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Abstract: This work deals with the quality of birch (Betula pendula) wood from different sites
and the impact of heat treatment on it. Two degrees of heat treatment were used, 170 ◦C and
190 ◦C. The resulting property values were compared with reference to untreated wood samples.
These values were wood density, compressive strength, modulus of elasticity (MOE), bending strength
(MOR), impact bending strength (toughness), hardness, swelling, limit of hygroscopicity, moisture
content and color change. It was supposed that an increase in heat-treatment temperature could
reduce strength properties and, adversely, lead to better shape and dimensional stability, which
was confirmed by experiments. It was also shown that the properties of the wood before treatment
affected their condition after heat treatment, and that the characteristic values and variability of birch
properties from 4 sites, 8 stems totally, were reflected in the properties of the heat-treated wood.
Values of static MOR were the exception, where the quality of the input wood was less significant
at a higher temperature, and this was even more significant in impact bending strength, where it
manifested at a lower temperature degree. Impact bending strength also proved to be significantly
negatively affected by heat treatment, about 48% at 170 ◦C, and up to 67% at 190 ◦C. On the contrary,
the most positive results were the MOE and hardness increases at 170 ◦C by about 30% and about
21%, respectively, with a decrease in swelling at 190 ◦C by about 31%. On the basis of color change
and other ascertained properties, there is a possibility that, after suitable heat treatment, birch could
replace other woods (e.g., beech) for certain specific purposes, particularly in the furniture industry.

Keywords: heat treatment; site conditions; birch; thermowood; density; moisture content;
dimensional stability; color; mechanical properties

1. Introduction

With anticipated climate change, tree species with a wide ecological valence are starting to
become the focus of forest management. One of these species is birch (Betula pendula). In complex forest
management, it is necessary to look at these tree species not only as a substitute from an ecological
aspect, but also from a production aspect (i.e., to provide enough material for the processing industry).
For the processing industry, not only the quantity of raw materials, but in particular qualitative criteria
are important for products with higher added value. There are a lack of studies from the Czech
Republic addressing the issue of birch trees in a comprehensive way, including also wood quality.
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The aim of this research is to demonstrate the potential of birch wood and provide missing knowledge
about this issue.

In the last century, a considerable number of pure or mixed birch stands were established in the
Czech Republic in order to evaluate different managing methods on stand microclimates, quantity of
leaf-fall, soil conditions and forest regeneration of other tree species. At present there are a relatively
large number of studies and contributions available, mostly foreign but also Czech, dealing with this
issue [1–17]. These studies, however, predominantly assess only increment and volume production, or
the influence of different methods of management on the microclimate and regeneration. The quality of
wood is also important for wood processing and its subsequent use. This can be understood differently
depending on the wood processing technology and the nature of the final product. Qualitative
parameters are mostly understood by the industry as the size and frequency of knots, the presence of a
false heartwood, the density of the wood (impact on dry mass yield) and above all strength, toughness
and modules of elasticity (MOE) [18].

The selection of optimal habitat, the method of establishing a stand and appropriate silviculture
methods are tools of forest managers through which they try to optimize and maximize the volume
production of forest stands. This issue is well researched in the Czech Republic as well as for the
birch in general, and a large number of works have been devoted to it, such as [19–21]. However,
in developed European countries, the issue is dealt with more complexly, mainly in relation to higher
efficiency and the use of wood as a major renewable raw material. The subject of interest is also the
impact of silviculture methods on wood quality and the possibility of subsequent use [22].

Information on the qualitative parameters of wood is very important to the industry and may
vary depending on how it is used. Above all, it is the already-mentioned wood density (volume of dry
mass in volume unit) as one of the main indicators of wood quality, which significantly affects other
properties, as well as strength or dimensional changes of the wood. Wood density, shrinkage, wood
strength and flexibility, false heartwood proportion or rate of knots are all among the highly variable
features of wood [23], and depend to a large extent on the distance between trees, their social status,
the width of their annual rings and their associated latewood share [24]. Thus, forest management
has the tools not only to influence the quantitative but also qualitative parameters of wood, and
therefore can affect better evaluation and utilization. The issue of the impact of silviculture methods
on the quality of wood has been given considerable attention at the international level. Studies from
Scandinavian countries, such Sweden [25,26] and Finland [27], as well as other surrounding countries,
especially Poland [16], have primarily been devoted to the influence of the initial number of individuals
and silviculture methods on the quality of wood. The importance of adequate thinning intensity, in order
to not significantly reduce the quality of wood, is referred to in the literature (e.g., in [28]).

Studies from the Czech Republic that deal with the impact of silviculture on the qualitative
characteristics of wood in our economically-important tree species are rather rare and do not address
the issue in a comprehensive way. Although there are a considerable number of experimental birch
plots in the Czech Republic where different silviculture methods have been applied, there is no relevant
assessment of site impact and silviculture methods on the quality of wood.

In the Czech Republic, birch is considered to be an important soil-improving, reinforcing and
pioneering tree species, while at the same time it is often considered undesirable due to a rapid initial
growth that can adversely inhibit the growth of other tree species. At present, with regard to the
decline of spruce stands, an opportunity has arisen to use the “creative forces of nature” and possibly
purposefully regulate the development of self-seeded birch trees until their felling age. For example,
in Finland, birch is the third main tree species just after spruce and pine, and is often used to produce
valuable veneers (“Karelian” birch), but it is also used as solid timber, or to be heat-treated for final
use [29]. One of the key research reports on Scandinavian birch is, for example, a study [22] which
comprehensively deals with the cultivation of birch, including impact on wood properties.

