Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Populations and Sampling
2.2. DNA Extraction and Sequence Data Acquisition
2.3. Data Analysis
2.3.1. Genetic Diversity and Test of Population Expansion
2.3.2. Population Genetic Structure and Barrier Analysis
2.3.3. Population Connectivity: Visualizing Putative Dispersal Routes
2.3.4. Species Distribution Modeling
3. Results
3.1. Analysis of Genetic Diversity and Test for Population Expansion
3.2. Population Genetic Structure
3.3. Visualizing Dispersal Corridors and Gene Flow Direction
3.4. Species Distribution Modeling
4. Discussion
4.1. The Among-Population Dispersal Corridor Function of Mountains
4.2. Isolation of Glacial Refugia and Differentiation between Eastern and Western Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 183–195; discussion 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Morris, A.B.; McLachlan, J.S.; Manos, P.S.; Soltis, P.S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 2006, 15, 4261–4293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chiang, T.Y.; George, M.; Liu, J.Q.; Abbott, R.J. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol. Ecol. 2005, 14, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Ricklefs, R.E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 2000, 407, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.X.; Fu, C.X.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world‘s most diverse temperate flora. Mol. Phylogenet. Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Sun, Y.-S.; Ge, X.-J.; Gao, L.-M.; Qiu, Y.-X. Phylogeographic studies of plants in China: Advances in the past and directions in the future. J. Syst. Evol. 2012, 50, 267–275. [Google Scholar] [CrossRef]
- Bai, W.N.; Wang, W.T.; Zhang, D.Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 2016, 209, 1757–1772. [Google Scholar] [CrossRef]
- Ma, Q.; Du, Y.-J.; Chen, N.; Zhang, L.-Y.; Li, J.-H.; Fu, C.-X. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Syst. Bot. 2015, 40, 796–810. [Google Scholar] [CrossRef]
- Sun, Y.; Moore, M.J.; Yue, L.; Feng, T.; Chu, H.; Chen, S.; Ji, Y.; Wang, H.; Li, J.; Carine, M. Chloroplast phylogeography of the East Asian Arcto-Tertiary relict Tetracentron sinense (Trochodendraceae). J. Biogeogr. 2014, 41, 1721–1732. [Google Scholar] [CrossRef]
- Wang, Y.H.; Jiang, W.M.; Comes, H.P.; Hu, F.S.; Qiu, Y.X.; Fu, C.X. Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): Insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China. New Phytol. 2015, 206, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Nason, J.D. Nuclear and chloroplast DNA phylogeography of Ficus hirta: Obligate pollination mutualism and constraints on range expansion in response to climate change. New Phytol. 2013, 197, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Z.; Fritsch, P.W.; Tian, H.; Yang, A.; Yao, X. Phylogeography and genetic structure of a Tertiary relict tree species, Tapiscia sinensis (Tapisciaceae): Implications for conservation. Ann. Bot. 2015, 116, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Shao, J.-W.; Lu, C.; Zhang, X.