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Abstract: In South Korea, logs for low-value products, such as pulpwood and fuelwood, are primarily
extracted from harvest sites and transported to roadside or landing areas using small shovels.
Previous studies on log extraction, however, have focused on cable yarding operations with the goal
of improving productivity on steep slopes and inaccessible sites, leaving small-shovel operations
relatively unexamined. Therefore, the main objectives were to determine small-shovel extraction
productivity and costs and to evaluate the impact of related variables on productivity. In addition,
we developed a model to estimate productivity under various site conditions. The study took place
in 30 case study areas; each area has trees with stems at a diameter at breast height ranging from
18 to 32 cm and a steep slope (greater than 15%). The areas ranged from 241 to 1129 trees per
hectare, with conifer, deciduous, and mixed stands. Small-shovel drives ranged from 36 to 72 m per
extraction cycle from stump to landing. The results indicated that the mean extraction productivity of
small-shovel operations ranged between 2.44 to 9.85 m3 per scheduled machine hour (including all
delays). At the forest level, the estimated average stump-to-forest road log production costs were US
$4.37 to 17.66/m3. Small-shovel productivity was significantly correlated with stem size (diameter at
breast height and tree volume) and total travelled distance (TTD). However, a Pearson’s correlation
analysis indicated that stand density and slope did not have a significant effect on productivity.
Our findings provide insights into how stem size and TTD influence small shovel performance and
the predictive ability of productivity. Further, this information may be a valuable asset to forest
planners and managers.

Keywords: shovel logging; follow-up study; cut-to-length extraction; productivity; cost;
scheduled machine hour

1. Introduction

Logging operations (a.k.a., primary transportation), in which logs are transported from stumps to
a designated roadside or central landing area using various extraction methods, are an important part
of the timber harvesting process, but they can be extremely expensive and more time-consuming in
practice than felling and processing [1–4]. Many studies have examined the performance of extraction
methods on sites with differing characteristics in order to establish the logistics of extraction activities,
such as ground-based extraction (skidding and forwarding) [5–8] and cable yarding [8–10]. It can
be concluded from these studies that logging practices should be economically determined while
maintaining a deep understanding of both the potential and limitations of the chosen method.

Forests 2019, 10, 585; doi:10.3390/f10070585 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0002-6332-2504
http://www.mdpi.com/1999-4907/10/7/585?type=check_update&version=1
http://dx.doi.org/10.3390/f10070585
http://www.mdpi.com/journal/forests


Forests 2019, 10, 585 2 of 14

Time-and-motion studies have been widely used to evaluate the performance of individual
logging equipment as well as entire harvesting systems [11,12]. This type of study has been essential
for predicting machine productivity and utilization rates in various scenarios under similar working
conditions [13,14]. However, this approach is limited in terms of data availability due to the relatively
short period of data collection and high costs of field work [14–16]. Additionally, a number of past
studies have assessed performance using the follow-up method, which utilizes historic output records,
such as productivity and costs. This can provide more accurate information on long-term performance
than time-and-motion studies [17–19].

In the Republic of Korea (a.k.a., South Korea), forest land covers an area of 6.3 million hectares
(64% of the total land area), and approximately 80% of all forested areas are on steep terrain with slopes
greater than 40% [20]. In 2017, the stand density was 154.1 m3/ha, with conifers being the dominant
species, namely the Korean red pine (Pinus densiflora), Japanese larch (Larix kaempferi [Lamb.] Carrière),
and pitch pine (Pinus rigida Mill). The volume of timber harvested has considerably increased in recent
years: from 1.3 million m3 in 2013 to 2.2 million m3 in 2017 [20].

Two harvesting methods are commonly used in South Korea: cut-to-length small-shovel production
(CTL-S) and tree-length cable-yarder production harvesting (TL-C). There are a number of past
studies that investigate the TL-C method to describe, understand, and improve upon the efficiency
of log production and associated operational decisions. Other studies focus on the productivity
and operation efficiency of individual machines [21,22], comparing extraction performances among
different cable-yarder technologies [23,24], and the effect of yarding direction (uphill vs. downhill) on
productivity and cost [10,25] in order to support operational decisions. However, the use of the TL-C
method for log hauling activities remains limited since this method requires not only a high skill level,
but also an inherently high level of investment [26]. Thus, cable yarding systems have rarely been
implemented on steep slopes and remote areas due to operation costs.

