Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Technologies of Logging Residues Chipping
3.2. Moisture Content, Calorific Value, Ash Content
3.3. Wood Chips Size and Fraction Distribution
3.4. Transport of Wood Chips and Their Bulk Density
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Forest Biomass for Energy in the EU: Current Trends, Carbon Balance and Sustainable Potential for BirdLife Europe, EEB, and Transport & Environment; International Institute for Sustainability Analysis and Strategy, European Forest Institute, and Joanneum Research; Madrid/Joensuu/Graz: Darmstadt, Germany, 2014; p. 121.
- Viktarovich, N.; Czechowska-Kosacka, A. Production from Biomass in a Trigeneration System. Rocz. Ochr. Sr. 2016, 18, 1007–1017. [Google Scholar]
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Gronalt, M.; Rauch, P. Designing a regional forest fuel supply network. Biomass Bioenergy 2007, 31, 393–402. [Google Scholar] [CrossRef]
- Mantau, U.; Saal, U.; Prins, K.; Steierer, F.; Lindner, M.; Verkerk, H.; Eggers, J.; Leek, N.; Oldenburger, J.; Asikainen, A.; et al. EU Wood. Real Potential for Changes in Growth and Use of EU Forests; Final Report: Hamburg, Germany, 2010; p. 160. [Google Scholar]
- Bartoszewicz-Burczy, H.; Soliński, J. Wykorzystanie biomasy leśnej w energetyce–stan i perspektywa do roku 2030 i dalej do 2080 roku. In Proceedings of the Narodowy Program Leśny, Panel Ekspertów Klimat–Las i Drewno a Zmiany Klimatyczne: Zagrożenia i Szanse; Instytut Badawczy Leśnictwa: Sękocin Stary, Poland, 2013; pp. 1–13. [Google Scholar]
- Erber, G.; Kühmaier, M. Research trends in European forest fuel supply chains: A review of the last ten years (2007–2017)—part one: Harvesting and storage. Croat. J. For. Eng. 2017, 38, 269–278. [Google Scholar]
- Kühmaier, M.; Erber, G. Research trends in European forest fuel supply chains: A review of the last ten years (2007–2016)—part two: Comminution, transport & logistics. Croat. J. For. Eng. 2018, 39, 139–152. [Google Scholar]
- Cameron, J.B.; Kumar, A.; Flynn, P.C. The impact of feedstock cost on technology selection and optimum size. Biomass Bioenergy 2007, 31, 137–144. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Appl. Energy 2014, 116, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Thornley, P.; Gilbert, P.; Shackley, S.; Hammond, J. Maximizing the greenhouse gas reductions from biomass: The role of life cycle assessment. Biomass Bioenergy 2015, 81, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Kuptz, D.; Hartmann, H. The effect of raw material and machine setting on chipping performance and fuel quality—A German case study. Int. J. For. Eng. 2015, 26, 60–70. [Google Scholar] [CrossRef]
- Stampfer, K.; Kanzian, C. Current state and development possibilities of wood chip supply chains in Austria. Croat. J. For. Eng. 2006, 27, 135–145. [Google Scholar]
- Eker, M. Assessment of procurement systems for unutilized logging residues for Brutian pine forest of Turkey. AJB 2011, 10, 2455–2468. [Google Scholar]
- Yoshioka, T.; Aruga, K.; Nitami, T.; Sakai, H.; Kobayashi, H. A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass Bioenergy 2006, 30, 342–348. [Google Scholar] [CrossRef]
- Hakkila, P. Utilization of Residual Forest Biomass; Springer Series in Wood Science; Springer: Berlin Heidelberg, 1989; ISBN 978-3-642-74074-9. [Google Scholar]
- Ringman, M. Trädbränslesortiment: Definitioner och Egenskaper (Wood Fuel Assortments—Definitions and Properties); Sveriges Lantbruksuniversitet; Institutionen för Virkeslära: Uppsala, Sweden, 1996. [Google Scholar]
