Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Canopy Structure
2.3. Wood Net Primary Production
2.4. Light Absorption and Light-Use Efficiency
2.5. Data Analysis
3. Results
3.1. Age-Related Changes in NPP
3.2. Development of Canopy Structure
3.3. Structural Complexity–Production Relationships
3.4. Structural Complexity–Light Relationships
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Forests Resource Assessment 2010. 2010. Available online: http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 2 June 2019).
- Hua, F.Y.; Wang, L.; Fisher, B.; Zheng, X.L.; Wang, X.Y.; Yu, D.W.; Tang, Y.; Zhu, J.G.; Wilcove, D.S. Tree plantations displacing native forests: The nature and drivers of apparent forest recovery on former croplands in Southwestern China from 2000 to 2015. Biol. Conserv. 2018, 222, 113–124. [Google Scholar] [CrossRef]
- Kashian, D.M.; Sosin, J.R.; Huber, P.W.; Tucker, M.M.; Dombrowski, J. A neutral modeling approach for designing spatially heterogeneous jack pine plantations in northern Lower Michigan, USA. Landsc. Ecol. 2017, 32, 1117–1131. [Google Scholar] [CrossRef]
- Urbano, A.R.; Keeton, W.S. Carbon dynamics and structural development in recovering secondary forests of the northeastern US. For. Ecol. Manag. 2017, 392, 21–35. [Google Scholar] [CrossRef]
- Hernandez-Tecles, E.; Osem, Y.; Alfaro-Sanchez, R.; de las Heras, J. Vegetation structure of planted versus natural Aleppo pine stands along a climatic gradient in Spain. Ann. For. Sci. 2015, 72, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salguero, R.; Camarero, J.J.; Dobbertin, M.; Fernandez-Cancio, A.; Vila-Cabrera, A.; Manzanedo, R.D.; Zavala, M.A.; Navarro-Cerrillo, R.M. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. For. Ecol. Manag. 2013, 310, 956–967. [Google Scholar] [CrossRef]
- Kavanagh, K.; Stankey, G.; Boyle, J. The integration of planted and natural forests in a regional landscape. New For. 1999, 18, 97–109. [Google Scholar] [CrossRef]
- Klenner, W.; Kurz, W.; Beukema, S. Habitat patterns in forested landscapes: Management practices and the uncertainty associated with natural disturbances. Comput. Electron. Agric. 2000, 27, 243–262. [Google Scholar] [CrossRef]
- Baskent, E.Z. Controlling spatial structure of forested landscapes: A case study towards landscape management. Landsc. Ecol. 1999, 14, 83–97. [Google Scholar] [CrossRef]
- Scheuermann, C.M.; Nave, L.E.; Fahey, R.T.; Nadelhoffer, K.J.; Gough, C.M. Effects of canopy structure and species diversity on primary production in upper Great Lakes forests. Oecologia 2018, 188, 405–415. [Google Scholar] [CrossRef]
- Bonner, M.T.L.; Schmidt, S.; Shoo, L.P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manag. 2013, 291, 73–86. [Google Scholar] [CrossRef]
- Gahagan, A.; Giardina, C.P.; King, J.S.; Binkley, D.; Pregitzer, K.S.; Burton, A.J. Carbon fluxes, storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. For. Ecol. Manag. 2015, 337, 88–97. [Google Scholar] [CrossRef]
- Soares, A.A.V.; Leite, H.G.; Cruz, J.P.; Forrester, D.I. Development of stand structural heterogeneity and growth dominance in thinned Eucalyptus stands in Brazil. For. Ecol. Manag. 2017, 384, 339–346. [Google Scholar] [CrossRef]
- Soares, A.A.V.; Leite, H.G.; Souza, A.L.; Silva, S.R.; Lourenco, H.M.; Forrester, D.I. Increasing stand structural heterogeneity reduces productivity in Brazilian Eucalyptus monoclonal stands. For. Ecol. Manag. 2016, 373, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. Key canopy traits drive forest productivity. Proc. R. Soc. B Biol. Sci. 2012, 279, 2128–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardiman, B.S.; Bohrer, G.; Gough, C.M.; Vogel, C.S.; Curtis, P.S. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 2011, 92, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
- Fahey, R.T.; Fotis, A.T.; Woods, K.D. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecol. Appl. 2015, 25, 834–847. [Google Scholar] [CrossRef]
- Pedro, M.S.; Rammer, W.; Seidl, R. Disentangling the effects of compositional and structural diversity on forest productivity. J. Veg. Sci. 2017, 28, 649–658. [Google Scholar] [CrossRef]