In South Korea, CTL-S is the preferred system, and it has replaced TL-C on steep slopes.
After felling and processing trees with a chainsaw, 2–4 m logs are extracted using a small shovel,
which is a small-sized hydraulic excavator (5.0 metric tons in weight with a 0.2 m3 bucket) with
a log grapple (i.e., a small shovel or wood grab; Figure 1). Generally, small-shovel (SS) extraction
activities use gravitational energy to transport logs from the stump to the roadside/landing area.
For example, on steep terrain, gravity can be useful in assisting with throwing, sliding, and rolling logs
downhill [3,27]. Thus, the small shovel-based logging method could be increasingly applied in Korea’s
harvesting operations, but the productivity level and costs associated with extracting 2–4 m logs using
SS activities remains unclear.
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maximum jaw opening and 0.1 m closed jar gap); the boom length of the excavator is 5.1 m (Photo create:
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Therefore, in this study, the overall objective was to determine the performance of SSs in various
types of forest. In particular, this study sought to: (1) determine the productivity (m3/SMH) and costs
(US $/m3) of extracting logs through the follow-up method, (2) establish the influential variables in
SS extraction productivity, and (3) develop regression models to predict SS productivity. Further,
the results of this study will lead to better-informed SS technology decisions and more efficient
production of timber products.

2. Materials and Methods

In collaboration with a group of logging companies and contractors under the Korea Wood
Products Association (KWPA), we conducted a follow-up study of SS extraction activity, which is
becoming the prevailing extraction technology. The study focused on the production of CTL clear-cut
harvest units (CHUs) in the Central Northeast region of South Korea (Gangwon-do, Gyeonggi-do,
Chungcheongbuk-do, and Gyeongsangbuk-do; Figure 2). The main characteristics of the CHUs are
presented in Table 1. The units are located on relatively steep terrain (ranging from 13 to 64%, with
an average slope of 49%); trees in these areas have a DBH (diameter at breast height) of up to 32 cm
(minimum DBH, 18 cm). On average, the units have 560 trees per hectare (TPH), and the range is from
241 to 1129 TPH. The data set covered the dominant forest stand types: conifer, deciduous, and mixed.
The total traveled distance (TTD; a.k.a., total driven distance) ranged from 36 to 72 m and average
road density was 108 m/ha (ranged from 32 to 188 m/ha). We defined TTD for small-shovel operations
as the distance the extractor travels, starting when the small shovel leaves the forest road or landing
area and ending when it returns to the landing (Figure 3). The study areas were selected to cover a
wide range of forest conditions; this was done to achieve an enhanced understanding of small shovel
extraction performance across South Korea.
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Table 1. Summary of information collected for each unit: post-harvesting stand characteristics, average
total travelled distance, and productivity.

Harvest
Unit No.

Stand
Type

Average
DBH a

(cm)

Average
Volume (m3)

Stand
Density

(Trees/ha)

Average
Slope

(%)

Average Total
Travelled

Distance (m)

Productivity
(m3/day)

tree−1 ha−1

1 Deciduous 22 0.26 112 435 64 58 50.9
2 Deciduous 22 0.26 119 466 60 60 58.4
3 Conifer 20 0.20 155 756 42 64 59.8
4 Conifer 22 0.24 271 1129 52 68 58.6
5 Conifer 24 0.34 148 436 42 44 44.1
6 Conifer 18 0.14 155 1,107 64 42 26.3
7 Conifer 24 0.30 188 627 32 69 75.5
8 Deciduous 32 0.56 157 278 64 55 52.7
9 Conifer 22 0.25 190 760 32 61 60.3
10 Deciduous 18 0.14 105 755 64 43 19.5
11 Mix 22 0.25 113 450 42 45 40.2
12 Mix 18 0.15 96 650 13 43 47.0
13 Mix 22 0.23 97 418 32 58 66.8
14 Mix 24 0.30 97 320 32 55 55.8
15 Deciduous 24 0.28 68 241 52 56 57.4
16 Deciduous 24 0.29 138 476 42 45 33.7
17 Deciduous 20 0.19 83 442 64 46 35.0
18 Deciduous 22 0.23 69 296 60 46 45.1
19 Conifer 18 0.16 118 716 42 53 26.1
20 Deciduous 24 0.28 72 255 42 42 37.7
21 Mix 18 0.18 161 909 40 45 42.4
22 Mix 32 0.60 169 282 64 72 78.8
23 Mix 32 0.56 162 287 60 65 71.8
24 Mix 20 0.19 121 626 52 36 33.8
25 Deciduous 18 0.16 134 819 64 61 50.9
26 Deciduous 24 0.27 124 459 52 39 43.3
27 Deciduous 18 0.15 62 408 52 41 22.8
28 Mix 24 0.27 154 580 64 44 43.4
29 Mix 22 0.22 77 344 22 45 48.9
30 Conifer 26 0.36 201 558 64 55 60.7

