Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Development of Analysis Landscape
2.3. Simulation of Fuel Reduction Treatments and Stand Development
2.4. Wildfire Simulation
3. Results
3.1. Immediate Effects of Treatments
3.2. Effects of Treatments over Time
4. Discussion
5. Assumptions and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Covington, W.W.; Moore, M.M. Southwestern ponderosa forest structure: changes since Euro-American settlement. J. For. 1994, 92, 39–47. [Google Scholar]
- Belsky, A.J.; Blumenthal, D.M. Effects of livestock grazing on stand dynamics and soils in upland forests of the interior West. Conserv. Biol. 1997, 11, 315–327. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Agee, J.K. An environmental narrative of Inland Northwest United States forests, 1800–2000. For. Ecol. Man. 2003, 178, 23–59. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.; Belote, R.T.; Singleton, P.H.; et al. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc. Ecol. 2015, 30, 1805–1835. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, M.A.; Gannon, B.; Brown, P.M.; Fornwalt, P.J.; Cheng, A.S.; Huckaby, L.S. Changes in forest structure since 1860 in ponderosa pine dominated forests in the Colorado and Wyoming Front Range, USA. For. Ecol. Manag. 2018, 422, 147–160. [Google Scholar] [CrossRef]
- Stephens, S.L. Forest fire causes and extent on United States Forest Service lands. Int. J. Wildland Fire 2005, 14, 213–222. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western USA forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing forests and fire in changing climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Wagner, C.E.V. Climate change and wildfire in Canada. Can. J. For. Res. 1991, 21, 66–72. [Google Scholar] [CrossRef]
- Piñol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim. Chang. 1998, 38, 345–357. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.M.; Collins, B.; Battaglia, M. Wildland Fuel Treatments. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1st ed.; Manzello, S., Ed.; Available online: https://link.springer.com/referencework/10.1007/978-3-319-51727-8 (accessed on 15 May 2019).
- Long, J.N. The middle and southern Rocky Mountain region. In Regional Silviculture of the United States, 3rd ed.; Barrett, J.W., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Camp, A.; Oliver, C.; Hessburg, P.; Everett, R. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains. For. Ecol. Manag. 1997, 95, 63–77. [Google Scholar] [CrossRef]
- Olson, D.L.; Agee, J.K. Historical fires in Douglas-fir dominated riparian forests of the southern Cascades, Oregon. Fire Ecol. 2005, 1, 50–74. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Moore, P.E. Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA. For. Ecol. Manag. 2010, 259, 2122–2132. [Google Scholar] [CrossRef]
- Collins, B.M.; Stephens, S.L.; Moghaddas, J.J.; Battles, J. Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes. J. Forestry 2010, 108, 24–31. [Google Scholar]
- Tinkham, W.T.; Hoffman, C.M.; Ex, S.A.; Battaglia, M.A.; Saralecos, J.D. Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard. Forests 2016, 7, 137. [Google Scholar] [CrossRef]
- Francis, D.; Ex, S.; Hoffman, C. Stand composition and aspect are related to conifer regeneration densities following hazardous fuels treatments in Colorado, USA. For. Ecol. Manag. 2018, 409, 417–424. [Google Scholar] [CrossRef]
- Oliver, W.W.; Leroy Dolph, K. Mixed-conifer seedling growth varies in response to overstory release. For. Ecol. Manag. 1992, 48, 179–183. [Google Scholar] [CrossRef]
- Hess, K.; Alexander, R.R. Forest Vegetation of the Arapaho and Roosevelt National Forests in central Colorado: A Habitat Type Classification; USDA Forest Service: Fort Collins, CO, USA, 1986; p. 48.
- Dodge, M. Forest fuel accumulation—A growing problem. Science 1972, 177, 139–142. [Google Scholar] [CrossRef]
- Keeley, J.E.; Fotheringham, C.J.; Moritz, M.A. Lessons from the October 2003 wildfires in southern California. J. For. 2004, 102, 26–31. [Google Scholar]
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program-National Sampling Design and Estimation Procedures; SRS-GTR-80; USDA Forest Service: Asheville, NC, USA, 2005; p. 85.
- Tinkham, W.T.; Mahoney, P.R.; Hudak, A.T.; Domke, G.M.; Falkowski, M.J.; Woodall, C.W.; Smith, A.M.S. Applications of the United States Forest Inventory and Analysis dataset: a review and future directions. Can. J. For. Res. 2018, 48, 1251–1268. [Google Scholar] [CrossRef]
- Crookston, N.L.; Dixon, G.E. The Forest Vegetation Simulator: A review of its structure, content, and applications. Comput. Electron. Agric. 2005, 49, 60–80. [Google Scholar] [CrossRef]
- Rebain, S.A.; Reinhardt, E.D.; Crookston, N.L.; Buekema, S.J.; Kurtz, W.A.; Greenough, J.A.; Robinson, D.C.E.; Lutes, D.C. The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation; USDA Forest Service: Fort Collins, CO, USA, 2010; p. 403.