- Díaz-Yáñez, O.; Mola-Yudego, B.; Anttila, P.; Röser, D.; Asikainen, A. Forest chips for energy in Europe: Current procurement methods and potentials. Renew. Sustain. Energy Rev. 2013, 21, 562–571. [Google Scholar] [CrossRef]
- Gendek, A.; Nawrocka, A. Effect of chipper knives sharpening on the forest chips quality. Ann. Warsaw Univ. Life Sci. SGGW Agric. 2014, 64, 97–107. [Google Scholar]
- Gendek, A.; Nurek, T. Variability of energy woodchips and their economic effects. Folia For. Pol. Ser. A 2016, 58, 62–71. [Google Scholar] [CrossRef]
- Gendek, A.; Malaťák, J.; Velebil, J. Effect of harvest method and composition of wood chips on their caloric value and ash content. Sylwan 2018, 162, 248–257. [Google Scholar]
- Gendek, A.; Zychowicz, W. Analysis of wood chippings fractions utilized for energy purposes. Ann. Warsaw Univ. Life Sci. SGGW Agric. 2015, 65, 79–91. [Google Scholar]
- Mola-Yudego, B.; Picchi, G.; Röser, D.; Spinelli, R. Assessing chipper productivity and operator effects in forest biomass operations. Silva Fenn. 2015, 49, 1342. [Google Scholar] [CrossRef]
- Röser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L. Chipping operations and efficiency in different operational environments. Silva Fenn. 2012, 46, 275–286. [Google Scholar] [CrossRef]
- Mendel, T.; Kuptz, D.; Hartmann, H. Fuel quality changes and dry matter losses during the storage of wood chips—Part 2: Container trials to examine the effects of fuel screening. From Theory to Practice: Challenges for Forest Engineering. In Proceedings of the 49th Symposium on Forest Mechanization, Warsaw, Poland, 4–7 September 2016; pp. 139–143. [Google Scholar]
- Routa, J.; Asikainen, A.; Björheden, R.; Laitila, J.; Röser, D. Forest energy procurement: State of the art in Finland and Sweden: Forest energy procurement. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 602–613. [Google Scholar] [CrossRef]
- Gendek, A.; Nurek, T.; Zychowicz, W.; Moskalik, T. Effects of Intentional Reduction in Moisture Content of Forest Wood Chips during Transport on Truckload Price. BioResources 2018, 13, 4310–4322. [Google Scholar] [CrossRef]
- Ovaskainen, H.; Uusitalo, J.; Väätäinen, K. Characteristics and Significance of a Harvester Operators’ Working Technique in Thinnings. Int. J. For. Eng. 2004, 15, 67–77. [Google Scholar] [CrossRef]
- Nuutinen, Y.; Petty, A.; Bergström, D.; Rytkönen, M.; Fulvio, F.D.; Tiihonen, I.; Lauren, A.; Dahlin, B. Quality and productivity in comminution of small-diameter tree bundles. Int. J. For. Eng. 2016, 27, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Eliasson, L.; Magagnotti, N. Increasing wood fuel processing efficiency by fine-tuning chipper settings. Fuel Process. Technol. 2016, 151, 126–130. [Google Scholar] [CrossRef]
- Nati, C.; Spinelli, R.; Fabbri, P. Wood chips size distribution in relation to blade wear and screen use. Biomass Bioenergy 2010, 34, 583–587. [Google Scholar] [CrossRef]
- ISO 17225-1:2014—Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements; International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 17225-4:2014—Solid Biofuels—Fuel Specifications and Classes—Part 4: Graded Wood Chips; International Organization for Standardization: Geneva, Switzerland, 2014.
- EN 14961-1:2011—Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements; International Organization for Standardization: Brussels, Belgium, 2011.
- EN 14961-4:2011—Solid Biofuels—Fuel Specifications and Classes—Part 4: Wood Chips for Non-Industrial Use; European Committee for Standardization: Brussels, Belgium, 2011.