In terms of processing, birch is a medium-hard timber with good mechanical properties and
extensive processing possibilities. It has a low resistance to wood-destroying fungi attacks and weather
conditions, and is therefore not suitable for outdoor use. Due to the aforementioned low durability,
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typically small dimensions and frequent curvature, the use of birch timber for construction purposes
is not considered. When extracting precious varieties for veneering and plywood use, extraction in
the winter and fast processing are necessary, as gradual irreversible color change to the wood may
otherwise occur, and will degrade the section for use on ornamental veneers [30]. It is clear, however,
that birch wood has comparable properties to the tree species currently being used, even after heat
treatment [31,32], and can be appreciated in a better way than is currently happening in the Czech
Republic (firewood) for which it certainly deserves more attention.

The aim of this paper is at least to contribute to the possibility that forest owners and managers in
the Czech Republic obtain important information about the influence and meaningfulness of activities
carried out in relation to the quality of birch wood, and consequently its better appreciation [22,30,31,33].
It is through heat treatment that some of the negative features of birch can be reduced. In terms of
the heat-treatment process and ThermoWood properties, which are widely used in Finland and other
western European countries, much has been described [34–43]. In the context of this paper, which is
a free continuation of a 2018 paper by Borůvka et al. [31] that focused on the study of elasticity and
strength properties and the dimensional stability of birch wood from different sites before and after
heat treatment, there should be another prepared paper. This paper will focus on the surface properties
of birch wood in the form of veneers (color, hardness and roughness), and in particular on an economic
evaluation of the thermo-treatment process and its possible practical uses in the Czech Republic.

In any case, it is necessary to realize that via the thermal modification of wood many of its
properties can be permanently improved, and in regards to birch this includes its low durability in the
native state. In addition, high temperature treated wood is naturally friendly as only heat and steam
and no additional chemical or other components are used during the production process.

2. Materials and Methods

Samples of birch tree stems were collected in forest stands of the School Forest Enterprise of
the Czech University of Life Sciences in Kostelec nad Černými Lesy for analysis (see location in
Figure 1) [44].
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We cut samples from eight trees in total, coming from four stands. The sections (5 m long) were
cut off from the basal part of each sample tree. The diameter of the trees at breast height ranged from
32 to 45 cm, with heights from 24 to 29 m and ages from 58 to 81 years (Table 1). The share of birches in
these stands was between 5 and 15%. The characteristics of the area where the samples were taken
were as follows: In terms of natural conditions, the territory belonged to Nature Forest Area 10 (Central
Bohemian Uplands) [45] and the rock subsoil for stems 1–4 was formed by granite rock, or in the case
of stems 5–8 by claystone [46]. Using the Forest Management Institute typological system [47], soil in
the case of stems 1, 2, 5 and 6 was characterized by an organic acidic range, and for stems 3, 4, 7 and 8
by an organic range of nutrients. Stems 1–4 were collected at altitudes of 440 to 460 m and stems 5–8 at
altitudes of 340–380 m.

Table 1. Parameters of individual trees.

Height (m) Dbh * (cm) Age (Year)

1 26 37 68
2 29 34 80
3 28 42 81
4 26 40 65
5 28 34 68
6 27 45 70
7 25 32 58
8 24 36 62

Mean 27 38 69

St. Deviation 2 4 8

* Diameter at breast-height.

A section was made from each stem in the basal section (see the diagram in Figure 2). A disc
for the hardness test was cut from the section (see Figure 2c), and the remainder of the section was
then cut into planks, followed by prisms measuring 25 × 50 × 1000 mm (R × T × L). From each
prism, 6 test pieces of dimensions R × T × L = 20 × 20 × 300 mm were made for a mutual comparison
that would ensure the longitudinal parallelism of reference test specimens for the two selected heat
treatment steps, and lateral parallelism for the two series of tests (see the cut diagram in Figure 2d).
In addition, test specimens with transverse dimensions of 20 × 100 mm and a 300-mm length in the
direction of the fibers were removed from the appropriate remains of the planks, in the amount of
180 pieces, for color measurement and subsequent determination of the most appropriate level of
treatment (see the method used for color measurement in the following paragraphs).

A total of 720 primary test specimens were manipulated in the series of 30 pieces using 3 treatment
steps, including untreated reference samples, from 8 stems (see the diagram in Figure 2d). Samples for
hardness tests were made according to the scheme in Figure 2c. Samples with dimensions of R × T ×
L = 20 × 20 × 30 mm for density determination, swelling and compressive strength were cut from the
ends of 300 mm samples after the end of the bending and impact bending tests. The general condition
was that none of the specimens contain knots, cracks or reaction wood, and that the fiber deflection
in the longitudinal direction be as small as possible (<5◦). The specimens were then conditioned to
equilibrium moisture content in climatic chamber CLIMACELL 707 (BMT Medical Technology Ltd.,
Brno, Czech Republic) with a relative humidity of 65 ± 5% and a temperature of 20 ± 2 ◦C.

A third of the primary test specimens were subsequently subjected to thermo-treatment in an
air atmosphere at 170 ◦C, then a different third at 190 ◦C, in accordance with the known Finnish
patent for the thermal modification of wood, Pat. EP-0759137 [29,37]. The production was carried
out in a laboratory high temperature chamber A type KHT (Katres Ltd., Jihlava, Czech Republic),
see Figure 3, with a filling capacity of 0.38 m3, a maximum load capacity of 150 kg, a maximum
operating temperature of 250 ◦C and a power consumption of 3 kWh. During the treatment we
used a water curtain spray unlike the steam used in Finnish technology. The detailed course of the
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production is shown in Figure 4. The thermally modified test specimens were then air conditioned
again to equilibrium moisture content in an environment with a relative humidity of 65 ± 5% and a
temperature of 20 ± 2 ◦C.
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Figure 2. Cutting diagram for test specimen preparation. (a) Basal section of the trunk, (b) cutting of
selected trunk section, (c) cutting of the disc and method for the experimental measurement of hardness
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and B = for determination of density, compressive strength, swelling and moisture content.
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All of the tests were carried out completely according to the testing standards of Czech national
standardization [48–58], and the determination of the dynamic elasticity modulus was based on the
methodology specified in the Fakopp instrumentation manual [59].