a DBH: Diameter at breast height.

CTL-S clear-cutting operations in each unit were performed using a semi-mechanized system
that employs a chainsaw for felling, delimbing, and bucking trees into 2–4 m logs, which are mostly
used as pulpwood. (An alternative to the use of the SS, especially on steep slopes, is manipulating all
logs at the stump, as described by Lee et al. [10,28].) The SS operation utilized the gravity extraction
technique, which involves throwing, rolling, and pushing logs, to move the logs to the roadside or
landing area. When SS travels up and down, the machine moves along the slope direction. For each
unit, timber harvesting had a similar target: (1) support sustainable forest management to ensure
future availability and (2) benefit domestic timber industries by increasing the self-sufficiency rate.

Three years of historical data, from the period of 2015 to 2017, were manually collected from
logging companies. The collected dataset includes a detailed description of harvest unit characteristics
and the net production rate (m3/day, based on an 8-hour work day) of log extraction by SS operation
(Table 1). SS extraction productivity was determined by two processes: (1) the sorting of 2–4m logs
when the SS commences travel into the felling site from the roadside/landing area and (2) the throwing
and pushing of logs while the SS returns to the roadside/landing area.
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In this study, the follow-up data collection method conducted did not involve a time-and-motion
measuring device. This study relied solely on historical data from extraction operations performed
by forest contractors. There was no information available on delay times, including mechanical,
operational, or personal delays. Therefore, scheduled machine hours (SMH) were used to evaluate the
productivity and cost of SS operations.

The costs for owning and operating SSs were calculated with the method developed by Miyata [29],
which is a commonly accepted machine rate calculation technique. In addition to costs associated with
machine ownership, operation, and labor, we included machine delays (mechanical, operational, and
personal) and warm-up costs. This is necessary because the productivity data, which is divided into
two categories: machine operation and idle time, is per SMH. The machine utilization rate, labor cost,
and fuel consumption rate were collected from the KWPA (Table 2). The overhead, profit allowance,
and transportation costs associated with SS were not obtained.

The SPSS package (IBM Co., New York, NY, USA, v. 22.0) was used for statistical analysis.
Pearson’s correlation test was conducted to clarify how the independent variables (DBH, slope, and
TTD) affect SS productivity. Based on the value of the correlation coefficients, a predictive equation of
productivity per SMH was developed using the ordinary least squares regression technique. Two-thirds
of the follow-up data were randomly selected for model development, while the remaining one-third
of the data was applied for validation of the proposed model. A two-sample t-test was used to compare
the predicted and observed values and to describe any statistical differences for model verification.
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Table 2. Cost components and estimated hourly cost to own and operate a small shovel.

Cost Component Small Shovel

Purchase price (US $) 54,000.00
Salvage value (%) 20
Economic life (year) 7
Scheduled machine hour per year 1400
Interests (%) 10
Insurance (%) 3
Taxes (%) 2
Fuel consumption rate (liter/hour) 9.0
Fuel cost (US $/liter) 1.20
Lubrication (% of fuel cost) 40
Repair and maintenance (% of depreciation) 90
Labor (US $/hour) 17.00
Fringe benefit (% of labor) 22
Fixed cost (US $/hour) 8.21
Operating cost (US $/hour) 14.52
Labor cost (US $/hour) 20.35
Total operation cost (US $/hour) 45.87

3. Results

The study was designed to test the efficacy of SS extraction from stumps to roadside through 30
different case studies. Overall, the SS was capable of a productivity rate of 2.44 to 9.85 m3/SMH at a
cost of US $4.37 to 17.66/m3 (Figure 4). There were large variations in productivity and cost evaluations
across the harvest units.
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Figure 4. Box and whisker plots of productivity between the current study and previous studies:
Kim and Park [30] and Lee et al. [31]; both studies evaluated the shovel logging productivity. The X
indicates mean value.