- Zanetti, M.; Costa, C.; Greco, R.; Grigolato, S.; Ottaviani Aalmo, G.; Cavalli, R. How Wood Fuels’ Quality Relates to the Standards: A Class-Modelling Approach. Energies 2017, 10, 1455. [Google Scholar] [CrossRef]
- Alakangas, E. Quality Guidelines of Wood Fuels in Finland—VTT-M-04712-15; Technical Research Centre of Finland VTT Ltd.: Jyväskylä, Finland, 2015; p. 60. [Google Scholar]
- Van Loo, S.; Koppejan, J. (Eds.) The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008; ISBN 978-1-84407-249-1. [Google Scholar]
- Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Werkelin, J.; Skrifvars, B.-J.; Zevenhoven, M.; Holmbom, B.; Hupa, M. Chemical forms of ash-forming elements in woody biomass fuels. Fuel 2010, 89, 481–493. [Google Scholar] [CrossRef]
- Spinelli, R.; Nati, C.; Sozzi, L.; Magagnotti, N.; Picchi, G. Physical characterization of commercial woodchips on the Italian energy market. Fuel 2011, 90, 2198–2202. [Google Scholar] [CrossRef]
- Assirelli, A.; Civitarese, V.; Fanigliulo, R.; Pari, L.; Pochi, D.; Santangelo, E.; Spinelli, R. Effect of piece size and tree part on chipper performance. Biomass Bioenergy 2013, 54, 77–82. [Google Scholar] [CrossRef]
- Spinelli, R.; Cavallo, E.; Eliasson, L.; Facello, A.; Magagnotti, N. The effect of drum design on chipper performance. Renew. Energy 2015, 81, 57–61. [Google Scholar] [CrossRef]
- Laitila, J.; Nuutinen, Y. Efficiency of Integrated Grinding and Screening of Stump Wood for Fuel at Roadside Landing with a Low-Speed Double-Shaft Grinder and a Star Screen. Croat. J. For. Eng. 2015, 36, 19–32. [Google Scholar]
- Huber, C.; Kroisleitner, H.; Stampfer, K. Performance of a Mobile Star Screen to Improve Woodchip Quality of Forest Residues. Forests 2017, 8, 171. [Google Scholar] [CrossRef]
- Kons, K.; Bergström, D.; Fulvio, F.D. Effects of sieve size and assortment on wood fuel quality during chipping operations. Int. J. For. Eng. 2015, 26, 114–123. [Google Scholar] [CrossRef]
- Farr, A.K.; Atkins, D. Fuel Supply Planning for Small-Scale Biomass Heating Systems. West. J. Appl. For. 2010, 25, 18–21. [Google Scholar]
- Spinelli, R.; Glushkov, S.; Markov, I. Managing chipper knife wear to increase chip quality and reduce chipping cost. Biomass Bioenergy 2014, 62, 117–122. [Google Scholar] [CrossRef]
- Spinelli, R.; Hartsough, B. A survey of Italian chipping operations. Biomass Bioenergy 2001, 21, 433–444. [Google Scholar] [CrossRef]
- Matiyuk, L.; Bobzien, M.; Kraus, K. Promoting sustainable production and use of bioenergy in the Russian Federation and Ukraine. Available online: http://www.bio-prom.net (accessed on 12 January 2019).
