Modification, Stockholm, Sweden, 27–29 April 2009; SP Technical Research Institute of Sweden: Stockholm, Sweden. [Google Scholar]
- Scholz, G.; Militz, H.; Gascón, P.; Ibiza-Palacios, M.S.; Oliver-Villanueva, J.V.; Peters, B.C.; Fitzgerald, C.J. Improved termite resistance of wood by wax impregnation. Int. Biodeterior. Biodegrad. 2010, 64, 688–693. [Google Scholar] [CrossRef]
- Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation. Eur. J. Wood Wood Prod. 2014, 72, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.O.; Beringhausen, C.; Bollmus, S.; Brischke, C.; Frick, T.; Haas, T.; Sailer, M.; Welzbacher, C.R. Hydrophobierung von Holz-Erfahrungen nach 7 Jahren Freilandtest. In Proceedings of the 24th Holzschutztagung der DGFH, Leipzig Germany, 2005; pp. 157–170. [Google Scholar]
- Amthor, J. Paraffin dispersions for waterproofing of particle board. Holz als Roh-und Werkstoff 1972, 30, 422–425. [Google Scholar] [CrossRef]
- Deppe, H.J.; Ernst, K. MDF–Mitteldichte Faserplatten; DRW-Verlag: Leinfelden-Echterdingen, Germany, 1996; p. 200. ISBN 978-3871813290. [Google Scholar]
- Neimsuwan, T.; Wang, S.; Via, B.K. Effect of processing parameters, resin, and wax loading on water vapor sorption of wood strands. Wood Fiber Sci. 2008, 40, 495–504. [Google Scholar]
- Wang, W.; Zhu, Y.; Jinzhen, C.; Guo, X. Thermal modification of Southern pine combined with wax emulsion preimpregnation: Effect on hygroscopicity and dimensional stability. Holzforschung 2015, 69, 405–413. [Google Scholar] [CrossRef]
- Humar, M.; Kržišnik, D.; Lesar, B.; Thaler, N.; Ugovšek, A.; Zupanič, K.; Žlahtič, M. Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung 2017, 71, 57–64. [Google Scholar] [CrossRef]
- EN 113. Wood Preservatives. Test Method for Determining the Protective Effectiveness against Wood Destroying Basidiomycetes. Determination of the Toxic Values; European Committee for Standardization: Brussels, Belgium, 1996. [Google Scholar]
- Van Acker, J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Le Bayon, I.; Kleist, G.; Peek, R.D. Biological durability of wood in relation to end-use. Holz als Roh-und Werkstoff 2003, 61, 35–45. [Google Scholar] [CrossRef]
- EN 15457. Paints and Varnishes. Laboratory Method for Testing the Efficacy of Film Preservatives in a Coating against Fungi; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- STN 490104. Skúšky Vlastností Rasteného dreva. Metóda Zisťovania Nasiakavosti a Navlhavosti. (Tests of Native Wood Properties. Method of Water Absorptivity and Hygroscopicity Determining); Slovak Standards Institute: Bratislava, Slovakia, 1987. [Google Scholar]
- ISO 3348. Wood—Determination of Impact Bending Strength; International Organization for Standardization: Geneva, Switzerland, 1975. [Google Scholar]
- EN 1534. Wood Flooring. Determination of Resistance to Indentation. Test Method; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- Lesar, B.; Humar, M. Use of wax emulsion for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 2011, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Archer, K.; Leebow, S. Primary Wood Processing: Principles and Practice; Springer: Dordrecht, The Netherlands, 2006; Chapter 9–J.C.F. Walker, Wood Preservation; pp. 297–338. ISBN 978-1-4020-4393-2. [Google Scholar]
- Boonstra, M.J.; Van Acker, J.; Kegel, E.; Stevens, M. Optimisation of a two-stage heat treatment process: Durability aspects. Wood Sci. Technol. 2007, 41, 31–57. [Google Scholar] [CrossRef]
- Stamm, A.J. Wood and Cellulose Science; Ronald Press Co.: New York, NY, USA, 1964; p. 549. ISBN 978-0826084958. [Google Scholar]
- Kamdem, D.P.; Pizzi, A.; Jermannaud, A. Durability of heat treated wood. Holz als Roh-und Werkstoff 2002, 60, 1–6. [Google Scholar] [CrossRef]
- Lacić, H.; Hasan, M.; Trajković, J.; Šefc, B.; Šafran, B.; Despot, R. Biological durability of oil-heat treated alder wood. Eur. J. Wood Wood Prod. 2014, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Tjeerdsma, B.F.; Stevens, M.; Militz, H.; Van Acker, J. Effect of process conditions on moisture content and decay resistance of hydrothermally treated wood. Holzforsch. Holzverwert. 2002, 54, 94–99. [Google Scholar]
