Response of Oak and Maple Seed Germination and Seedling Growth to Different Manganese Fertilizers in a Cultured Substratum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experiment Conditions
2.2. Morphological Characteristics
2.3. Plant Element Concentration
2.4. Data Analysis
3. Results
3.1. Seed Germination
3.2. Morphology and Biomass of Seedlings
3.3. Plant Element Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abrams, M.D. Where has all the White oak gone? BioScience 2003, 53, 927–939. [Google Scholar] [CrossRef]
- Dias, F.S.; Miller, D.L.; Marques, T.A.; Marcelino, J.; Caldeira, M.C.; Cerdeira, J.O.; Bugalhoa, M.N. Conservation zones promote oak regeneration and shrub diversity in certified Mediterranean oak woodlands. Biol. Conserv. 2016, 195, 226–234. [Google Scholar] [CrossRef]
- Hutchinson, T.F.; Yaussy, D.A.; Long, R.P.; Rebbeck, J.; Sutherland, E.K. Long-term (13-year) effects of repeated prescribed fires on stand structure and tree regeneration in mixed-oak forests. For. Ecol. Manag. 2012, 286, 87–100. [Google Scholar] [CrossRef]
- Crow, T.R. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)—A review. For. Sci. 1988, 34, 19–40. [Google Scholar]
- Albrecht, M.A.; McCarthy, B.C. Effects of prescribed fire and thinning on tree recruitment patterns in central hardwood forests. For. Ecol. Manag. 2006, 226, 88–103. [Google Scholar] [CrossRef]
- Brose, P.H. Long-term effects of single prescribed fires on hardwood regeneration in oak shelterwood stands. For. Ecol. Manag. 2010, 260, 1516–1524. [Google Scholar] [CrossRef]
- Fan, Z.F.; Ma, Z.Q.; Dey, D.C.; Roberts, S.D. Response of advance reproduction of oaks and associated species to repeated prescribed fires in upland oak-hickory forests, Missouri. For. Ecol. Manag. 2012, 266, 160–169. [Google Scholar] [CrossRef]
- Taylor, Q.A.; Midgley, M.G. Prescription side effects: 659 Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. For. Ecol. Manag. 2018, 411, 82–89. [Google Scholar] [CrossRef]
- Zuloagaaguilar, S.; Orozcosegovia, A.; Briones, O.; Pelaez, E.J. Response of soil seed bank to a prescribed burning in a subtropical pine-oak forest. Int. J. Wildl. Fire 2016, 25, 946–954. [Google Scholar] [CrossRef]
- McEwan, R.W.; Dyer, J.M.; Pederson, N. Multiple interacting ecosystem drivers: Toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 2011, 34, 244–256. [Google Scholar] [CrossRef]
- Schweitzer, C.J.; Dey, D.C. Forest structure, composition, and tree diversity response to a gradient of regeneration harvests in the mid-Cumberland Plateau escarpment region, USA. For. Ecol. Manag. 2011, 262, 1729–1741. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A.; Leonard, L.P. Post-planting treatments increase growth of Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings. Restor. Ecol. 2007, 15, 212–222. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Li, G.; Zhang, F. Growth and nutrient dynamics of transplanted Quercus variabilis seedlings as influenced by pre-hardening and fall fertilization. Silva. Fenn. 2016, 50, 1–18. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Planelles, R.; Enriquez, E.; Pen˜uelas-Rubira, J. Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For. Ecol. Manag. 2004, 196, 257–266. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Salifu, K.F.; Seifert, J.R. Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. For. Ecol. Manag. 2005, 214, 28–39. [Google Scholar] [CrossRef]
- Sardans, J.; Rodà, F.; Peñuelas, J. Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. Ballota and Pinus halepensison different soils and under different competitive pressure. Trees. 2006, 20. [Google Scholar] [CrossRef]
- Salifu, K.F.; Jacobs, D.F.; Birge, Z.K.D. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands. Restor. Ecol. 2009, 17, 339–349. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Heredia, N.; Millard, P. Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability. Tree Physiol. 2009, 30, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Villar-Salvador, P.; Puértolas, J.; Cuesta, B.; Peñuelas, J.L.; Uscola, M.; Heredia-Guerrero, N.; Rey-Benayas, J.M. Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For. 2012, 43, 755–770. [Google Scholar] [CrossRef]
- Sanz-Perez, V.; Castro-Diez, P.; Valladares, F. Growth versus storage: Responses of Mediterranean oak seedlings to changes in nutrient and water availabilities. Ann. For. Sci. 2007, 64, 201–210. [Google Scholar] [CrossRef]
- Bideau, E.; Maublanc, M.L.; Picot, D.; Hamard, J.P.; Ballon, P.; Gerard, J.F. Short-term browsing by roe deer has little effect on survival and growth of sessile oak seedlings. Scand. J. For. Res. 2016, 31, 40–45. [Google Scholar] [CrossRef]
- Tagunova, Y.O. Influence of oak planting on microelement composition (on example of Mn) of ordinary chernozem. Ecology 2011, 19, 113–122, (In Russian with English summary). [Google Scholar] [CrossRef]
- Oliet, J.A.; Salazar, J.M.; Villar, R.; Robredo, E.; Valladares, F. Fall fertilization of Holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth. Ann. For. Sci. 2011, 68, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Oliet, J.A.; Pue´rtolas, J.; Planelles, R.; Jacobs, D.F. Nutrient loading of forest tree seedlings to promote stress resistance and field performance: A Mediterranean perspective. New For. 2013, 44, 649–669. [Google Scholar] [CrossRef]
- Mancilla-Leytón, J.M.; Cambrollé, J.; Figueroa, M.E.; Vicente, Á.M. Growth and survival of cork oak (Quercus suber) seedlings after simulated partial cotyledon consumption under different soil nutrient contents. Plant. Soil. 2013, 370, 381–392. [Google Scholar] [CrossRef]
- Andivia, E.; Ferna´ndez, M.; Va´zquez-Pique, J. Assessing the effect of late-season fertilization on Holm oak plant quality: Insights from morpho–nutritional characterizations and water relations parameters. New For. 2014, 45, 149–163. [Google Scholar] [CrossRef]