- Wolfsmayr, U.J.; Rauch, P. The primary forest fuel supply chain: A literature review. Biomass Bioenergy 2014, 60, 203–221. [Google Scholar] [CrossRef]
- Talbot, B.; Suadicani, K. Analysis of Two Simulated In-field Chipping and Extraction Systems in Spruce Thinnings. Biosyst. Eng. 2005, 91, 283–292. [Google Scholar] [CrossRef]
- Nilsson, B. Extraction of Logging Residues for Bioenergy: Effects of Operational Methods on Fuel Quality and Biomass Losses in the Forest. Ph.D. Thesis, Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology, Växjö, Sweden, 2016. [Google Scholar]
- Laitila, J. Harvesting technology and the cost of fuel chips from early thinnings. Silva Fenn. 2008, 42, 267–283. [Google Scholar] [CrossRef]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Kanzian, C.; Holzleitner, F.; Stampfer, K.; Ashton, S. Regional energy wood logistics—Optimizing local fuel supply. Silva Fenn. 2009, 43, 113–128. [Google Scholar] [CrossRef]
- Ranta, T.; Rinne, S. The profitability of transporting uncomminuted raw materials in Finland. Biomass Bioenergy 2006, 30, 231–237. [Google Scholar] [CrossRef]
- Kärhä, K. Industrial supply chains and production machinery of forest chips in Finland. Biomass Bioenergy 2011, 35, 3404–3413. [Google Scholar] [CrossRef]
- Spinelli, R.; Nati, C.; Magagnotti, N. Recovering logging residue: Experiences from the Italian Eastern Alps. Croat. J. For. Eng. 2007, 28, 1–9. [Google Scholar]
- Moskalik, T. Techniczne, technologiczne i organizacyjne uwarunkowania pozyskania i transportu drewna energetycznego (Technical, technological and organizational conditions for the harvesting and transportation of energy wood). In Biomasa Leśna na cele Energetyczne; Gołos, P., Kaliszewski, A., Eds.; Instytut Badawczy Leśnictwa: Sękocin Stary, Poland, 2013; pp. 107–118. ISBN 978-83-62830-18-3. [Google Scholar]
- Zychowicz, W.; Gendek, A. Efektywność stosowania samobieżnej rębarki z zasobnikiem do pozyskiwania zrębków na cele energetyczne (Performance of the mobile chipper equipped with dumping bin in the process of fuel chips production). Zesz. Probl. Postęp. Nauk Rol. 2009, 543, 417–425. [Google Scholar]
- Jodłowski, K.; Kalinowski, M. Podręcznik Dobrych Praktyk w Zakresie Pozyskiwania Biomasy Leśnej Do Celów Energetycznych; Instytut Badawczy Leśnictwa: Sękocin Stary, Poland, 2013; ISBN 978-83-62830-22-0. [Google Scholar]
- Cuchet, E.; Roux, P.; Spinelli, R. Performance of a logging residue bundler in the temperate forests of France. Biomass Bioenergy 2004, 27, 31–39. [Google Scholar] [CrossRef]
- Asikainen, A. Chipping terminal logistics. Scand. J. For. Res. 1998, 13, 386–392. [Google Scholar] [CrossRef]
- Lindholm, E.-L.; Berg, S.; Hansson, P.-A. Energy efficiency and the environmental impact of harvesting stumps and logging residues. Eur. J. For. Res. 2010, 129, 1223–1235. [Google Scholar] [CrossRef]
- Kärhä, K.; Vartiamäki, T. Productivity and costs of slash bundling in Nordic conditions. Biomass Bioenergy 2006, 30, 1043–1052. [Google Scholar] [CrossRef]
- Moskalik, T.; Sadowski, J.; Sarzyński, W.; Zastocki, D. Efficiency of slash bundling in mature coniferous stands. SRE 2013, 8, 1478–1486. [Google Scholar]
- Sadowski, J. Wykorzystanie maszyny pakietującej Slashbundler 1490D. In Tendencje i Problemy Techniki Leśnej w Warunkach Leśnictwa Wielofunkcyjnego; Różański, H., Jabłoński, K., Eds.; Uniwersytet Przyrodniczy w Poznaniu: Poznań, Poland, 2008; pp. 183–188. ISBN 978-83-89887-94-8. [Google Scholar]
- Moskalik, T.; Sadowski, J.; Zastocki, D. Some technological and economic aspects of logging residues bundling. Sylwan 2016, 160, 31–39. [Google Scholar]
- Johansson, J.; Liss, J.-E.; Gullberg, T.; Björheden, R. Transport and handling of forest energy bundles—advantages and problems. Biomass Bioenergy 2006, 30, 334–341. [Google Scholar] [CrossRef]
- Röser, D.; Sikanen, L.; Asikainen, A.; Parikka, H.; Väätäinen, K. Productivity and cost of mechanized energy wood harvesting in Northern Scotland. Biomass Bioenergy 2011, 35, 4570–4580. [Google Scholar] [CrossRef]
- ISO 18134-1:2015—Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method; International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 18134-2:2017—Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method; International Organization for Standardization: Geneva, Switzerland, 2017.