- Welzbacher, C.; Rapp, O. Comparison of thermally modified wood originating from four industrial scale processes—durability. In International Research Group on Wood Preservation; Cardiff, Wales, UK, Document No. IRG/WP 02-40229; IRG-WP: Stockholm, Sweden, 2002. [Google Scholar]
- Kartal, S.N. Combimed effect of boron compounds and heat treatments on wood properties. Boron release and decay and termite resistance. Holzforschung 2006, 60, 455–458. [Google Scholar] [CrossRef]
- Scholz, G.; Krause, A.; Militz, H. Exploratory study on the impregnation of Scots pine sapwood (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) with different hot melting waxes. Wood Sci. Technol. 2010, 44, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Kocaefe, D.; Poncsak, S.; Doré, G.; Younsi, R. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als Roh-und Werkstoff 2008, 66, 355–361. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, J.; Huang, R.; Jiang, J. Increased dimensional stability of Chinese fir through steam-heat treatment. Eur. J. Wood Wood Prod. 2012, 70, 441–444. [Google Scholar] [CrossRef]
- Sinković, T.; Govorčin, S.; Sedlar, T. Comparison of physical properties of heat treated and untreated hornbeam wood, beech wood, ash wood and oak wood. In Proceedings of the Hardwood Science and Technology—the 5th Conference on Hardwood Research and Utilisation in Europe, Sopron, Hungary, 10–11 September 2012; pp. 63–70, ISBN 978-963-9883-97-0. [Google Scholar]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Bal, B.C. Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures. Cienc. Tecnol. 2015, 17, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Awoyemi, L.; Cooper, P.A.; Ung, T.Y. In-treatment cooling during thermal modification of wood in soy oil medium: Soy oil uptake, wettability, water uptake and swelling properties. Eur. J. Wood Wood Prod. 2009, 67, 465–470. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Walker, J. Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 2012, 66, 49–57. [Google Scholar] [CrossRef]
- Almeida, G.; Brito, J.O.; Perre, P. Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species. Holzforschung 2009, 63, 80–88. [Google Scholar] [CrossRef]
- Bal, B.C.; Bektaş, I. The effects of heat treatment on the physical properties of juvenile wood and mature wood of E. grandis. BioResources 2012, 7, 5117–5127. [Google Scholar] [CrossRef] [Green Version]
- Bal, B.C. A comparative study of the physical properties of thermally treated poplar wood and plane wood. BioResources 2013, 8, 6493–6500. [Google Scholar] [CrossRef]
- Percin, O.; Peker, H.; Atilgan, A. The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Res. 2016, 61, 443–456. [Google Scholar]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Enayati, A.; Gholamiyan, H. Effects of nano-silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood Sci. Technol. 2013, 47, 467–480. [Google Scholar] [CrossRef]
- Straže, A.; Fajdiga, G.; Pervan, S.; Gorišek, Ž. Hygro-mechanical behaviour of thermally treated beech subjected to compression loads. Constr. Build. Mater. 2016, 113, 28–33. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Unsal, O.; Ayrilmis, N. Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. J. Wood Sci. 2005, 51, 405–409. [Google Scholar] [CrossRef]
- Yildiz, S.; Gezerb, D.; Yildiz, C. Mechanical and chemical behaviour of spruce wood modified by heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Korkut, D.S.; Guller, B. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw) wood. Bioresour. Technol. 2008, 99, 2846–2851. [Google Scholar] [CrossRef]
- Zaman, A.; Alen, R.; Kotilainen, R. Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230 degrees C. Wood Fiber Sci. 2000, 32, 138–143. [Google Scholar]