- Andivia, E.; Ma´rquez-Garcı´a, B.; Va´zquez-Pique´, J.; Co´rdoba, F.; Ferna´ndez, M. Autumn fertilization with nitrogen improves nutritional status, cold hardiness and the oxidative stress response of Holm oak (Quercus ilex ssp. allota (Desf.) Samp) nursery seedlings. Trees 2012, 26, 311–320. [Google Scholar] [CrossRef]
- Oliet, J.A.; Tejada, M.; Salifu, K.F.; Collazos, A.; Jacobs, D.F. Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. Eur. J. For. Res. 2009, 128, 253–263. [Google Scholar] [CrossRef]
- Heredia-Guerrero, N.; Oliet, J.A.; Villar-Salvador, P.; Benito, L.F.; Peñuelas, J.L. Fertilization regime interacts with fall temperature in the nursery to determine the frost and drought tolerance of the Mediterranean oak Quercus ilex subsp. ballota. For. Ecol. Manag. 2014, 331, 50–59. [Google Scholar] [CrossRef]
- Pulido, F.; Moreno, G.; García, E.; Obrador, J.J.; Bonal, R.; Díaz, M. Resource manipulation reveals flexible allocation rules to growth and reproduction in a Mediterranean evergreen oak. J. Plant. Ecol.-UK. 2014, 7, 77–85. [Google Scholar] [CrossRef]
- Staples, T.E.; Rees, K.C.J.V.; Kessel, C.V. Nitrogen competition using 15 N between early successional plants and planted white spruce seedlings. Can. J. For. Res. 1999, 29, 1282–1289. [Google Scholar] [CrossRef]
- Jobidon, R.; Roy, V.; Cyr, G. Net effect of competing vegetation on selected environmental conditions and performance of four spruce seedling stock sizes after eight years in Québec (Canada). Ann. For. Sci. 2003, 60, 691–699. [Google Scholar] [CrossRef]
- Salifu, K.F.; Timmer, V.R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can. J. For. Res. 2003, 33, 1287–1294. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Billmyer, J.H.; Walter, C.A.; Peterjohn, W.T. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmos. Environ. 2016, 146, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.M.; Sprenger, S. Responses of two closely related oak species, Quercus robur and Q. petraea, to excess manganese concentrations in the rooting medium. Tree Physiol. 2008, 28, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Tian, D.L.; Zhu, X.N.; Gao, Y.M. Biological cycling of the nutrient elements in the natural secondary Quercus fabri forest. Scientia Silvae Sinicae 1997, 33, 148–156. [Google Scholar]
- Huang, J.; Nara, K.; Zong, K.; Wang, J.; Xue, S.; Peng, K.; Shen, Z.; Lian, C. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecol. 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Clarkson, D.T. The uptake and translocation of manganese by plant roots. In Manganese in Soils and Plants; Graham, R.D., Hannam, R.J., Uren, N.C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 101–111. [Google Scholar]