- Laitila, J.; Ahtikoski, A.; Repola, J.; Routa, J. Pre-feasibility study of supply systems based on artificial drying of delimbed stem forest chips. Silva Fenn. 2017, 51, 5659. [Google Scholar] [CrossRef]
- Badal, T.; Kšica, J.; Vala, V.; Kupčák, V. The influence of the average monthly temperature and precipitation on cumulative moisture, calorific value and ash of energy chips made from logging residues. Zpr. Lesnického Výzk. 2015, 60, 299–308. [Google Scholar]
- Pettersson, M.; Nordfjell, T. Fuel quality changes during seasonal storage of compacted logging residues and young trees. Biomass Bioenergy 2007, 31, 782–792. [Google Scholar] [CrossRef]
- Afzal, M.T.; Bedane, A.H.; Sokhansanj, S.; Mahmood, W. Storage of comminuted and uncomminuted forest biomass and its effect on fuel quality. BioResources 2009, 5, 55–69. [Google Scholar]
- Golser, M.; Pichler, W.; Hader, F. Energieholztrocknung. Endbericht HFA-Nr: F1887/04; Beauftragt Durch Kooperations Abkommen Forst-Platte-Papier; Holzforschung: Wien, Austria, 2005; p. 139. [Google Scholar]
- Angus-Hankin, C.; Stokes, B.; Twaddle, A. The transportation of fuelwood from forest to facility. Biomass Bioenergy 1995, 9, 191–203. [Google Scholar] [CrossRef]
- Liaqat, F. Effects of Storage and Geographical Location on Fuel Quality of Norway Spruce Forest Residues, 2nd ed.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011; ISBN 1654-9392. [Google Scholar]
- Núñez-Regueira, L.; Proupín-Castiñeiras, J.; Rodríguez-Añón, J.A. Energy evaluation of forest residues originated from shrub species in Galicia. Bioresour. Technol. 2004, 91, 215–221. [Google Scholar] [CrossRef]
- Huhtinen, M. Wood Biomass as a Fuel. In Proceedings of the Material for 5EURES Training Sessions; National Coalition Party: Helsinki, Finnland, 2005. [Google Scholar]
- ISO 18125:2017—Solid Biofuels—Determination of Calorific Value; International Organization for Standardization: Geneva, Switzerland, 2017.
- Gołos, P.; Kaliszewski, A. Aspects of using wood biomass for energy production. For. Res. Pap. 2015, 76, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources Part A Recov. Util. Environ. Eff. 2007, 29, 649–655. [Google Scholar] [CrossRef]
- ISO 18122:2015—Solid biofuels—Determination of Ash Content; International Organization for Standardization: Geneva, Switzerland, 2015.