-P.; Qiu, Y.-X. Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China. J. Syst. Evol. 2012, 50, 325–333. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wu, R.; Wang, Q.; Zhang, Z.R.; Lopez-Pujol, J.; Fan, D.M.; Li, D.Z. Comparative phylogeography of two sympatric beeches in subtropical China: Species-specific geographic mosaic of lineages. Ecol. Evol. 2013, 3, 4461–4472. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Kou, Y.; Zhang, Z.; Yuan, L.; Li, D.; Lopez-Pujol, J.; Fan, D.; Zhang, Z. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 2018, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Tian, E.; Nason, J.D.; Machado, C.A.; Zheng, L.; Yu, H.; Kjellberg, F. Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol. Ecol. 2015, 24, 5976–5991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Wang, I.J.; Comes, H.P.; Peng, H.; Qiu, Y.X. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci. Rep. 2016, 6, 24041. [Google Scholar] [CrossRef] [PubMed]
- De Craene, L.P.R.; Soltis, P.S.; Soltis, D.E. Evolution of Floral Structures in Basal Angiosperms. Int. J. Plant Sci. 2003, 164, S329–S363. [Google Scholar] [CrossRef]
- Parks, C.R.; Miller, N.G.; Wendel, J.F.; Mcdougal, K.M. Genetic divergence within the genus Liriodendron (Magnoliaceae). Ann. Mo. Bot. Gard. 1983, 70, 658–666. [Google Scholar] [CrossRef]
- McCartan, L.; Tiffney, B.H.; Wolfe, J.A.; Ager, T.A.; Wing, S.L.; Sirkin, L.A.; Ward, L.W.; Brooks, J. Late Tertiary floral assemblage from upland gravel deposits of the southern Maryland Coastal Plain. Geology 1990, 18, 311–314. [Google Scholar] [CrossRef]
- Sewell, M.M.; Parks, C.R.; Chase, M.W. Intraspecific chloroplast DNA variation and biogeography of north American Liriodendron L. (Magnoliaceae). Evolution 1996, 50, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.A. Paleogene floras from the Gulf of Alaska region. Geol. Surv. Prof. Pap. 1977, 8, 294–296. [Google Scholar] [CrossRef]
- Parks, C.R.; Wendel, J.F. Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Am. J. Bot. 1990, 77, 1243–1256. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Feng, Y.; Yao, J.; Li, B.; Xu, M.; Li, H. High genetic diversity but limited gene flow among remnant and fragmented natural populations of Liriodendron chinense Sarg. Biochem. Syst. Ecol. 2014, 54, 230–236. [Google Scholar] [CrossRef]
- He, S.A.; Hao, R.M.; Tang, S.J. A study on the ecological factors of endangering mechanism of Liriodendron chinense (Hemsl.) Sarg. J. Plant Resour. Environ. 1996, 5, 1–8. [Google Scholar]
- Hao, R.M.; He, S.A.; Tang, S.J.; Wu, S.P. Geographical distribution of Liriodendron chinense in China and its significance. J. Plant Resour. Environ. 1995, 4, 1–6. [Google Scholar]
- Huang, S.Q.; Guo, Y.H.; Chen, J.K. Pollination rates and pollen tube growth in a vulnerable plant, Liriodendron chinense (Hemsl.) Sarg. (Magnoliaceae). Acta Phytotaxon. Sin. 1998, 36, 310–316. [Google Scholar]
- Zhou, Y.; Li, M.; Zhao, F.; Zha, H.; Yang, L.; Lu, Y.; Wang, G.; Shi, J.; Chen, J. Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn. Front. Plant Sci. 2016, 7, 826. [Google Scholar] [CrossRef]