- Stark, S.C.; Leitold, V.; Wu, J.L.; Hunter, M.O.; de Castilho, C.V.; Costa, F.R.C.; McMahon, S.M.; Parker, G.G.; Shimabukuro, M.T.; Lefsky, M.A.; et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 2012, 15, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Danescu, A.; Albrecht, A.T.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef]
- Atkins, J.W.; Fahey, R.T.; Hardiman, B.H.; Gough, C.M. Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale. J. Geophys. Res. Biogeosci. 2018, 123, 1387–1405. [Google Scholar] [CrossRef]
- Bose, A.K.; Schelhaas, M.J.; Mazerolle, M.J.; Bongers, F. Temperate forest development during secondary succession: Effects of soil, dominant species and management. Eur. J. For. Res. 2014, 133, 511–523. [Google Scholar] [CrossRef]
- Ali, A. Forest stand structure and functioning: Current knowledge and future challenges. Ecol. Indic. 2019, 98, 665–677. [Google Scholar] [CrossRef]
- Looney, C.E.; D’Amato, A.W.; Palik, B.J.; Fraver, S.; Kastendick, D.N. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence. For. Ecol. Manag. 2018, 424, 85–94. [Google Scholar] [CrossRef]
- Juchheim, J.; Ammer, C.; Schall, P.; Seidel, D. Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. For. Ecol. Manag. 2017, 395, 19–26. [Google Scholar] [CrossRef]
- Atkins, J.W.; Bohrer, G.; Fahey, R.T.; Hardiman, B.S.; Morin, T.H.; Stovall, A.E.L.; Zimmerman, N.; Gough, C.M. Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr R package. Methods Ecol. Evol. 2018, 9, 2057–2066. [Google Scholar] [CrossRef]
- Hardiman, B.S.; Gough, C.M.; Halperin, A.; Hofmeister, K.L.; Nave, L.E.; Bohrer, G.; Curtis, P.S. Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. For. Ecol. Manag. 2013, 298, 111–119. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Harrold, K.H.; George, K.; Curtis, P.S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Chang. Biol. 2007, 13, 1935–1949. [Google Scholar] [CrossRef]
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- Parker, G.G.; Russ, M.E. The canopy surface and stand development: Assessing forest canopy structure and complexity with near-surface altimetry. For. Ecol. Manag. 2004, 189, 307–315. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Schmid, H.P.; Su, H.B.; Curtis, P.S. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric. For. Meteorol. 2008, 148, 158–170. [Google Scholar] [CrossRef]
- Gough, C.M.; Hardiman, B.S.; Nave, L.E.; Bohrer, G.; Maurer, K.D.; Vogel, C.S.; Nadelhoffer, K.J.; Curtis, P.S. Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol. Appl. 2013, 23, 1202–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TerMikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Stuart-Haentjens, E.J.; Curtis, P.S.; Fahey, R.T.; Vogel, C.S.; Gough, C.M. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. Ecology 2015, 96, 2478–2487. [Google Scholar] [CrossRef] [PubMed]
- Kane, V.R.; Bakker, J.D.; McGaughey, R.J.; Lutz, J.A.; Gersonde, R.F.; Franklin, J.F. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Can. J. For. Res. -Rev. Can. De Rech. For. 2010, 40, 774–787. [Google Scholar] [CrossRef]
- Atkinson, E.E.; Marin-Spiotta, E. Land use legacy effects on structure and composition of subtropical dry forests in St. Croix, US Virgin Islands. For. Ecol. Manag. 2015, 335, 270–280. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F. Influence of variable retention harvests on forest ecosystems. I. Diversity of stand structure. J. Appl. Ecol. 2001, 38, 1221–1233. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Schall, P.; Juchheim, J.; Ammer, C.; Seidel, D. Effective number of layers: A new measure for quantifying three-dimensional stand structure based on sampling with terrestrial LiDAR. For. Ecol. Manag. 2016, 380, 212–223. [Google Scholar] [CrossRef]
- Gough, C.M.; Curtis, P.S.; Hardiman, B.S.; Scheuermann, C.M.; Bond-Lamberty, B. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere 2016, 7, e01375. [Google Scholar] [CrossRef]
- Forrester, D.I.; Albrecht, A.T. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For. Ecol. Manag. 2014, 328, 94–102. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. For. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Forrester, D.I. A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol. Model. 2014, 276, 14–22. [Google Scholar] [CrossRef]