Standard color measurement (CIEL*a*b*) was carried out on specimens in untreated and
heat-treated conditions with a Spectrophotometer CM-600d (Konica Minolta, Osaka, Japan). The total
color difference of the wood related to the white color before and after the thermal modification was
determined by the colorimetric parameter ∆E, which is calculated as the square root of the sum of the
squares of the partial deviations (∆L* is the difference in the brightness axis, ∆a* is the difference in
the green-red axis and ∆b* is the difference in the blue-yellow axis). It therefore represents the shortest
distance between coordinates of the standard, which in our case is a white color and a sample in the
color space [48,49].

As one of the comparable properties, color was additionally measured on samples of birch with
160 ◦C, 180 ◦C and 200 ◦C heat treatments, and on steamed and native beech samples, for comparison
with the selected 170 ◦C and 190 ◦C treatment degrees, in order to evaluate the potential of birch wood
to substitute beech wood for practical uses. Heat treatments at 160 ◦C, 180 ◦C and 200 ◦C were carried
out in the same way as at 170 ◦C and 190 ◦C (see Figure 4). This means that up to a temperature of
130 ◦C, the rate of increase was about 13 ◦C per hour, and the peak stage was reached at about 20 ◦C
per hour. The final cooling after the end of the primary phase of modification took place at a rate in the
range of 20–25 ◦C per hour.



Forests 2019, 10, 189 7 of 22

The sound propagation velocity in the test specimens was determined by measuring the ultrasonic
pulse transit time between the two pressure piezoelectric probes of the Fakopp Ultrasonic Timer
instrument (Fakopp Enterprise Bt., Ágfalva, Hungary). From the dynamic modulus of elasticity (MOE)
in literature [60] arises:

Ed = c2·ρ (1)

where Ed is the dynamic modulus of elasticity in MPa, c is the speed of sound propagation in m·s−1

and ρ is the wood density in kg·m−3 [59].
Charpy’s hammer (CULS, Prague, Czech Republic) was used to ascertain impact bending strength

(toughness). The direction of the hammer impact was tangential [55].
Static bending strength (MOR) and modulus of elasticity (MOE) were determined on the Tira

50 kN testing machine (Tira GmbH, Schalkau, Germany) under the load of two forces at quarter
distances from the supports to eliminate shear stress (see Figure 5) [53,54].
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Brinell hardness the radial plane was measured with the hardness tester DuraVision-30 (Struers
GmbH, Willich, Germany) using a force of 500 N [57,58].

Compressive strength was determined using the Tira 50 kN testing machine, and we also obtained
specific strengths in kN.m/kg by relating the acquired values to density [52].

Swelling was determined in accordance with the standard in such a way that we subjected the
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen,
Germany) at 103 ± 2 ◦C [50,56].

Basic density was calculated as the proportion of wood dry mass and volume in the swollen
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also
determined via a calculation according to the following relationship:

FSP =

(
1

ρB
− 1

ρ0

)
·ρW ·100 (2)

where ρ0 is the oven-dry density in g·cm−3, ρB is the basic density in g·cm−3 and ρW is the density of
water in g·cm−3 [51].



Forests 2019, 10, 189 8 of 22

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear
regression model was used to set the value of correlation between selected properties. The same
significance level of α= 0.05 was used for all of the analyses [61].

3. Results and Discussion

Color measurements were taken of untreated samples and samples with heat treatment at 160 ◦C,
170 ◦C, 180 ◦C, 190 ◦C and 200 ◦C, as well as of native and steamed beech samples, in order to select a
suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 and Figure 6).
On the basis of the obtained results and previous research [31], the temperature ranges of 170 ◦C and
190 ◦C were selected for the main treatment and subsequent evaluation.

Table 3 contains a summary of the basic statistical characteristics of all of the tested properties of
heat-treated birch wood compared to the native wood, regardless of which stand and stem they came
from. Subsequently, the obtained data were subjected to factor analysis (see Figures 7–9) and multiple
comparisons (see Duncan´s tests, Tables A1–A8). A more detailed analysis is included at the end of this
chapter, notably a drastic decrease in impact bending strength even at a lower temperature treatment
(170 ◦C), in the case of bending strength at the higher temperature (190 ◦C), and the almost insignificant
influence of heat treatment on the dynamic modulus of elasticity and compressive strength values.

Table 2. Color parameters (mean / standard deviation).

L* a* b* ∆E* ∆E*/REF
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 -
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Birch treated at 160 ◦C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Birch treated at 170 ◦C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Birch treated at 180 ◦C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Birch treated at 190 ◦C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Birch treated at 200 ◦C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well as of native and steamed beech samples, in order to 
select a suitable birch treatment temperature for the purpose of esthetical appearance (see Table 2 
and Figure 6). On the basis of the obtained results and previous research [31], the temperature ranges 
of 170 °C and 190 °C were selected for the main treatment and subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-
yellow axis, ΔE*/REF is decrease in ΔE* values compared to untreated birch in %. 