- Yao, J.; Li, H.; Ye, J.; Shi, L. Relationship between parental genetic distance and offspring’s heterosis for early growth traits in Liriodendron: Implication for parent pair selection in cross breeding. New For. 2015, 47, 163–177. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, Y.; Liu, S.; Liu, L.; Liu, T.; Li, Y.; Yu, F. New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: East-west lineage split and genetic mixture within western subtropical China. PeerJ 2019, 7, e6355. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Dick, C.W.; Yao, X.; Huang, H. Impacts of biogeographic history and marginal population genetics on species range limits: A case study of Liriodendron chinense. Sci. Rep. 2016, 6, 25632. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yang, A.; Liu, S.; Liu, L.; Li, Y.; Wu, Z.; Yu, F. RAD-Seq Data Point to a Distinct Split in Liriodendron (Magnoliaceae) and Obvious East–West Genetic Divergence in L. chinense. Forests 2018, 10, 13. [Google Scholar] [CrossRef]
- Chen, J.; Hao, Z.; Guang, X.; Zhao, C.; Wang, P.; Xue, L.; Zhu, Q.; Yang, L.; Sheng, Y.; Zhou, Y.; et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat. Plants 2019, 5, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, H. Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene. BMC Evol. Biol. 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 2003, 18, 189–197. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice, 2nd ed.; Springer: New York, NY, USA, 2003; Volume 83, pp. 479–494. [Google Scholar]
- Conroy, G.C.; Shimizu-Kimura, Y.; Lamont, R.W.; Ogbourne, S.M. A multidisciplinary approach to inform assisted migration of the restricted rainforest tree, Fontainea rostrata. PLoS ONE 2019, 14, e0210560. [Google Scholar] [CrossRef]
- Chan, L.M.; Brown, J.L.; Yoder, A.D. Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol. Phylogenet. Evol. 2011, 59, 523–537. [Google Scholar] [CrossRef]
- Smouse, P.E.; Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 1999, 82, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, H.; Xie, T.; Xu, Y.; Zhao, L.; Tian, W. Effects of Climate Change on the Potentially Suitable Climatic Geographical Range of Liriodendron chinense. Forests 2017, 8, 399. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, X.; Obata, S.; Pais, A.; Dong, Y.; Peet, R.; Xiang, Q.J. Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Mol. Phylogenet. Evol. 2018, 126, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ray, N. pathmatrix: A geographical information system tool to compute effective distances among samples. Mol. Ecol. Notes 2005, 5, 177–180. [Google Scholar] [CrossRef]
- Singleton, P.H.; Gaines, W.L.; Lehmkuhl, J.F. Landscape permeability for large carnivores in Washington: A geographic information system weighted-distance and least-cost corridor assessment. USDA For. Serv. Pac. Northwest. Res. Stn. 2002, 22, 1–88. [Google Scholar]