- Kajda-Szcześniak, M. Characteristics of ashes from fireplace. Arch. Waste Manag. Environ. Prot. 2014, 16, 73–78. [Google Scholar]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Hałuzio, M.; Musiał, R. Ocena Zasobów i Potencjalnych Możliwości Pozyskania Surowców dla Energetyki Odnawialnej w Województwie Pomorskim (Assessment of Resources and Potential Opportunities for Obtaining Raw Materials for Renew. Energy in the Pomeranian Voivodship); Biuro Planowania Przestrzennego w Słupsku: Słupsk, Poland, 2004. [Google Scholar]
- Wolfsmayr, U.J.; Merenda, R.; Rauch, P.; Longo, F.; Gronalt, M. Evaluating primary forest fuel rail terminals with discrete event simulation: A case study from Austria. Ann. For. Res. 2015, 59, 145–164. [Google Scholar] [CrossRef]
- Toscano, G.; Duca, D.; FoppaPedretti, E.; Pizzi, A.; Rossini, G.; Mengarelli, C.; Mancini, M. Investigation of woodchip quality: Relationship between the most important chemical and physical parameters. Energy 2016, 106, 38–44. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kicherer, A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
- Misra, M.K.; Ragland, K.W.; Baker, A.J. Wood ash composition as a function of furnace temperature. Biomass Bioenergy 1993, 4, 103–116. [Google Scholar] [CrossRef]
- Mancini, M.; Rinnan, Å.; Pizzi, A.; Toscano, G. Prediction of gross calorific value and ash content of woodchip samples by means of FT-NIR spectroscopy. Fuel Process. Technol. 2018, 169, 77–83. [Google Scholar] [CrossRef]
- Eliasson, L.; von Hofsten, H.; Johannesson, T.; Spinelli, R.; Thierfelder, T. Effects of Sieve Size on Chipper Productivity, Fuel Consumption and Chip Size Distribution for Open Drum Chippers. Croat. J. For. Eng. 2015, 36, 11–17. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Paletto, G.; Preti, C. Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva Fenn. 2011, 45, 85–95. [Google Scholar] [CrossRef]
- Patterson, D.W.; Hartley, J.I.; Pelkki, M.H. Size, Moisture Content, and British Thermal Unit Value of Processed In-Woods Residues: Five Case Studies. For. Prod. J. 2011, 61, 316–320. [Google Scholar] [CrossRef]
- Spinelli, R.; Cavallo, E.; Facello, A. A new comminution device for high-quality chip production. Fuel Process. Technol. 2012, 99, 69–74. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. Performance of a small-scale chipper for professional rural contractors. For. Sci. Pract. 2013, 15, 206–213. [Google Scholar] [CrossRef]
- Krajnc, M.; Dolšak, B. The influence of drum chipper configuration on the quality of wood chips. Biomass Bioenergy 2014, 64, 133–139. [Google Scholar] [CrossRef]
- Vangansbeke, P.; Osselaere, J.; Van Dael, M.; De Frenne, P.; Gruwez, R.; Pelkmans, L.; Gorissen, L.; Verheyen, K. Logging operations in pine stands in Belgium with additional harvest of woody biomass: Yield, economics, and energy balance. Can. J. For. Res. 2015, 45, 987–997. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Brennstoffzusammensetzung und–eigenschaften. In Energie aus Biomasse: Grundlagen, Techniken und Verfahren; Kaltschmitt, M., Hartmann, H., Hofbauer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 333–374. ISBN 978-3-540-85095-3. [Google Scholar]
- Tahvanainen, T.; Anttila, P. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy 2011, 35, 3360–3375. [Google Scholar] [CrossRef]
- Laitila, J.; Asikainen, A.; Ranta, T. Cost analysis of transporting forest chips and forest industry by-products with large truck-trailers in Finland. Biomass Bioenergy 2016, 90, 252–261. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Suurs, R.A.A.; Faaij, A.P.C. International bioenergy transport costs and energy balance. Biomass Bioenergy 2005, 29, 114–134. [Google Scholar] [CrossRef]
- Goltsev, V.; Trishkin, M.; Tolonen, T. Efficiency of forest chip transportation from Russian Karelia to Finland. Work. Pap. Finn. For. Res. Inst. 2011, 189, 1–42. [Google Scholar]
- Sukhanov, Y.; Seliverstov, A.; Gerasimov, Y. Efficiency of Forest Chip Supply Systems in Northwest Russia. Adv. Mater. Res. 2013, 740, 799–804. [Google Scholar] [CrossRef]
- Sukhanov, Y.; Sokolov, A.; Gerasimov, Y. Efficiency of Forest Chip Supply Systems in Karelia. Resour. Technol. 2013, 10, 1–23. [Google Scholar] [CrossRef]
- Gerasimov, Y.; Karjalainen, T. Energy wood resources availability and delivery cost in Northwest Russia. Scand. J. For. Res. 2013, 28, 689–700. [Google Scholar] [CrossRef]
- Manzone, M.; Balsari, P. The energy consumption and economic costs of different vehicles used in transporting woodchips. Fuel 2015, 139, 511–515. [Google Scholar] [CrossRef]
- Searcy, E.; Flynn, P.; Ghafoori, E.; Kumar, A. The relative cost of biomass energy transport. Appl. Biochem. Biotechnol. 2007, 137, 639–652. [Google Scholar] [PubMed]
- ISO 17828:2015—Solid Biofuels—Determination of Bulk Density; International Organization for Standardization: Brussels, Belgium, 2015.