- Marschner, H. Mineral. Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; p. 889. [Google Scholar]
- Pradhan, S.; Patra, P.; Mitra, S.; Dey, K.K.; Jain, S.; Sarkar, S.; Roy, S.; Palit, P.; Goswami, A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food. Chem. 2014, 62, 8777–8785. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, H.; Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nano-toxicants or Nano-nutrients? Water Air Soil Poll. 2016, 227, 1–14. [Google Scholar] [CrossRef]
- Watmough, S.A.; Eimers, M.C.; Dillon, P.J. Manganese cycling in central Ontario forests: Response to soil acidification. Appl. Geochem. 2007, 22, 1241–1247. [Google Scholar] [CrossRef]
- Messenger, S. Alkaline runoff, soil pH and white oak manganese deficiency. Tree Physiol. 1986, 2, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, W. Ernährungsstörungen bei Kulturpflanzen, 3rd ed.; Gustav Fischer Publishing House: Stuttgart, Germany, 1993. [Google Scholar]
- Kirk, P.L. Kjeldahl method for total nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Kalra, Y.P. Handbook of reference methods for plant analysis; CRC Press Inc.: Boca Raton, FL, USA, 1998; pp. 157–164. [Google Scholar]
- Smruti, D.; Wolfson, B.P.; Tetard, L.; Tharkur, J.; Bazata, J.; Santra, S. Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): Imaging and spectroscopic studies. Environ. Sci. Nano. 2015, 2, 203–212. [Google Scholar] [CrossRef]
- Socha, A.L.; Guerinot, M.L. Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci. 2014, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.E.; Hooper, R.M. Development of a southern Appalachian hardwood stand after clearcutting. South. J. Appl. For. 1986, 10, 168–172. [Google Scholar]
- Loftis, D.L. Predicting post-harvest performance of advance red oak reproduction in the Southern Appalachians. For. Sci. 1990, 36, 908–916. [Google Scholar]
- Spetich, M.A.; Dey, D.C.; Johnson, P.S.; Graney, D.L. Competitive capacity of Quercus rubra L. planted in Arkansas Boston Mountains. For. Sci. 2002, 48, 504–517. [Google Scholar]
- Fujinuma, R.; Balster, N.; Lee, H.K. Reduced rates of controlled-release fertilizer lowers potential nitrogen leaching from a Wisconsin bare-root tree nursery. In Proceedings of the 17th Central Hardwood Forest Conference, Lexington, KY, USA, 5–7 April 2010; pp. 347–357. [Google Scholar]
- Kelty, M.J. Sources of hardwood regeneration and factors that influence these sources. In Proceedings, Guidelines for Regenerating Appalachian Hardwood Stands, Morgantown, Monongalia, 24–26 May 1989; Smith, H.C., Perkey, A.W., William, E., Eds.; West Virginia University: Morgantown, Monongalia, 1989; pp. 17–30. [Google Scholar]
- Kolb, T.E.; Steiner, K.C.; McCormick, L.H.; Bowersox, T.W. Growth response of northern red oak and yellow-poplar seedlings to light, soil moisture, and nutrients in relation to ecological strategy. For. Ecol. Manag. 1990, 38, 65–78. [Google Scholar] [CrossRef]