- Kidd, D.M.; Liu, X. geophylobuilder 1.0: An arcgis extension for creating ‘geophylogenies’. Mol. Ecol. Resour. 2008, 8, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Porter, M.; Churcher, S.; Wang, S.; Blouin, C.; Whalley, J.; Brooks, S.; Beiko, R.G. GenGIS: A geospatial information system for genomic data. Genome Res. 2009, 19, 1896–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Lei, S.Q.; Hu, W.; Deng, L.L.; Li, B.; Meng, Q.L.; Soltis, D.E.; Soltis, P.S.; Fan, D.M.; Zhang, Z.Y. Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Mol. Phylogenet. Evol. 2015, 85, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.M.; Choi, D.; Raselimanana, A.P.; Rakotondravony, H.A.; Yoder, A.D. Defining spatial and temporal patterns of phylogeographic structure in Madagascar‘s iguanid lizards (genus Oplurus). Mol. Ecol. 2012, 21, 3839–3851. [Google Scholar] [CrossRef]
- Shi, X.; Wen, Q.; Cao, M.; Guo, X.; Xu, L.-A. Genetic Diversity and Structure of Natural Quercus variabilis Population in China as Revealed by Microsatellites Markers. Forests 2017, 8, 495. [Google Scholar] [CrossRef]
- Sang, T.; Crawford, D.J.; Stuessy, T.F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 1997, 84, 1120–1136. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.; Keeling, J.; Gillman, L. The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proc. Natl. Acad. Sci. USA 2006, 103, 7718–7722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xu, M.; Luo, Q.; Wang, J.; Li, H. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene 2014, 534, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Carlson, J.E.; Leebens-Mack, J.H.; Wall, P.K.; Mueller, L.A.; Buzgo, M.; Landherr, L.L.; Hu, Y.; DiLoreto, D.S.; Ilut, D.C.; et al. An EST database for Liriodendron tulipifera L. floral buds: The first EST resource for functional and comparative genomics in Liriodendron. Tree Genet. Genomes 2007, 4, 419–433. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.-X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Zinck, J.W.; Rajora, O.P. Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: Single refugium, multiple routes. BMC Evol. Biol. 2016, 16, 56. [Google Scholar] [CrossRef]
- Manni, F.; Guèrard, E.; Heyer, E. Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can. Be Detected by Using Monmonier‘s Algorithm. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Beerli, P.; Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 2010, 185, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Kingman, J.F.C. Origins of the Coalescent: 1974–1982. Genetics 2000, 156, 1461–1463. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Han, M.J.; Kang, L.F.; Li, Z.W.; Shen, Y.H.; Zhang, Z. Demographic history and gene flow during silkworm domestication. BMC Evol. Biol. 2014, 14, 185. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Marshall, S.J.; Overpeck, J.T.; Miller, G.H.; Hu, A. Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science 2006, 311, 1751–1753. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]