   

Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9

Valid N = 30 (for all series). L* is brightness, a* is value in the green-red axis, b* is value in the blue-yellow axis,
∆E*/REF is decrease in ∆E* values compared to untreated birch in %.
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Swelling was determined in accordance with the standard in such a way that we subjected the 
samples to two cycles of repetition (swelling–drying). Drying as part of this test and for determination 
of equilibrium moisture content was done in the Binder FD 115 lab kiln (Binder Inc., Tuttlingen, 
Germany) at 103 ± 2 °C. [50,56]. 

Basic density was calculated as the proportion of wood dry mass and volume in the swollen 
state (maximum volume). Limit of hygroscopicity, or the fiber saturation point (FSP) in %, was also 
determined via a calculation according to the following relationship: 𝐹𝑆𝑃 = ൬ 1𝜌 − 1𝜌൰ ∙ 𝜌ௐ ∙ 100 (2) 

where ρ0 is the oven-dry density in g.cm−3, ρB is the basic density in g.cm−3 and ρW is the density of 
water in g.cm−3. [51]. 

For statistical analysis, analysis of variance (ANOVA) was used to evaluate the significance of 
individual factors. Duncan’s Multiple Range Test was used to compare the properties of wood among 
the different treatments and sites (moreover trees and cycles of swelling and shrinkage). A linear 
regression model was used to set the value of correlation between selected properties. The same 
significance level of α= 0.05 was used for all of the analyses. [61]. 

3. Results and Discussion 

Color measurements were taken of untreated samples and samples with heat treatment at 160 
°C, 170 °C, 180 °C, 190 °C and 200 °C, as well appearance (see Table 2 and Figure 6). On the basis of 
the obtained ], the temperature ranges of 170 °C and 190 °C were selected for the main treatment and 
subsequent evaluation. 

Table 2. Color parameters (mean / standard deviation). 

  L* a* b* ΔE* ΔE*/REF 

 Untreated birch 80.1/0.4 5.9/0.1 19.0/0.2 82.5/0.4 - 

 Birch treated at 160 °C 69.1/1.4 8.0/0.4 19.9/0.1 72.3/1.3 −12.3 

 Birch treated at 170 °C 65.7/0.8 7.2/0.2 17.1/0.3 68.3/0.7 −17.2 

 Birch treated at 180 °C 58.5/1.2 8.6/0.2 21.2/0.4 62.8/1.0 −23.8 

 Birch treated at 190 °C 49.6/0.3 11.8/0.3 23.8/0.2 56.3/0.3 −31.8 

 Birch treated at 200 °C 34.7/1.6 8.8/1.0 14.1/1.8 38.5/2.3 −53.3 

 Untreated beech 73.1/0.8 8.0/0.3 20.3/0.3 76.3/0.7 −7.5 

 Steamed beech 66.8/0.8 11.5/0.2 21.3/0.5 71.0/1.0 −13.9 

 

   
(a) (b) (c) 

Figure 6. Cont.
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Figure 6. (a) Untreated birch, (b) birch treated at 160 °C, (c) birch treated at 170 °C, (d) birch treated 
at 180 °C, (e) birch treated at 190 °C, (f) birch treated at 200 °C, (g) untreated beech, (h) steamed beech. 

Table 3 contains a summary of the basic statistical characteristics of all of the tested properties 
of heat-treated birch wood compared to the native wood, regardless of which stand and stem they 
came from. Subsequently, the obtained data were subjected to factor analysis (see Figures 7–9) and 
multiple comparisons (see Duncan´s tests, Table A1–8). A more detailed analysis is included at the 
end of this chapter, notably a drastic decrease in impact bending strength even at a lower temperature 
treatment (170 °C), in the case of bending strength at the higher temperature (190 °C), and the almost 
insignificant influence of heat treatment on the dynamic modulus of elasticity and compressive 
strength values. 

Table 3. Basic statistical analyses of the properties for untreated and heat-treated birch wood. 

Properties Heat Treatment 
Degree 

Minimum Mean Maximum Std.Dev. Coef.Var. 
(%) 

Density REF 519 652 814 53 8.1 

(kg/m3) 170 492 647 774 52 8.1 
 190 461 637 768 58 9.1 

Oven-dry density REF 491 634 775 50 7.9 

(kg/m3) 170 470 625 748 52 8.4 
 190 445 618 725 55 8.9 

Basic density REF 425 517 628 38 7.3 

(kg/m3) 170 414 523 620 40 7.6 
 190 414 535 628 43 7.9 

Figure 6. (a) Untreated birch, (b) birch treated at 160 ◦C, (c) birch treated at 170 ◦C, (d) birch treated at
180 ◦C, (e) birch treated at 190 ◦C, (f) birch treated at 200 ◦C, (g) untreated beech, (h) steamed beech.

The paper includes the results of a single-factor analysis of Figures 7a,c,d, 8a–e, 9a–d,i and 10
(impact of heat treatment), and a two-factor analysis of Figures 7e–h, 8g,h, 9e–h,j–l and 11 (impact of
heat treatment and stand, or stem or cycles of repeated swelling and shrinkage), while the connecting
line in the graphs between individual stands (sites) or stems are here only for better clarity and trend
analysis (in fact, they should not be joined). At the same time, the existing known correlations between
the static and dynamic modulus of elasticity and compressive strength on density (Figure 7b) and
swelling on density (Figure 8f) were confirmed, in regards to the dependence of all of the samples
(i.e., reference and thermally modified) [62]. It was also shown that elastic properties responded to
heat treatment more positively than strength properties; see Figure 9b,c, which exhibited 22% increase
in static bending strength at 170 ◦C, and up to 43% at 190 ◦C in favor of elasticity. It was also shown
that dynamic stress (Figure 9d) was much harder on the heat-treated wood than static stress (Figure 9c)
because of the higher brittleness—although the hardness, at least on the surface layers, was relatively
higher (see Figure 9i,j). At 170 ◦C, this difference was approximately 56% and at 190 ◦C approximately
41%, to the detriment of dynamics.