- Bova, A.S.; Mell, W.E.; Hoffman, C.M. A comparison of level set and marker methods for the simulation of wildland fire front propagation. Int. J. Wildland Fire 2016, 25, 229–241. [Google Scholar] [CrossRef]
- Clutter, J.L.; Fortson, J.C.; Pienaar, L.V.; Brister, G.H.; Bailey, R.L. Timber Management: A Quantitative Approach; Wiley: New York, NY, USA, 1983; p. 333. [Google Scholar]
- Underhill, J.L.; Dickinson, Y.; Rudney, A.; Thinnes, J. Silviculture of the Colorado Front Range Landscape Restoration Initiative. J. For. 2014, 112, 484–493. [Google Scholar] [CrossRef]
- Ziegler, J.P.; Hoffman, C.; Battaglia, M.; Mell, W. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests. For. Ecol. Manag. 2017, 386, 1–12. [Google Scholar] [CrossRef]
- Cannon, J.B.; Barrett, K.J.; Gannon, B.M.; Addington, R.N.; Battaglia, M.A.; Fornwalt, P.J.; Aplet, G.H.; Cheng, A.S.; Underhill, J.L.; Briggs, J.S.; et al. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado. For. Ecol. Manag. 2018, 424, 191–204. [Google Scholar] [CrossRef]
- Adams, D.L.; Hodges, J.D.; Loftis, D.L.; Long, J.N.; Seymour, R.S.; Helms, J.A. Silviculture Terminology; Society of American Foresters: Bethesda, MD, USA, 1994; p. 12. [Google Scholar]
- Fialko, K. Conifer regeneration and fuels treatment longevity in dry mixed-conifer forests of the Colorado Front Range. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2018. [Google Scholar]
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; USDA Forest Service: Ogden, UT, USA, 1982.
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- McGrattan, K.; Baum, H.; Rehm, R.; Hamins, A.; Forney, G.; Hostikka, S.; Floyd, J. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.
- McGrattan, K.; McDermott, R.; Hostikka, S.; Floyd, J. Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.
- Rothermel, R.C. A mAthematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service: Ogden, UT, USA, 1972; p. 40.
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; USDA Forest Service: Ogden, UT, USA, 1991; p. 46.
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire; USDA Forest Service: Fort Collins, CO, USA, 2001.
- Rehm, R.; McDermott, R. Fire-Front Propagation Using the Level Set Method; National Institute of Standards and Technology: Gaithersbug, MD, USA, 2009.
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation (Revised 2004); USDA Forest Service: Ogden, UT, USA, 1998; p. 47.
- Finney, M.A. An overview of FlamMap modeling capabilities. In Proceedings of the Fuels Management – How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; USDA Forest Service: Fort Collins, CO, USA, 2006; p. 809. [Google Scholar]
- Stratton, R.D. Guidance on Spatial Wildland Fire Analysis: Models, Tools, and Techniques; USDA Forest Service: Fort Collins, CO, USA, 2006; p. 183.
- Agee, J.K.; Wright, C.S.; Williamson, N.; Huff, M.H. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. For. Ecol. Manag. 2002, 167, 57–66. [Google Scholar] [CrossRef]
- Andrews, P.L. Modeling Wind Adjustment Factor and Midflame Wind Speed for Rothermel’s Surface Fire Spread Model; USDA Forest Service: Fort Collins, CO, USA, 2012; p. 39.