- Simpson, L.; Clements, M.A.; Crayn, D.M.; Nargar, K. Evolution in Australia‘s mesic biome under past and future climates: Insights from a phylogenetic study of the Australian Rock Orchids (Dendrobium speciosum complex, Orchidaceae). Mol. Phylogenet. Evol. 2018, 118, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Yu, G.; Takahara, H.; Prentice, I.C. Palaeovegetation-Diversity of temperate plants in east Asia. Nature 2001, 413, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C. On Some distribution patterns and some migration routes found in the eastern asiatic region. Acta Phytotaxon. Sin. 1992, 30, 1–24. [Google Scholar]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Du, S.; Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 2016, 6, 30009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Ji, K.; Fang, Y. Changes in enzyme activities in different clones of Liriodendron chinense × L. tulipifera under flooding stress. J. Northwest. For. Univ. 2007, 22, 43–46. [Google Scholar]
- Zhang, X.P.; Fang, Y.M.; Chen, Y.J. Effect of waterlogging stress on physiological indexes of Liriodendron seedlings. J. Plant Resour. Environ. 2006, 15, 41–44. [Google Scholar]
- Cao, Y.N.; Comes, H.P.; Sakaguchi, S.; Chen, L.Y.; Qiu, Y.X. Evolution of East Asia‘s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol. Biol. 2016, 16, 66. [Google Scholar] [CrossRef]
- Qiu, Y.; Lu, Q.; Zhang, Y.; Cao, Y. Phylogeography of East Asia’s Tertiary relict plants: Current progress and future prospects. Biodivers. Sci. 2017, 25, 24–28. [Google Scholar] [CrossRef]
- Xu, J.; Deng, M.; Jiang, X.-L.; Westwood, M.; Song, Y.-G.; Turkington, R. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet. Genomes 2014, 11. [Google Scholar] [CrossRef]
- Vonholdt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Wang, K.; Hu, Q.; Xi, Z.; Wan, D.; Wang, Q.; Feng, J.; Jiang, D.; Ahani, H.; Abbott, R.J.; et al. Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc. Natl. Acad. Sci. USA 2018, 115, E236–E243. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Guo, X.; Narisu, N.; Lan, T.; Wu, Q.; Xing, Y.; Zhang, Y.; Bond, S.R.; Pei, Z.; Zhang, Y.; et al. Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia. Nat. Genet. 2018, 50, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Steane, D.A.; Potts, B.M.; McLean, E.; Prober, S.M.; Stock, W.D.; Vaillancourt, R.E.; Byrne, M. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol. Ecol. 2014, 23, 2500–2513. [Google Scholar] [CrossRef]
Abbreviation | Location | Longitude | Latitude | Altitude(m) | Sample Size |
---|---|---|---|---|---|
AJ | Anji, Zhejiang, CHN | 119.43° E | 30.4° N | 935–1000 | 5 |
SY | Songyang, Zhejiang, CHN | 119.6° E | 28.5° N | 138 | 5 |
SC | Suichang, Zhejiang, CHN | 118.83° E | 28.41° N | 880–1410 | 5 |
JX | Jixi, Anhui, CHN | 118.83° E | 30.12° N | 750–1190 | 5 |
HS | Huangshan, Anhui, CHN | 116.1° E | 30.17° N | 1250 | 5 |
LS | Lushan, Jiangxi, CHN | 116° E | 29.53° N | 1167 | 5 |
FJWYS | Wuyishan, Fujian, CHN | 117.76° E | 27.84° N | 1700 | 5 |
JXWYS | Wuyishan, Jiangxi, CHN | 117.8° E | 27.92° N | 873 | 5 |
XN | Xianning, Hubei, CHN | 114.2° E | 29.8° N | 68 | 5 |
EX | Exi, Hubei, CHN | 109° E | 30.3° N | 1180 | 5 |
SN | Suining, Hunan, CHN | 110.2° E | 26.33° N | 1500 | 5 |