- Nelson, A.S.; Wagner, R.G.; Day, M.E.; Fernandez, I.J.; Weiskittel, A.R.; Saunders, M.R. Light absorption and light-use efficiency of juvenile white spruce trees in natural stands and plantations. For. Ecol. Manag. 2016, 376, 158–165. [Google Scholar] [CrossRef]
- Farooq, T.H.; Wu, W.J.; Tigabu, M.; Ma, X.Q.; He, Z.M.; Rashid, M.H.U.; Gilani, M.M.; Wu, P.F. Growth, Biomass Production and Root Development of Chinese fir in Relation to Initial Planting Density. Forests 2019, 10, 15. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrillo, R.M.; Carrasco-Letelier, L.; Casnati, C.R. Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For. Ecol. Manag. 2019, 438, 63–74. [Google Scholar] [CrossRef]
- Jonker, J.G.G.; van der Hilst, F.; Markewitz, D.; Faaij, A.P.C.; Junginger, H.M. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States. Biomass Bioenergy 2018, 117, 44–55. [Google Scholar] [CrossRef]
- Sun, H.G.; Diao, S.F.; Liu, R.; Forrester, D.; Soares, A.; Saito, D.; Dong, R.X.; Jiang, J.M. Relationship between size inequality and stand productivity is modified by self-thinning, age, site and planting density in Sassafras tzumu plantations in central China. For. Ecol. Manag. 2018, 422, 199–206. [Google Scholar] [CrossRef]
- Yanez, M.A.; Fox, T.R.; Seiler, J.R. Early growth responses of loblolly pine varieties and families to silvicultural intensity. For. Ecol. Manag. 2015, 356, 204–215. [Google Scholar] [CrossRef]
- Zhao, D.H.; Kane, M.; Borders, B.E. Growth responses to planting density and management intensity in loblolly pine plantations in the southeastern USA Lower Coastal Plain. Ann. For. Sci. 2011, 68, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.Y.; Di, X.Y.; Chang, S.X.; Wang, C.K.; Shi, B.K.; Geng, P.F.; Jin, G.Z. Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. Can. J. For. Res. 2016, 46, 143–151. [Google Scholar] [CrossRef]
- Yazaki, T.; Hirano, T.; Sano, T. Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan. Forests 2016, 7, 16. [Google Scholar] [CrossRef]
Regeneration Pathway | Age (years) | Dominant Species | Species Diversity (H) | Soil Series | Site Index (m) | Basal Area (m2 ha−1) | Trees ha−1 |
---|---|---|---|---|---|---|---|
Planted | |||||||
25 | Pinus resinosa (97%) Prunus pensylvanica L.f. (3%) | 0.08 | Rubicon sand | 16.8 | 39.5 | 3247 | |
53 | Pinus resinosa (99%) | 0.01 | Rubicon sand, Blue Lake loamy | 18.9 | 34.7 | 657 | |
60 | Pinus resinosa (100%) | 0.00 | Rubicon sand, Blue Lake loamy | 18.3 | 48.8 | 900 | |
65 | Pinus resinosa (99%) | 0.01 | Rubicon sand, Blue Lake loamy | 18.9 | 41.1 | 1036 | |
70 | Pinus resinosa (94%) Quercus rubra L. (5%) | 0.35 | Rubicon sand | 18.3 | 47.6 | 1163 | |
Natural | |||||||
20 | Pinus resinosa (68%) Populus grandidentata (18%) Acer rubrum (4%) | 0.69 | Rubicon sand | 16.8 | 7.9 | 524 | |
44 | Pinus resinosa (95%) | 0.58 | Rubicon sand | 18.9 | 22.1 | 404 | |
70 | Pinus resinosa (77%) Quercus rubra L. (17%) | 0.68 | Rubicon sand, Blue Lake loamy | 16.8 | 42.9 | 1400 | |
85 | Pinus resinosa (59%) Populus grandidentata (19%) Acer rubrum (9%) | 1.20 | Blue Lake loamy | 19.2 | 48.1 | 1247 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hickey, L.J.; Atkins, J.; Fahey, R.T.; Kreider, M.R.; Wales, S.B.; Gough, C.M. Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests. Forests 2019, 10, 566. https://doi.org/10.3390/f10070566
Hickey LJ, Atkins J, Fahey RT, Kreider MR, Wales SB, Gough CM. Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests. Forests. 2019; 10(7):566. https://doi.org/10.3390/f10070566
Chicago/Turabian StyleHickey, Laura J., Jeff Atkins, Robert T. Fahey, Mark R. Kreider, Shea B. Wales, and Christopher M. Gough. 2019. "Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests" Forests 10, no. 7: 566. https://doi.org/10.3390/f10070566
APA StyleHickey, L. J., Atkins, J., Fahey, R. T., Kreider, M. R., Wales, S. B., & Gough, C. M. (2019). Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests. Forests, 10(7), 566. https://doi.org/10.3390/f10070566