- Barnes, T.A.; van Lear, D.H. Prescribed fire effects on advanced regeneration in mixed hardwood stands. South. J. Appl. For. 1998, 22, 138–142. [Google Scholar]
- Cambi, M.; Mariotti, B.; Fabiano, F.; Maltoni, A.; Tani, A.; Foderi, C.; Laschi, A.; Marchi, E. Early response of Quercus robur seedlings to soil compaction following germination. Land Degrad. Dev. 2018, 29, 916–925. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Shahsavari, M.; Rezaei, M. A General Overview on Manganese (Mn) Importance for Crops Production. Aust. J. Basic Appl. Sci. 2011, 5, 1799–1803. [Google Scholar]
- Mousavi, S.R.; Galavi, M.; Ahmadvand, G. Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.). Asian, J. Plant Sci. 2007, 6, 1256–1260. [Google Scholar] [CrossRef]
- Reichman, S.M.; Menzies, N.W.; Asher, C.J.; Mulligan, D.R. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant Soil 2004, 258, 341–350. [Google Scholar] [CrossRef]
- Molla, S.; Villar-Salvador, P.; Garcia-Fayos, P.; Rubira, J.L.P. Physiological and transplanting performance of Quercus ilex L. (Holm oak) seedlings grown in nurseries with different winter conditions. For. Ecol. Manag. 2006, 237, 218–226. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Env. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
Treatment | Species Germination (%) ± SE | ||
---|---|---|---|
Northern Red Oak | Chestnut Oak | Red Maple | |
C | 75.7 ± 0.3a | 71.7 ± 0.3c | 72.0 ± 0.6c |
HS | 96.0 ± 0.6c | 84.3 ± 0.3e | 79.0 ± 0.6d |
TMn | 100.0 ± 0.0d | 80.3 ± 0.3d | 57.0 ± 0.6b |
NMn | 84.7 ± 1.2b | 54.7 ± 0.9a | 41.0 ± 0.9a |
SMn | 100.0 ± 0.0d | 58.3 ± 0.7b | 71.0 ± 0.7c |
Species | Treatments | Mean Seedling Attribute ± SE | ||
---|---|---|---|---|
Height (cm) | Diameter (mm) | Leaf Number | ||
Northern | C | 9.65 ± 0.46a | 3.71 ± 0.31a | 6.8 ± 0.9a |
red oak | HS | 21.16 ± 0.88b | 5.42 ± 0.24b | 13.6 ± 1.5b |
TMn | 24.24 ± 0.58c | 5.75 ± 0.20b | 12.2 ± 1.1b | |
NMn | 24.89 ± 0.69c | 5.58 ± 0.31b | 12.2 ± 0.4b | |
SMn | 24.45 ± 0.72c | 5.74 ± 0.21b | 11.6 ± 0.3b | |
Chestnut oak | C | 6.53 ± 0.12a | 2.68 ± 0.23a | 4.9 ± 0.3a |
HS | 10.03 ± 0.39b | 2.87 ± 0.28a | 7.0 ± 0.7ab | |
TMn | 15.63 ± 0.59c | 3.64 ± 0.32ab | 8.8 ± 0.6bc | |
NMn | 17.20 ± 1.72c | 4.38 ± 0.49b | 12.7 ± 0.9d | |
SMn | 18.10 ± 1.28c | 3.93 ± 0.36b | 11.5 ± 1.7cd | |
Red maple | C | 5.53 ± 0.18a | 2.86 ± 0.15a | 6.3 ± 0.3a |
HS | 7.18 ± 0.42b | 3.15 ± 0.05ab | 8.8 ± 0.9ab | |
TMn | 8.90 ± 0.12c | 3.85 ± 0.38c | 13.0 ± 1.3c | |
NMn | 7.93 ± 0.61bc | 3.21 ± 0.08ab | 11.8 ± 2.0bc | |
SMn | 8.70 ± 0.21c | 3.50 ± 0.35ab | 12.3 ± 0.9bc |
Species | Treatments | Mean Biomass (g) ± SE | |||
---|---|---|---|---|---|
Total | Root | Stem | Leaf | ||
Red oak | C | 5.42 ± 0.26a | 2.62 ± 0.19a | 1.27 ± 0.24a | 1.54 ± 0.11a |
HS | 10.34 ± 0.20b | 3.82 ± 0.09b | 2.83 ± 0.21b | 3.69 ± 0.14b | |
TMn | 12.09 ± 0.02c | 5.52 ± 0.30c | 3.09 ± 0.14b | 3.47 ± 0.18b | |