Most important of all, and the main objective of this paper, was verification that the properties
of wood prior to treatment have an affect on its condition after heat treatment. Their variability,
irrespective of any particular stand or stem, was 10–30%, depending on the property and the treatment
level. As predicted, it was shown that the characteristic values and variability of the [24] birch wood
properties from 4 stands or 8 stems were manifested on heat-treated wood. The exception was static
bending strength (Figure 9e), where at a higher temperature (190 ◦C) the quality of the input wood
was not as significant. This was shown even more markedly in regards to impact bending strength
(Figure 9g), which manifested itself at a lower temperature (170 ◦C). Impact bending strength was also



Forests 2019, 10, 189 10 of 22

negatively affected by the heat treatment most significantly at 170 ◦C by about 48%, and at 190 ◦C
with a decrease of up to about 67% and a drop of about 26% for MOR (see Table 4). Conversely,
the most positive affects were an increase in the modulus of elasticity and hardness at 170 ◦C by about
30% and 21%, respectively, and a decrease in swelling at 190 ◦C by about 31%, which was associated
with an adequate decrease in the fiber saturation point (see Table 4). The higher shape stability of
the heat-treated wood was obviously proven, and the wood was even found to be more resilient to
repeated “swelling–shrinkage” cycles, which showed some instability in the native wood compared to
the ThermoWood (see Figure 11).

Table 3. Basic statistical analyses of the properties for untreated and heat-treated birch wood.

Properties Heat Treatment Degree Minimum Mean Maximum Std. Dev. Coef. Var. (%)

Density REF 519 652 814 53 8.1
(kg/m3) 170 492 647 774 52 8.1

190 461 637 768 58 9.1

Oven-dry density REF 491 634 775 50 7.9
(kg/m3) 170 470 625 748 52 8.4

190 445 618 725 55 8.9

Basic density REF 425 517 628 38 7.3
(kg/m3) 170 414 523 620 40 7.6

190 414 535 628 43 7.9

Limit of REF 24 36 45 4 10.8
hygroscopicity 170 23 31 41 3 10.8

(%) 190 12 25 53 5 18.4

Radial swelling REF 4.0 7.9 13.5 1.4 17.8
(%) 170 3.8 7.2 11.4 1.3 18.5

190 1.4 5.8 12.7 1.5 26.5

Tangential swelling REF 6.2 12.5 17.0 1.8 14.5
(%) 170 6.5 11.0 14.6 1.5 13.4

190 1.2 8.6 21.1 2.1 24.6

Volumetric swelling REF 14.3 22.5 29.6 2.6 11.4
(%) 170 13.2 19.5 26.8 2.3 12.0

190 5.9 15.5 31.7 3.3 21.0

Compressive strength REF 32.0 59.6 80.6 9.2 15.4
(MPa) 170 39.9 62.9 85.8 8.5 13.6

190 19.2 63.1 89.0 11.6 18.5

Specific REF 42.8 91.3 112.4 11.5 12.6
compressive strength 170 63.9 97.1 128.0 9.9 10.2

(kN.m/kg) 190 27.0 99.0 134.4 15.3 15.4

Static REF 3809 10,559 36,686 2884 27.3
modulus of elasticity 170 6547 13,699 25,514 3104 22.7

(MPa) 190 2019 12,356 23,974 2813 22.8

Dynamic REF 6642 14,316 35,070 4230 29.5
modulus of elasticity 170 2234 15,212 31,931 4939 32.5

(MPa) 190 5688 14,140 29,587 3373 23.9

Modulus of rupture- REF 16.8 82.0 122.2 17.5 21.4
bending strength 170 17.3 88.2 133.5 23.7 26.9

(MPa) 190 9.9 61.1 123.1 22.6 37.1

Toughness-impact REF 0.7 8.1 13.2 2.9 35.6
bending strength 170 0.6 4.2 11.1 2.3 53.8

(J/cm2) 190 0.3 2.7 13.4 2.1 78.6

Hardness REF 12.0 28.0 71.0 9.9 35.5
in the radial plane * 170 12.0 33.9 68.0 12.9 38.1

(MPa) 190 12.0 29.5 64.0 13.0 44.1

Equilibrium REF 11.9 12.6 13.0 0.3 2.0
moisture content 170 8.6 10.9 11.5 0.4 3.8

(%) 190 6.1 9.6 10.5 0.7 7.2

Valid N = 240 for all properties within heat treatment degree (* exception: N = 416), REF = reference, with no
treatment, 170 = heat treatment at 170 ◦C, 190 = heat treatment at 190 ◦C.
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Figure 7. Graphic visualization of the effect of heat-treatment temperature on (a) wood density, (c) 
compressive strength and (d) specific compressive strength. Graphic visualization of the effect of heat-
treatment temperature and site on (e) density and (g) compressive strength. Graphic visualization of 
the effect of heat-treatment temperature and tree on (f) density and(h) compressive strength. The 
relationship between density and compressive strength, regardless of the heat-treatment degree, is 
shown in (b). Significance level is 95%. REF = reference, with no treatment; 170 = heat treatment at 170 
°C; 190 = heat treatment at 190 °C. 