SZ | Sangzhi, Hunan, CHN | 110.2° E | 29.15° N | 407 | 5 |
JJ | Jiaojiang, Guangxi, CHN | 110.84° E | 25.56° N | 496 | 5 |
MES | Maoershan, Guangxi, CHN | 110.4° E | 25.87° N | 1100–1200 | 5 |
HP | Huaping, Guangxi, CHN | 110.37° E | 25.88° N | 1280 | 5 |
YC | Yachang, Guizhou, CHN | 106.22° E | 24.9° N | 594 | 1 |
ST | Songtao, Guizhou, CHN | 109.32° E | 28.16° N | 903–937 | 5 |
XS | Xishui, Guizhou, CHN | 105.89° E | 28.24° N | 1100–1250 | 5 |
LP | Liping, Guizhou, CHN | 109.19° E | 26.34° N | 421 | 5 |
XY | Xuyong, Sichuan, CHN | 105.5° E | 28.2° N | 800 | 5 |
YY | Youyang, Sichuan, CHN | 108.8° E | 28.82° N | 890 | 5 |
JP | Jinping, Yunnan, CHN | 103.23° E | 22.78° N | 1230 | 5 |
MLP | Malipo, Yunnan, CHN | 104.47° E | 23.3° N | 1420–1480 | 5 |
JDZ | Jingdezhen, Jiangxi, CHN | 117.66° E | 29.55° N | 530 | 1 |
LY | Leye, Guangxi, CHN | 106.3° E | 24.84° N | 1044 | 3 |
YJ | Yinjiang, Guizhou, CHN | 108.61° E | 27.89° N | 1560 | 3–4 |
XC | Xichou, Yunnan, CHN | 104.47° E | 23.3° N | 1480 | 4 |
MG | Maguan, Yunan, CHN | 104.19° E | 23.02° N | 1420 | 4 |
YUY | Yuanyang, Yunnan, CHN | 103.07° E | 23.03° N | 1540–1600 | 3 |
Locus | Primer Pairs (5′–3′) | Reference |
---|---|---|
psbA-trnH | F: CGCATGGTGGATTCACAATC | [51] |
R: AGACCTAGCTGCTATCGAAG | ||
trnT-trnL | F: CATTACAAATGCGATGCTCT | [52] |
R: TCTACCGATTTCGCCATATC | ||
ITS | F: TACCGATTGAATGATCCGGTGAAG | [53] |
R: CGCCGTTACTAGGGGAATCCTTGT | ||
LcDHN-like | F: GTAGTTGATTTTGAGCCGTT | Newly designed |
R: CACACATCCTACTTGTGACCT | ||
LcDHN-like1 | F: AAAAGCAAAAGCTCTTCG | Newly designed |
R: CATCAATCAAAAGGACACAAA | ||
LcDHN-like2 | F: ATGGGGAAGAAGGAAGAAAAG | Newly designed |
R: TCAGTGGTTGGCAGACTC | ||
LtNCED1 | F: ATTCTTCCCATTCTACACT | Newly designed |
R: TCTCCCCTCCTCTAACCAA | ||
LtNCED3 | F: ATGGCGACTGCAAGTAGTA | Newly designed |
R: TTAGACCTGGCTCACCAG | ||
Ltosmotin-like | F: ATGGGGAACGCTCCAAC | Newly designed |
R: TTAGTGGCAAAAGATAACCTTC |
Variables | Description | Unit | Contribution (%) |
---|---|---|---|
Bio2 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) | °C | 2.3 |
Bio3 | Isothermality (Bio2/Bio7) (* 100) | 3.5 | |
Bio4 | Temperature Seasonality (standard deviation * 100) | °C | 0.2 |
Bio8 | Mean Temperature of Wettest Quarter | °C | 3.3 |
Bio9 | Mean Temperature of Driest Quarter | °C | 7.3 |
Bio11 | Mean Temperature of Coldest Quarter | °C | 0.3 |
Bio13 | Precipitation of Wettest Month | mm | 1.6 |
Bio15 | Precipitation Seasonality (Coefficient of Variation) | 0.8 | |
Bio16 | Precipitation of Wettest Quarter | mm | 6.1 |
Bio17 | Precipitation of Driest Quarter | mm | 65.3 |
Elevation | m | 2.3 | |
Slope | ° | 6.8 |
Locus | Population | N | L | S | π | θw | H | Hd |
---|---|---|---|---|---|---|---|---|
psbA-trnH | East | 45 | 505 | 19 | 0.00652 | 0.00889 | 9 | 0.543 |
West | 65 | 505 | 19 | 0.00625 | 0.00771 | 10 | 0.547 | |
Whole range | 110 | 505 | 25 | 0.00802 | 0.00970 | 16 | 0.660 | |
trnT-trnL | East | 45 | 868 | 0 | 0.00000 | 0.00000 | 1 | 0.000 |
West | 65 | 868 | 4 | 0.00042 | 0.00101 | 5 | 0.328 | |
Whole range | 110 | 868 | 4 | 0.00025 | 0.00091 | 5 | 0.204 | |