- Trzciński, G.; Moskalik, T.; Wojtan, R.; Tymendorf, Ł. Variability of loads and gross vehicle weight in timber transportation. Sylwan 2017, 161, 1026–1034. [Google Scholar]
- Gendek, A.; Aniszewska, M.; Chwedoruk, K. Bulk density of forest energy chips. Ann. Warsaw Univ. Life Sci. SGGW Agric. 2016, 67, 101–111. [Google Scholar]
- Kofman, P.D. Quality wood chip fuel. Harvesting/Transportation 2006, 6, 4. [Google Scholar]
- Phanphanich, M.; Mani, S. Drying characteristics of pine forests residues. BioResources 2009, 5, 108–121. [Google Scholar]
- Jensen, P.D.; Hartmann, H.; Böhm, T.; Temmerman, M.; Rabier, F.; Morsing, M. Moisture content determination in solid biofuels by dielectric and NIR reflection methods. Biomass Bioenergy 2006, 30, 935–943. [Google Scholar] [CrossRef]
- Nuutinen, Y.; Laitila, J.; Rytkönen, E. Grinding of Stumps, Logging Residues and Small Diameter Wood Using a CBI 5800 Grinder with a Truck as a Base Machine. Baltic For. 2014, 20, 176–188. [Google Scholar]
- Sultana, A.; Kumar, A. Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour. Technol. 2011, 102, 9947–9956. [Google Scholar] [CrossRef] [PubMed]
- Talbot, B.; Suadicani, K. Road transport of forest chips: Containers vs. bulk trailers. For. Stud.|Metsanduslikud Uurim. 2006, 45, 11–22. [Google Scholar]
- Trzciński, G.; Moskalik, T.; Wojtan, R. Total Weight and Axle Loads of Truck Units in the Transport of Timber Depending on the Timber Cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef]
- Kühmaier, M.; Erber, G.; Kanzian, C.; Holzleitner, F.; Stampfer, K. Comparison of costs of different terminal layouts for fuel wood storage. Renew. Energy 2016, 87, 544–551. [Google Scholar] [CrossRef]
- Piszczalka, J.; Korenko, M.; Rutkowski, K. Ocena energetyczno-ekonomiczna ogrzewania dendromasą (Power use and economic evaluation of dendromass heating). Inż. Rol. 2007, 6, 189–196. [Google Scholar]
Number | Place of Comminution or Compacting | |||
---|---|---|---|---|
Forest Site | Forest Road | Terminal | Plant | |
1 | Chipping | |||
2 | Chipping | |||
3 | Chipping | |||
4 | Chipping | |||
5 | Bundling a | Bundling b | Chipping | |
6 | Bundling a | Bundling b | Chipping | |
7 | Bundling a | Chipping |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskalik, T.; Gendek, A. Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature. Forests 2019, 10, 262. https://doi.org/10.3390/f10030262
Moskalik T, Gendek A. Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature. Forests. 2019; 10(3):262. https://doi.org/10.3390/f10030262
Chicago/Turabian StyleMoskalik, Tadeusz, and Arkadiusz Gendek. 2019. "Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature" Forests 10, no. 3: 262. https://doi.org/10.3390/f10030262
APA StyleMoskalik, T., & Gendek, A. (2019). Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature. Forests, 10(3), 262. https://doi.org/10.3390/f10030262