NMn | 10.11 ± 0.58b | 3.25 ± 0.62ab | 3.19 ± 0.14b | 3.67 ± 0.10b | |
SMn | 10.10 ± 0.26b | 3.46 ± 0.04ab | 3.09 ± 0.32b | 3.55 ± 0.46b | |
Chestnut oak | C | 1.35 ± 0.08a | 0.70 ± 0.08ab | 0.27 ± 0.03a | 0.38 ± 0.03a |
HS | 1.56 ± 0.08ab | 0.62 ± 0.03a | 0.35 ± 0.05a | 0.63 ± 0.06b | |
TMn | 2.18 ± 0.21b | 0.58 ± 0.17a | 0.52 ± 0.05a | 1.04 ± 0.03c | |
NMn | 4.15 ± 0.56d | 1.17 ± 0.24b | 1.09 ± 0.18c | 1.89 ± 0.16e | |
SMn | 3.36 ± 0.16c | 1.06 ± 0.03ab | 0.81 ± 0.13b | 1.50 ± 0.00d | |
Red maple | C | 0.13 ± 0.02a | 0.06 ± 0.01a | 0.03 ± 0.01a | 0.03 ± 0.00a |
HS | 0.32 ± 0.07b | 0.10 ± 0.03ab | 0.08 ± 0.02b | 0.14 ± 0.03a | |
TMn | 0.61 ± 0.02c | 0.17 ± 0.05b | 0.12 ± 0.01b | 0.32 ± 0.03b | |
NMn | 0.56 ± 0.08c | 0.16 ± 0.01b | 0.11 ± 0.01b | 0.28 ± 0.08b | |
SMn | 0.59 ± 0.05c | 0.17 ± 0.03b | 0.12 ± 0.01b | 0.30 ± 0.02b |
Comp. | Treat. | Mean Element Concentration ± SE | |||||
---|---|---|---|---|---|---|---|
N | P | K | Mg | Fe | Mn | ||
(%) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | ||
Foliage | C | 1.27 ± 0.15a | 0.70 ± 0.05a | 9.34 ± 0.08a | 4.10 ± 0.31a | 0.05 ± 0.01a | 0.51 ± 0.06a |
HS | 1.76 ± 0.06b | 1.15 ± 0.03b | 9.33 ± 0.36a | 3.66 ± 0.07a | 0.07 ± 0.00a | 0.38 ± 0.06a | |
TMn | 2.36 ± 0.02c | 1.27 ± 0.07bc | 9.67 ± 0.50a | 3.91 ± 0.27a | 0.07 ± 0.00a | 0.37 ± 0.06a | |
NMn | 2.15 ± 0.14bc | 1.38 ± 0.07bc | 10.10 ± 0.91a | 3.91 ± 0.30a | 0.07 ± 0.01a | 0.44 ± 0.08a | |
SMn | 2.14 ± 0.02bc | 1.41 ± 0.11c | 9.62 ± 0.26a | 4.04 ± 0.26a | 0.07 ± 0.01a | 0.50 ± 0.08a | |
Stem | C | 0.40 ± 0.05a | 0.72 ± 0.04a | 3.83 ± 0.13a | 1.73 ± 0.22a | 0.02 ± 0.00a | 0.28 ± 0.02a |
HS | 0.63 ± 0.02ab | 1.41 ± 0.02ab | 4.53 ± 0.54ab | 2.03 ± 0.08a | 0.02 ± 0.00ab | 0.16 ± 0.03a | |
TMn | 0.81 ± 0.05b | 1.48 ± 0.13b | 3.95 ± 0.20ab | 2.20 ± 0.19a | 0.04 ± 0.00b | 0.17 ± 0.02a | |
NMn | 0.76 ± 0.07b | 1.43 ± 0.22ab | 4.09 ± 0.14ab | 2.13 ± 0.27a | 0.03 ± 0.00ab | 0.25 ± 0.05a | |
SMn | 0.80 ± 0.09b | 1.64 ± 0.22b | 4.87 ± 0.51b | 2.16 ± 0.06a | 0.04 ± 0.01b | 0.22 ± 0.06a | |
Root | C | 0.63 ± 0.03a | 0.81 ± 0.04a | 4.71 ± 0.33a | 1.59 ± 0.21a | 0.05 ± 0.01ab | 0.09 ± 0.00c |
HS | 0.84 ± 0.06ab | 1.40 ± 0.06ab | 6.70 ± 0.53ab | 1.48 ± 0.03a | 0.04 ± 0.00a | 0.02 ± 0.00ab | |
TMn | 1.18 ± 0.10c | 1.73 ± 0.30b | 7.79 ± 0.30b | 1.93 ± 0.13a | 0.06 ± 0.00ab | 0.03 ± 0.01ab | |
NMn | 1.02 ± 0.11bc | 1.39 ± 0.09ab | 7.13 ± 1.06a | 1.65 ± 0.12a | 0.05 ± 0.01ab | 0.04 ± 0.01b | |
SMn | 1.13 ± 0.12bc | 1.74 ± 0.26b | 7.01 ± 0.09ab | 1.80 ± 0.15a | 0.07 ± 0.00c | 0.02 ± 0.00a |
Comp | Treat | Mean Element Concentration ± SE | |||||
---|---|---|---|---|---|---|---|
N | P | K | Mg | Fe | Mn | ||
(%) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | ||
Foliage | C | 2.17 ± 1.13a | 1.38 ± 0.14a | 10.22 ± 0.03a | 3.08 ± 0.07ab | 0.05 ± 0.00a | 0.55 ± 0.10a |
HS | 2.68 ± 0.18a | 3.13 ± 0.09c | 10.60 ± 0.13a | 2.56 ± 0.12a | 0.05 ± 0.00a | 0.41 ± 0.02a | |