Most important of all, and the main objective of this paper, was verification that the properties 
of wood prior to treatment have an affect on its condition after heat treatment. Their variability, 
irrespective of any particular stand or stem, was 10–30%, depending on the property and the 
treatment level. As predicted, it was shown that the characteristic values and variability of the [24] 
birch wood properties from 4 stands or 8 stems were manifested on heat-treated wood. The exception 
was static bending strength (Figure 9e), where at a higher temperature (190 °C) the quality of the 
input wood was not as significant. This was shown even more markedly in regards to impact bending 
strength (Figure 9g), which manifested itself at a lower temperature (170 °C). Impact bending strength 
was also negatively affected by the heat treatment most significantly at 170 °C by about 48%, and at 
190 °C with a decrease of up to about 67% and a drop of about 26% for MOR (see Table 4). Conversely, 
the most positive affects were an increase in the modulus of elasticity and hardness at 170 °C by about 
30% and 21%, respectively, and a decrease in swelling at 190 °C by about 31%, which was associated 
with an adequate decrease in the fiber saturation point (see Table 4). The higher shape stability of the 
heat-treated wood was obviously proven, and the wood was even found to be more resilient to 
repeated “swelling–shrinkage” cycles, which showed some instability in the native wood compared 
to the ThermoWood (see Figure 11). 
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Figure 7. Graphic visualization of the effect of heat-treatment temperature on (a) wood density,
(c) compressive strength and (d) specific compressive strength. Graphic visualization of the effect of
heat-treatment temperature and site on (e) density and (g) compressive strength. Graphic visualization
of the effect of heat-treatment temperature and tree on (f) density and(h) compressive strength.
The relationship between density and compressive strength, regardless of the heat-treatment degree,
is shown in (b). Significance level is 95%. REF = reference, with no treatment; 170 = heat treatment at
170 ◦C; 190 = heat treatment at 190 ◦C.
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heat-treated wood was obviously proven, and the wood was even found to be more resilient to 
repeated “swelling–shrinkage” cycles, which showed some instability in the native wood compared 
to the ThermoWood (see Figure 11). 
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Figure 8. Graphic visualization of the effect of heat-treatment temperature on (a) oven-dry density, 
(b) basic density, (c) limit of hygroscopicity (fiber saturation point – FSP), (d) radial and tangential 
swelling, and (e) volumetric swelling. (f) The relationship between density and volumetric swelling, 
regardless of the heat-treatment degree. (g) Graphic visualization of the effect of heat-treatment 
temperature and site on volumetric swelling. (h) Graphic visualization of the effect of heat-treatment 
temperature and tree on volumetric swelling. Significance level is 95%. REF = reference, with no 
treatment; 170 = heat treatment at 170 °C; 190 = heat treatment at 190 °C. 

In regards to the resulting birch wood properties from individual stands (sites), the research 
proved that acidic soil at lower altitudes is the best, but this requires more extensive research. This 
conclusion is quite logical, since birch wood from fertile soils should have bigger growths and hence 
larger volumes, but also a somewhat lower density. The values of other properties relate to this, such 

Figure 8. Graphic visualization of the effect of heat-treatment temperature on (a) oven-dry density,
(b) basic density, (c) limit of hygroscopicity (fiber saturation point—FSP), (d) radial and tangential
swelling, and (e) volumetric swelling. (f) The relationship between density and volumetric swelling,
regardless of the heat-treatment degree. (g) Graphic visualization of the effect of heat-treatment
temperature and site on volumetric swelling. (h) Graphic visualization of the effect of heat-treatment
temperature and tree on volumetric swelling. Significance level is 95%. REF = reference, with no
treatment; 170 = heat treatment at 170 ◦C; 190 = heat treatment at 190 ◦C.
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Figure 9. Cont.
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Figure 9. Graphic visualization of the effect of heat-treatment temperature on (a) dynamic elasticity 
modulus, (b) static elasticity modulus, (c) bending strength, (d) impact bending strength and (i) 
hardness in the radial plane. Graphic visualization of the effect of heat-treatment temperature on (j) 
hardness profile in the horizontal direction along the radius of the tree. Graphic visualization of the 
effect of heat-treatment temperature and site on (e) bending strength, (g) impact bending strength 
and (k) hardness of the radial plane. Graphic visualization of the effect of heat-treatment temperature 
and tree on (f) bending strength, (h) impact bending strength, and (l) hardness in the radial plane. 
Significance level is 95%. REF = reference, with no treatment; 170 = heat treatment at 170 °C; 190 = heat 
treatment at 190 °C. 

Figure 9. Graphic visualization of the effect of heat-treatment temperature on (a) dynamic elasticity
modulus, (b) static elasticity modulus, (c) bending strength, (d) impact bending strength and
(i) hardness in the radial plane. Graphic visualization of the effect of heat-treatment temperature
on (j) hardness profile in the horizontal direction along the radius of the tree. Graphic visualization of
the effect of heat-treatment temperature and site on (e) bending strength, (g) impact bending strength
and (k) hardness of the radial plane. Graphic visualization of the effect of heat-treatment temperature
and tree on (f) bending strength, (h) impact bending strength, and (l) hardness in the radial plane.
Significance level is 95%. REF = reference, with no treatment; 170 = heat treatment at 170 ◦C; 190 = heat
treatment at 190 ◦C.

In regards to the resulting birch wood properties from individual stands (sites), the research
proved that acidic soil at lower altitudes is the best, but this requires more extensive research.
This conclusion is quite logical, since birch wood from fertile soils should have bigger growths
and hence larger volumes, but also a somewhat lower density. The values of other properties relate to
this, such as the tree number 3. In any case, the priority of this research was mainly to demonstrate
the influence of the input material quality with respect to selected treatment levels and the resulting
relevant properties.
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Regarding the effect of heat treatment on the properties of wood, it was essential that the selected
degrees for final treatment caused changes in properties that were relatively on the desired level.
The general trend corresponded with the results specified for the example in the handbook from the
International ThermoWood Association [37] and others [32,38]. However, it is necessary to realize that
hardwoods contain a higher proportion of “fill-type” hemicelluloses (i.e., xylans) [63], and thus are
more susceptible to higher treatment temperatures in terms of mechanical properties. The temperature
of 170 ◦C and in particular 190 ◦C were both acceptable in terms of color and other properties, except for
the ability of the treated wood to withstand the dynamic load. This must be taken into consideration,
and the wood should not be exposed to this type of load.