- Forestry Canada Fire Danger Group. Development and Structure of the Canadian Forest Fire Behavior Prediction System; Forestry Canada, Headquarters, Fire Danger Group and Science and Sustainable Development Directorate: Ottawa, ON, Canada, 1992; p. 63. [Google Scholar]
- Crotteau, J.S.; Keyes, C.R.; Sutherland, E.K.; Wright, D.K.; Egan, J.M. Forest fuels and potential fire behavior 12 years after variable-retention harvest in lodgepole pine. Int. J. Wildland Fire 2016, 25, 633–645. [Google Scholar] [CrossRef]
- Agee, J.K.; Lolley, M.R. Thinning and prescribed fire effects on fuels and potential fire behavior in an eastern Cascades forest, Washington, USA. Fire Ecol. 2006, 2, 3–19. [Google Scholar] [CrossRef]
- Johnson, M.C.; Kennedy, M.C.; Peterson, D.L. Simulating fuel treatment effects in dry forests of the western United States: Testing the principles of a fire-safe forest. Can. J. For. Res. 2011, 41, 1018–1030. [Google Scholar] [CrossRef]
- Alvarez, A.; Gracia, M.; Vayreda, J.; Retana, J. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For. Ecol. Manag. 2012, 270, 282–290. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Miller, C.; Ager, A.A.; Finney, M.A. Use of artificial landscapes to isolate controls on burn probability. Landscape Ecol. 2010, 25, 79–93. [Google Scholar] [CrossRef]
- Taylor, A.H.; Skinner, C.N. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol. Appl. 2003, 13, 704–719. [Google Scholar] [CrossRef]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C. Stand- and landscape-level effects of prescribed burning on two Arizona wildfires. Can. J. For. Res. 2005, 35, 1714–1722. [Google Scholar] [CrossRef]
- Collins, B.M.; Stephens, S.L.; Roller, G.B.; Battles, J.J. Simulating fire and forest dynamics for a landscape fuel treatment project in the Sierra Nevada. For. Sci. 2011, 57, 77–88. [Google Scholar]
- Collins, B.M.; Kramer, H.A.; Menning, K.; Dillingham, C.; Saah, D.; Stine, P.A.; Stephens, S.L. Modeling hazardous fire potential within a completed fuel treatment network in the northern Sierra Nevada. For. Ecol. Manag. 2013, 310, 156–166. [Google Scholar] [CrossRef]
- Davis, B.; van Wagtendonk, J.; Beck, J.; van Wagtendonk, K. Modeling fuel succession. Fire Manag. Today. 2009, 69, 18–21. [Google Scholar]
- Evans, A.M.; Everett, R.G.; Stephens, S.; Youtz, J.A. Comprehensive Fuels Treatment Practices Guide for Mixed Conifer Forests: California, Central and Southern Rockies, and the Southwest; USDA Forest Service: Fort Collins, CO, USA, 2011.
- Keyes, C.R.; O’Hara, K.L. Quantifying stand targets for silvicultural prevention of crown fires. West. J. Appl. For. 2002, 17, 101–109. [Google Scholar]
- Crotteau, J.S.; Keyes, C.R.; Hood, S.M.; Affleck, D.L.R.; Sala, A. Fuel dynamics after a bark beetle outbreak impacts experimental fuel treatments. Fire Ecol. 2018, 14, 13. [Google Scholar] [CrossRef]
- Finney, M.A. A computational method for optimizing fuel treatment locations. Int. J. Wildland Fire 2007, 16, 702–711. [Google Scholar] [CrossRef]
Aspect | Status | SI100 (m) | TPH | BA (m2 ha−1) | QMD (cm) | CBH (m) | CBD (kg m−3) |
---|---|---|---|---|---|---|---|
Northerly | Untreated (n = 18) | 15.7 (2.9) | 730 (398) | 36.5 (17.7) | 26.3 (4.5) | 1.90 (1.01) | 0.174 (0.060) |
Treated (n = 18) | 15.7 (2.9) | 218 (73) | 11.6 (9.1) | 26.9 (4.0) | 3.25 (0.94) | 0.058 (0.015) | |
Southerly | Untreated (n = 12) | 13.9 (1.9) | 755 (549) | 24.1 (10.1) | 22.7 (5.9) | 2.31 (0.91) | 0.092 (0.047) |
Treated (n = 12) | 13.9 (1.9) | 287 (114) | 11.9 (0.3) | 24.2 (4.8) | 3.81 (1.27) | 0.042 (0.008) | |
Untreatable (n = 14) | 14.3 (2.0) | 280 (171) | 12.6 (3.7) | 25.9 (5.7) | 3.86 (2.46) | 0.037 (0.013) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ex, S.A.; Ziegler, J.P.; Tinkham, W.T.; Hoffman, C.M. Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape. Forests 2019, 10, 438. https://doi.org/10.3390/f10050438
Ex SA, Ziegler JP, Tinkham WT, Hoffman CM. Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape. Forests. 2019; 10(5):438. https://doi.org/10.3390/f10050438
Chicago/Turabian StyleEx, Seth A., Justin P. Ziegler, Wade T. Tinkham, and Chad M. Hoffman. 2019. "Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape" Forests 10, no. 5: 438. https://doi.org/10.3390/f10050438
APA StyleEx, S. A., Ziegler, J. P., Tinkham, W. T., & Hoffman, C. M. (2019). Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape. Forests, 10(5), 438. https://doi.org/10.3390/f10050438