- Bakar, B.F.A.; Hiziroglu, S.; Tahir, P.M. Properties of some thermally modified wood species. Mater. Des. 2013, 43, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Reinprecht, L. Thermal degradation of chemically pretreated wood. Part 1. Course of thermal degradation of wood valued on the basis of loss of mass, impact strength in bending and cutting strength. In Wood Burning 92, Proceedings of the 2nd International Scientific Conference, High Tatras, Hotel Patria, 1–5 June 1992; Technical University in Zvolen: Zvolen, Slovakia, 1992; pp. 57–67. ISBN 80-228-0178-X. [Google Scholar]
- Fengel, D.; Wegener, G. Wood—Chemistry, Ultrastructure, Reactions; Verlag Kessel: Remagen, Germany, 2003; p. 613. ISBN 3935638-39-6. [Google Scholar]
- Borůvka, V.; Zeidler, A.; Holeček, T.; Dudík, R. Elastic and strength properties of heat-treated beech and birch wood. Forests 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
Paraffin-Thermal Modification | P. placenta Δm (%) | T. versicolor Δm (%) |
---|---|---|
Reference | 22.14 (4.50) | 29.65 (6.53) |
190 °C/1 h | 6.34 (2.91) a | 14.80 (6.19) a |
190 °C/2 h | 5.32 (2.17) a | 10.05 (3.86) a |
190 °C/3 h | 5.33 (2.04) a | 9.68 (3.70) a |
190 °C/4 h | 3.76 (1.66) a | 7.83 (3.02) a |
210 °C/1 h | 5,25 (1.95) a | 7.74 (2.98) a |
210 °C/2 h | 2.67 (1.07) a | 4.87 (1.93) a |
210 °C/3 h | 0.92 (0.42) a | 0.25 (0.19) a |
210 °C/4 h | 0.35 (0.28) a | 0.15 (0.11) a |
Paraffin-Thermal Modification | A. niger GIM (0–4) | A. niger GIM (0–4) | A. niger GIM (0–4) |
---|---|---|---|
7th day | 14th day | 21st day | |
Reference | 3 | 3 | 4 |
190 °C/1 h | 1 | 2 | 2.75 |
190 °C/2 h | 1 | 2 | 3 |
190 °C/3 h | 0.5 | 1.5 | 2.5 |
190 °C/4 h | 0.25 | 1 | 2 |
210 °C/1 h | 1 | 1.75 | 3 |
210 °C/2 h | 1 | 2.25 | 2.5 |
210 °C/3 h | 0 | 1.5 | 2.25 |
210 °C/4 h | 0 | 1 | 1.25 |
Paraffin-Thermal Modification | Soaking—Si (%) | Swelling—βVi (%) | ||
---|---|---|---|---|
24 h | 336 h | 24 h | 336 h | |
Reference | 74.34 (10.82) | 96.92 (12.52) | 19.43 (3.46) | 20.55 (3.83) |
Paraffin only | 27.67 (0.78) a | 78.68 (1.45) b | 16.56 (3.19) c | 19.19 (1.16) d |
190 °C/1 h | 38.15 (4.67) a | 66.46 (2.88) a | 14.46 (0.99) b | 14.67 (1.20) a |
190 °C/2 h | 39.49 (2.90) a | 64.46 (2.37) a | 14.68 (0.59) b | 15.04 (0.82) a |
190 °C/3 h | 34.03 (3.41) a | 63.26 (2.16) a | 13.58 (0.71) a | 14.25 (0.81) a |
190 °C/4 h | 31.24 (3.18) a | 65.50 (1.46) a | 12.21 (0.98) a | 12.81 (1.08) a |
210 °C/1 h | 36.06 (4.46) a | 66.13 (1.38) a | 12.36 (0.61) a | 12.16 (1.04) a |
210 °C/2 h | 31.95 (3.55) a | 67.61 (1.33) a | 10.14 (0.96) a | 10.86 (0.82) a |
210 °C/3 h | 22.75 (1.08) a | 67.22 (1.79) a | 7.81 (0.45) a | 8.37 (0.24) a |
210 °C/4 h | 20.26 (2.29) a | 62.20 (1.62) a | 6.99 (0.53) a | 7.62 (0.52) a |
Paraffin-Thermal Modification | Impact Bending Strength I (J.cm−2) | Brinell Hardness HB (MPa) |
---|---|---|
Reference | 5.38 (0.83) | 31.56 (5.29) |
Paraffin only | 4.27 (0.40) b | 32.22 (4.86) d |
190 °C/1 h | 3.76 (0.65) a | 30.81 (5.02) d |
190 °C/2 h | 4.42 (0.47) c | 29.09 (1.94) d |
190 °C/3 h | 3.87 (0.23) a | 25.46 (4.96) c |
190 °C/4 h | 3.36 (0.77) a | 27.86 (3.47) d |
210 °C/1 h | 3.90 (0.31) a | 18.87 (1.88) a |
210 °C/2 h | 3.66 (0.31) a | 18.46 (0.94) a |
210 °C/3 h | 3.40 (0.22) a | 13.15 (0.70) a |
210 °C/4 h | 2.78 (0.55) a | 11.38 (1.37) a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinprecht, L.; Repák, M. The Impact of Paraffin-Thermal Modification of Beech Wood on Its Biological, Physical and Mechanical Properties. Forests 2019, 10, 1102. https://doi.org/10.3390/f10121102
Reinprecht L, Repák M. The Impact of Paraffin-Thermal Modification of Beech Wood on Its Biological, Physical and Mechanical Properties. Forests. 2019; 10(12):1102. https://doi.org/10.3390/f10121102
Chicago/Turabian StyleReinprecht, Ladislav, and Miroslav Repák. 2019. "The Impact of Paraffin-Thermal Modification of Beech Wood on Its Biological, Physical and Mechanical Properties" Forests 10, no. 12: 1102. https://doi.org/10.3390/f10121102
APA StyleReinprecht, L., & Repák, M. (2019). The Impact of Paraffin-Thermal Modification of Beech Wood on Its Biological, Physical and Mechanical Properties. Forests, 10(12), 1102. https://doi.org/10.3390/f10121102