Overall, there is a possibility that, after appropriate heat treatment, birch could replace beech for
certain specific purposes, particularly in the furniture industry. One of the options is the application of
heat-treated veneers, which are also ideal finalization in terms of the economy, and this is likely the
most appropriate direction for research in this area. Based on preliminary research, it has been shown
that the color potential of heat-treated birch wood veneers is very interesting, and it is important to
choose a time limit for the peak stage of a particular treatment step (see Figure 12). Heat treatment
produces a uniform color change in wood into warm brown tones across the entire cross-section, and
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also creates the appearance of exotic wood. As a benchmark, the most suitable properties other than
color will be roughness and in particular hardness. These will be important variables for assessing the
surface quality of furniture components.

Table 4. Changes in the properties of heat-treated birch wood in comparison to the reference (untreated)
birch in %.

170/REF 190/REF

Density −0.8 −2.3
Oven-dry density −1.4 −2.5
Basic density 1.2 3.5
Limit of hygroscopicity −13.9 −30.6
Radial swelling −8.9 −26.6
Tangential swelling −12.0 −31.2
Volumetric swelling −13.3 −31.1
Compressive strength 5.5 5.9
Specific compressive strength 6.4 8.4
Static modulus of elasticity 29.7 17.0
Dynamic modulus of elasticity 6.3 −1.2
Modulus of rupture (bending strength) 7.6 −25.5
Toughness (impact bending strength) −48.1 −66.7
Hardness in the radial plane 21.1 5.4
Equilibrium moisture content −13.5 −23.8
Total color change −17.2 −31.8Forests 2019, 10, 189 18 of 25 
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Figure 12. (a) Sample of untreated birch veneer. (b) Sample of treated veneer under a temperature of 
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Figure 12. (a) Sample of untreated birch veneer. (b) Sample of treated veneer under a temperature of
200 ◦C for 2 h.

4. Conclusions

It has been proven that the properties of wood prior to treatment have an effect on its condition
after heat treatment. The exception was static bending strength, where at a higher temperature (190 ◦C)
the quality of the input wood became less significant, a fact that was even more significant in impact
bending strength at an even lower temperature (170 ◦C). The tested properties demonstrated that sites
also play an important role in the properties of wood, and the best results were obtained from acidic
soil at lower altitudes.
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Impact bending strength proved to be most negatively affected by the heat treatment, about 48%
at 170 ◦C and up to 67% at 190 ◦C. The most positive effect was the increase in modulus of elasticity
and hardness by about 30% and 21% at 170 ◦C, respectively, with a decrease in swelling at 190 ◦C by
about 31%.

Overall, it can be stated that the higher dimensional stability of heat-treated wood was “redeemed”
by degraded strength properties, in particular under dynamic stress. This effect was enhanced with
increasing treatment temperatures. Overall, due to both color and other properties, there is the
potential for birch to replace beech and other woods for certain specific purposes, in particular in the
furniture industry in the form of heat-treated veneers.
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Life Sciences in Kostelec nad Černými Lesy, for kind providing us with the testing material.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Duncan’s Multiple Range Test for density.

MS = 2690.2 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.003 *
REF Site 3 0.131 0.000 *
REF Site 4 0.219 0.077 0.007 *
170 Site 1 0.350 0.038 * 0.018 * 0.718
170 Site 2 0.001 * 0.650 0.000 * 0.031 * 0.013 *
170 Site 3 0.165 0.000 * 0.832 0.012 * 0.027 * 0.000 *
170 Site 4 0.093 0.189 0.001 * 0.597 0.405 0.090 0.003 *
190 Site 1 0.088 0.175 0.001 * 0.577 0.390 0.087 0.002 * 0.929
190 Site 2 0.000 * 0.044 * 0.000 * 0.000 * 0.000 * 0.096 0.000 * 0.001 * 0.001 *
190 Site 3 0.768 0.006 * 0.083 0.319 0.481 0.002 * 0.112 0.148 0.143 0.000 *
190 Site 4 0.098 0.174 0.002 * 0.617 0.421 0.083 0.003 * 0.994 0.930 0.001 * 0.157

* Values are significant at p < 0.05. Error: Between MS = mean squares, DF = degrees of freedom. REF = reference,
with no treatment; 170 = heat treatment at 170 ◦C; 190 = heat treatment at 190 ◦C.

Table A2. Duncan’s Multiple Range Test for compressive strength.

MS = 93.018 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.036 *
REF Site 3 0.793 0.021
REF Site 4 0.025 * 0.841 0.014
170 Site 1 0.090 0.000 * 0.138 0.000 *
170 Site 2 0.620 0.091 0.477 0.068 0.033
170 Site 3 0.145 0.000 * 0.207 0.000 * 0.755 0.060
170 Site 4 0.917 0.041 * 0.733 0.029 * 0.078 0.668 0.131
190 Site 1 0.152 0.000 * 0.219 0.000 * 0.751 0.062 0.986 0.134
190 Site 2 0.107 0.580 0.070 0.481 0.001 * 0.217 0.002 * 0.116 0.002 *
190 Site 3 0.018 * 0.000 * 0.032 * 0.000 * 0.463 0.005 * 0.337 0.015 * 0.325 0.000 *
190 Site 4 0.464 0.005 * 0.602 0.003 * 0.298 0.249 0.411 0.427 0.433 0.023 * 0.093

* Significant at p < 0.05.