nrDNA | East | 50 | 862 | 25 | 0.00146 | 0.00694 | 16 | 0.567 |
West | 65 | 862 | 43 | 0.00364 | 0.01147 | 30 | 0.865 | |
Whole range | 115 | 862 | 60 | 0.00196 | 0.01453 | 38 | 0.596 | |
LcDHN-like | East | 48 | 1082 | 54 | 0.01047 | 0.01136 | 21 | 0.940 |
West | 90 | 1082 | 69 | 0.00887 | 0.01293 | 43 | 0.976 | |
Whole range | 138 | 1082 | 92 | 0.01005 | 0.01590 | 61 | 0.981 | |
LcDHN-like1 | East | 38 | 3536 | 65 | 0.00371 | 0.00532 | 28 | 0.976 |
West | 58 | 3536 | 70 | 0.00414 | 0.00515 | 29 | 0.956 | |
Whole range | 96 | 3536 | 101 | 0.00421 | 0.00677 | 54 | 0.979 | |
LcDHN-like2 | East | 36 | 1440 | 22 | 0.00173 | 0.00376 | 14 | 0.814 |
West | 60 | 1440 | 29 | 0.00278 | 0.00441 | 22 | 0.892 | |
Whole range | 96 | 1440 | 44 | 0.00259 | 0.00609 | 33 | 0.915 | |
LtNCED1 | East | 38 | 1884 | 27 | 0.00237 | 0.00323 | 20 | 0.939 |
West | 58 | 1884 | 24 | 0.00197 | 0.00260 | 29 | 0.954 | |
Whole range | 96 | 1884 | 41 | 0.00232 | 0.00401 | 48 | 0.973 | |
LtNCED3 | East | 40 | 1884 | 36 | 0.00388 | 0.00452 | 24 | 0.971 |
West | 60 | 1884 | 42 | 0.00296 | 0.00480 | 35 | 0.967 | |
Whole range | 100 | 1884 | 60 | 0.00403 | 0.00618 | 57 | 0.983 | |
Ltosmotin-like | East | 40 | 774 | 29 | 0.00469 | 0.00881 | 11 | 0.800 |
West | 60 | 774 | 33 | 0.00457 | 0.00930 | 15 | 0.737 | |
Whole range | 100 | 774 | 40 | 0.00463 | 0.01015 | 22 | 0.769 |
Pop (cpDNA) | N | π | θw | H | Hd | Pop (nDNA) | N | π | θw |
---|---|---|---|---|---|---|---|---|---|
AJ | 5 | 0.00045 | 0.00036 | 2 | 0.600 | AJ | 6 | 0.00312 | 0.00316 |
HS | 5 | 0.00090 | 0.00107 | 3 | 0.700 | SY | 6 | 0.00222 | 0.00233 |
JX | 5 | 0.00134 | 0.00107 | 2 | 0.600 | HS | 4 | 0.00331 | 0.00305 |
JXWYS | 5 | 0.00223 | 0.00250 | 3 | 0.800 | LS | 6 | 0.00319 | 0.00324 |
LS | 5 | 0.00030 | 0.00036 | 2 | 0.400 | FJWYS | 4 | 0.00325 | 0.00349 |
SC | 4 | 0.00050 | 0.00041 | 2 | 0.667 | XN | 4 | 0.00315 | 0.00309 |
SY | 5 | 0.00045 | 0.00036 | 2 | 0.600 | EX | 6 | 0.00358 | 0.00360 |
FJWYS | 5 | 0 | 0 | 1 | 0 | SN | 6 | 0.00328 | 0.00326 |
XN | 5 | 0.00492 | 0.00465 | 4 | 0.900 | MES | 6 | 0.00281 | 0.00265 |
EX | 4 | 0.00336 | 0.00367 | 4 | 1.000 | ST | 2 | 0.00137 | 0.00137 |
HP | 5 | 0.00060 | 0.00071 | 2 | 0.400 | LP | 6 | 0.00235 | 0.00222 |
SN | 5 | 0.00313 | 0.00251 | 3 | 0.800 | XY | 4 | 0.00108 | 0.00110 |
JJ | 5 | 0.00268 | 0.00214 | 2 | 0.600 | YY | 6 | 0.00270 | 0.00272 |
JP | 5 | 0.00030 | 0.00036 | 2 | 0.400 | JX | |||
LP | 5 | 0.00268 | 0.00321 | 3 | 0.700 | JDZ | |||
MES | 5 | 0.00090 | 0.00109 | 3 | 0.700 | YJ | |||
MLP | 4 | 0.00037 | 0.00041 | 2 | 0.500 | HP | |||
ST | 5 | 0.00231 | 0.00287 | 4 | 0.900 | XS | |||
SZ | 5 | 0.00030 | 0.00036 | 1 | 0.400 | LY | |||
YY | 5 | 0.00340 | 0.00287 | 3 | 0.700 | XC | |||
XS | 3 | 0.00372 | 0.00397 | 3 | 1 | JP | |||
XY | 4 | 0.00099 | 0.00081 | 2 | 0.667 | MG | |||
YC | 1 | YUY | |||||||
East | 44 | 0.00243 | 0.00327 | 9 | 0.553 | East | 30 | 0.00376 | 0.00504 |
West | 61 | 0.00258 | 0.00356 | 14 | 0.665 | West | 36 | 0.00365 | 0.00522 |
Whole | 105 | 0.00313 | 0.00421 | 20 | 0.719 | Whole | 66 | 0.00406 | 0.00685 |
Locus | Population | Tajima’s D | Fu and Li’s D * | Fu and Li’s F * |