TMn | 2.52 ± 0.07a | 2.66 ± 0.31bc | 11.64 ± 0.15a | 2.88 ± 0.31ab | 0.05 ± 0.00a | 0.51 ± 0.10a | |
NMn | 2.38 ± 0.04a | 2.17 ± 0.15b | 12.34 ± 0.30a | 3.33 ± 0.28c | 0.06 ± 0.00a | 0.66 ± 0.09a | |
SMn | 2.33 ± 0.02a | 2.33 ± 0.09b | 11.75 ± 1.54a | 3.50 ± 0.20c | 0.05 ± 0.00a | 0.48 ± 0.10a | |
Stem | C | 1.14 ± 0.36a | 1.70 ± 0.10a | 7.69 ± 0.03a | 1.80 ± 0.06a | 0.04 ± 0.00a | 0.63 ± 0.07a |
HS | 1.45 ± 0.11a | 3.43 ± 0.14b | 9.17 ± 0.34a | 2.41 ± 0.22b | 0.04 ± 0.00a | 0.64 ± 0.08a | |
TMn | 1.45 ± 0.06a | 3.62 ± 0.08b | 11.51 ± 0.96a | 2.38 ± 0.14b | 0.03 ± 0.00a | 0.58 ± 0.03a | |
NMn | 1.59 ± 0.22a | 3.40 ± 0.26b | 9.61 ± 0.90a | 2.55 ± 0.08b | 0.05 ± 0.01a | 0.64 ± 0.09a | |
SMn | 1.53 ± 0.30a | 3.48 ± 0.15b | 8.94 ± 1.06a | 2.51 ± 0.11b | 0.05 ± 0.01a | 0.49 ± 0.06a | |
Root | C | 1.41 ± 0.21a | 2.20 ± 0.12a | 6.75 ± 0.03a | 1.73 ± 0.07a | 0.07 ± 0.00a | 0.16 ± 0.00c |
HS | 2.95 ± 0.00c | 4.43 ± 0.04b | 9.35 ± 0.04a | 1.92 ± 0.00a | 0.08 ± 0.01a | 0.11 ± 0.00b | |
TMn | 2.91 ± 0.01c | 4.31 ± 0.04b | 12.92 ± 1.22b | 1.97 ± 0.20a | 0.08 ± 0.00a | 0.09 ± 0.01ab | |
NMn | 2.80 ± 0.39bc | 3.35 ± 0.26b | 9.70 ± 0.65ab | 1.95 ± 0.21a | 0.12 ± 0.01b | 0.09 ± 0.01ab | |
SMn | 1.99 ± 0.37ab | 3.31 ± 0.14ab | 16.35 ± 1.94c | 1.93 ± 0.09a | 0.05 ± 0.01a | 0.08 ± 0.01a |
Treat | Mean Element Concentration ± SE | |||||
---|---|---|---|---|---|---|
N | P | K | Mg | Fe | Mn | |
(%) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | |
C | 1.50 ± 0.20a | 1.55 ± 0.05a | 9.18 ± 0.40a | 2.33 ± 0.33a | 0.06 ± 0.01a | 0.88 ± 0.04a |
HS | 3.67 ± 0.127bc | 5.83 ± 0.21b | 17.84 ± 0.57b | 4.12 ± 0.08b | 0.07 ± 0.00ab | 0.67 ± 0.04a |
TMn | 3.53 ± 0.19b | 6.65 ± 0.73bc | 23.16 ± 1.43c | 4.27 ± 0.04b | 0.08 ± 0.00b | 0.82 ± 0.07a |
NMn | 4.14 ± 0.18c | 8.47 ± 0.52d | 24.17 ± 1.19c | 4.79 ± 0.63b | 0.09 ± 0.01b | 0.62 ± 0.31a |
SMn | 3.48 ± 0.07b | 7.64 ± 0.33cd | 23.04 ± 0.21c | 4.84 ± 0.14b | 0.09 ± 0.01b | 0.76 ± 0.13a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, K.; Williams, R.A. Response of Oak and Maple Seed Germination and Seedling Growth to Different Manganese Fertilizers in a Cultured Substratum. Forests 2019, 10, 547. https://doi.org/10.3390/f10070547
Mai K, Williams RA. Response of Oak and Maple Seed Germination and Seedling Growth to Different Manganese Fertilizers in a Cultured Substratum. Forests. 2019; 10(7):547. https://doi.org/10.3390/f10070547
Chicago/Turabian StyleMai, Kaile, and Roger A. Williams. 2019. "Response of Oak and Maple Seed Germination and Seedling Growth to Different Manganese Fertilizers in a Cultured Substratum" Forests 10, no. 7: 547. https://doi.org/10.3390/f10070547
APA StyleMai, K., & Williams, R. A. (2019). Response of Oak and Maple Seed Germination and Seedling Growth to Different Manganese Fertilizers in a Cultured Substratum. Forests, 10(7), 547. https://doi.org/10.3390/f10070547