Forests 2019, 10, 189 18 of 22

Table A3. Duncan’s Multiple Range Test for oven-dry density.

MS = 2477.4 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.007 *
REF Site 3 0.040 * 0.000 *
REF Site 4 0.241 0.116 0.001 *
170 Site 1 0.147 0.198 0.000 * 0.728
170 Site 2 0.000 * 0.353 0.000 * 0.015 * 0.034 *
170 Site 3 0.160 0.000 * 0.451 0.013 * 0.006 * 0.000 *
170 Site 4 0.121 0.213 0.000 * 0.625 0.848 0.038 * 0.004 *
190 Site 1 0.150 0.188 0.000 * 0.714 0.953 0.032 * 0.006 * 0.879
190 Site 2 0.000 * 0.037 * 0.000 * 0.000 * 0.001 * 0.208 0.000 * 0.001 * 0.001 *
190 Site 3 0.903 0.009 * 0.035 * 0.259 0.165 0.000 * 0.150 0.143 0.175 0.000 *
190 Site 4 0.148 0.199 0.000 * 0.718 0.968 0.034 * 0.006 * 0.870 0.982 0.001 * 0.169

* Significant at p < 0.05.

Table A4. Duncan’s Multiple Range Test for volumetric swelling.

MS = 6.6651 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.000 *
REF Site 3 0.201 0.000 *
REF Site 4 0.558 0.000 * 0.078
170 Site 1 0.000 * 0.354 0.000 * 0.000 *
170 Site 2 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
170 Site 3 0.000 * 0.444 0.000 * 0.000 * 0.820 0.000 *
170 Site 4 0.000 * 0.321 0.000 * 0.000 * 0.910 0.000 * 0.752
190 Site 1 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
190 Site 2 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.029 *
190 Site 3 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.718 0.054
190 Site 4 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.112 0.000 * 0.065

* Significant at p < 0.05.

Table A5. Duncan’s Multiple Range Test for bending strength.

MS = 453.67 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.249
REF Site 3 0.197 0.019 *
REF Site 4 0.433 0.068 0.558
170 Site 1 0.008 * 0.000 * 0.146 0.056
170 Site 2 0.682 0.141 0.343 0.668 0.023 *
170 Site 3 0.006 * 0.000 * 0.137 0.048 * 0.901 0.018 *
170 Site 4 0.323 0.043 * 0.714 0.794 0.085 0.519 0.075
190 Site 1 0.000 * 0.001 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
190 Site 2 0.000 * 0.001 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.962
190 Site 3 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.369 0.372
190 Site 4 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.660 0.671 0.597

* Significant at p < 0.05.

Table A6. Duncan’s Multiple Range Test for impact bending strength.

MS = 5.6569 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 708 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.000 *
REF Site 3 0.934 0.000 *
REF Site 4 0.000 * 0.999 0.000 *
170 Site 1 0.000 * 0.000 * 0.000 * 0.000 *
170 Site 2 0.000 * 0.000 * 0.000 * 0.000 * 0.523
170 Site 3 0.000 * 0.000 * 0.000 * 0.000 * 0.973 0.515
170 Site 4 0.000 * 0.000 * 0.000 * 0.000 * 0.309 0.655 0.304
190 Site 1 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.003 * 0.000 * 0.009 *
190 Site 2 0.000 * 0.000 * 0.000 * 0.000 * 0.008 * 0.037 * 0.008 * 0.081 0.324
190 Site 3 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.001 * 0.000 * 0.002 * 0.632 0.168
190 Site 4 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.284 0.050 0.506

* Significant at p < 0.05.
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Table A7. Duncan’s Multiple Range Test for hardness in the radial plane.

MS = 126.19 REF REF REF REF 170 170 170 170 190 190 190 190
DF = 1236 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

REF Site 1
REF Site 2 0.002 *
REF Site 3 0.612 0.009 *
REF Site 4 0.130 0.102 0.280
170 Site 1 0.048 * 0.000 * 0.015 * 0.000 *
170 Site 2 0.267 0.000 * 0.123 0.009 * 0.345
170 Site 3 0.065 0.000 * 0.022 * 0.001 * 0.857 0.407
170 Site 4 0.711 0.001 * 0.412 0.068 0.096 0.420 0.124
190 Site 1 0.569 0.000 * 0.313 0.043 * 0.139 0.533 0.172 0.811
190 Site 2 0.274 0.047 * 0.502 0.622 0.002 * 0.032 * 0.003 * 0.162 0.113
190 Site 3 0.692 0.007 * 0.883 0.237 0.020 * 0.150 0.029 * 0.474 0.366 0.445
190 Site 4 0.131 0.115 0.276 0.970 0.000 * 0.010 * 0.001 * 0.069 0.044 * 0.623 0.237

* Significant at p < 0.05.

Table A8. Duncan’s Multiple Range Test for Repeat Cycle of Volumetric Swelling.

MS = 6.9927 REF REF REF 170 170 170 190 190 190
DF = 2151 0 1 2 0 1 2 0 1 2

REF 0
REF 1 0.000 *
REF 2 0.000 * 0.000 *
170 0 0.000 * 0.001 * 0.000 *
170 1 0.000 * 0.000 * 0.002 * 0.000
170 2 0.000 * 0.000 * 0.358 0.000 0.000
190 0 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
190 1 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.026 *
190 2 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

* Values are significant at p < 0.05. Error: Between MS = mean squares, DF = degrees of freedom. REF = reference,
with no treatment; 170 = heat treatment at 170 ◦C; 190 = heat treatment at 190 ◦C; 0 = repeat cycle 0; 1 = repeat cycle
1; 2 = repeat cycle 2.
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