---|---|---|---|---|
psbA-trnH | East | −0.85991 | −0.20734 | −0.50775 |
West | −0.70881 | −1.21672 | −1.23169 | |
Whole range | −0.60507 | −2.27784 | −1.94985 | |
trnT-trnL | East | |||
West | −1.25638 | −1.30785 | −1.51234 | |
Whole range | −1.40697 | −1.50383 | −1.73357 | |
nrDNA | East | −2.58119 *** | −5.68498 ** | −5.45963 ** |
West | −2.31027 ** | −4.69552 ** | −4.53354 ** | |
Whole range | −2.76256 *** | −7.68778 ** | −6.76095 ** | |
LcDHN-like | East | −0.09932 | 0.48782 | 0.30949 |
West | −0.94272 | 0.06387 | −0.44434 | |
Whole range | −1.10330 | −0.39386 | −0.86741 | |
LcDHN-like1 | East | −1.05348 | −0.48634 | −0.83987 |
West | −0.44559 | 0.99637 | 0.49643 | |
Whole range | −1.21302 | −0.22537 | −0.80095 | |
LcDHN-like2 | East | −1.69227 | −0.02854 | −0.72973 |
West | −1.37388 | −2.62366 * | −2.55638 * | |
Whole range | −1.85038 * | −2.74296 * | −2.83902 * | |
LtNCED1 | East | −0.58354 | 0.59739 | 0.20543 |
West | −0.97734 | −1.04917 | −1.22219 | |
Whole range | −1.29488 | −0.76723 | −1.18870 | |
LtNCED3 | East | −0.44472 | −0.81597 | −0.80943 |
West | −1.20350 | −0.34101 | −0.81769 | |
Whole range | −1.03756 | −1.81555 | −1.77416 | |
Ltosmotin-like | East | −1.34011 | −1.20867 | −1.50054 |
West | −1.59654 | −1.82745 | −2.08065 | |
Whole range | −1.67898 | −3.75720** | −3.45120** |
Scenario | Thermodynamic Score | Scenario | Thermodynamic Score | Scenario | Thermodynamic Score |
---|---|---|---|---|---|
NE↔SE | −19,099.38 | NE↔SW | −21,453.97 | SE↔SW | −19,761.13 |
NE→SE | −19,093.69 | NE→SW | −21,443.74 | SE→SW | −19,749.71 |
SE→NE | −19,092.19 | SW→NE | −21,442.58 | SW→SE | −19,756.28 |
NE↔NW | −22,357.96 | SE↔NW | −20,756.09 | NW↔SW | −22,700.17 |
NE→NW | −22,349.87 | SE→NW | −20,741.89 | NW→SW | −22,695.12 |
NW→NE | −22,349.52 | NW→SE | −20,743.84 | SW→NW | −22,698.26 |
Scenario | Migration Rate |
---|---|
SE→NE | 401.21 |
NW→NE | 349.47 |
SW→NE | 332.92 |
SE→NW | 107.91 |
SE→SW | 21.56 |
NW→SW | 495.87 |
Period | Category | Area (105 km2) |
---|---|---|
Current | unsuitable | 89.51 |
low suitability | 3.99 | |
suitable | 2.68 | |
LIG | unsuitable | 87.65 |
low suitability | 4.55 | |
suitable | 3.86 | |
LGM | unsuitable | 87.67 |
low suitability | 5.01 | |
suitable | 3.50 | |
MH | unsuitable | 88.56 |
low suitability | 4.09 | |
suitable | 3.52 | |
Future | unsuitable | 88.10 |
low suitability | 4.51 | |
suitable | 3.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Cheng, Y.; Li, K.; Li, H. Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense. Forests 2019, 10, 565. https://doi.org/10.3390/f10070565
Shen Y, Cheng Y, Li K, Li H. Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense. Forests. 2019; 10(7):565. https://doi.org/10.3390/f10070565
Chicago/Turabian StyleShen, Yufang, Yanli Cheng, Kangqin Li, and Huogen Li. 2019. "Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense" Forests 10, no. 7: 565. https://doi.org/10.3390/f10070565
APA StyleShen, Y., Cheng, Y., Li, K., & Li, H. (2019). Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense. Forests, 10(7), 565. https://doi.org/10.3390/f10070565