Productivity may increase or decrease with variation in stem size, such as DBH and tree/log
volume. Through Pearson’s correlation test, we found that DBH and tree volume had a considerable
impact on productivity (p < 0.001). Productivity and stem size, including DBH (r = 0.6168) and tree
volume (r = 0.6161), were directly related (Figures 5 and 6).
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Figure 6. Productivity, which was calculated using follow-up data from 30 study areas, and its
relationship with tree volume. Productivity had a moderate correlation with tree volume.

In most harvest units, a higher stand density is significantly associated with small stem size
(p < 0.001; DBH of r = −0.5830 and tree volume of r = −0.5322). However, stand density had a weak to
moderate negative correlation with SS productivity (r = −0.2214; Figure 7). As a result, SS productivity
was inversely correlated with stand density.
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Figure 7. Productivity, which was calculated using follow-up data from 30 study areas, and its
relationship with stand density. Productivity had no correlation with stand density.

This study implied that an increased TTD would be positively and significantly correlated with
SS productivity (p < 0.001; r = 0.8262; Figure 8). On the other hand, slope had no significant correlation
with productivity (r = −0.1060; Figure 9). Although our data is limited to divide into SS cycle elemental
time, we found that the time spent throwing and rolling logs may be considerably longer than the
travel time. Further, in terms of extraction activity, there was no common pattern across Korea for
selecting SS operations in steeply-sloped forests.
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The SS productivity regression equation was derived from the follow-up data to predict extraction
productivity (Table 3). The independent variables ranged from 0.14 to 0.56 m3 for tree volume and 36 to
69 m for TTD. This model was tested for assumptions of normality, independence, and equal variance
to confirm the validity of the analysis. The TTD was significant (p < 0.001) as a variable, but tree
volume was not a significant variable (p = 0.0581). A paired t-test was performed to validate the
equation against the observed data. The results indicated that the predicted value was not significantly
different from the observed value (p > 0.05). Thus, the obtained model may be quite accurate.

Table 3. Productivity regression model for small-shovel operations extracting 2–4 m logs. Productivity
is in m3/SMH (Scheduled Machine Hour). A paired t-test was used for model verification across
observed data.

Average Productivity Estimator SE t p-Value Model
adj. R2

Model
p-Value

t-Test
(p-Value)

= −2.1861 0.9966 −3.0810 0.0396 0.7517 <0.01 0.2935

+ 3.6873 × Average tree volume (m3) 1.8400 2.2827 0.0581

+ 0.1404 × Average total travelled
distance (m) 0.0205 6.9908 <0.01

The SS productivity model showed that productivity improved as tree volume and travelled
distance increased; the average tree volume ranged from 0.15 to 0.50 m3, and the mean TTD was
between 40 and 70 m (Figure 10). The data indicated that when the volume of trees extracted increased
from 0.15 m3 to 0.50 m3 (and the TTD ranged between 40 and 70 m), productivity increased by up to
30%. This result may be explained by the fact that efficiency improved with larger tree volumes and an
increased number of logs at the stump area.
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4. Discussion

Small-shovel logging method has become widespread and has had increasing use across South
Korea in steeply-sloped forests. With steep terrain extraction, the slope grade helps in hauling the
logs downhill with the support of gravity from the felling area [28,32]. We conducted a follow-up
study of the SS extraction method to evaluate the productivity and cost under various types of forests
and established the influential variables in extraction productivity. In addition, we developed a
regression model for the SS to estimate hourly productivity in SMH. The results show that the estimated
stump-to-forest road log productivity was between 2.44 and 9.85 m3/SMH at US $17.66 and 4.37,
respectively. The stem size and TTD statistically have an influence on the productivity of SS extraction
operation (p < 0.001), but the slope had no static correlation (r = −0.1060). Thus, the model showed
that productivity improved as tree volume and TTD increased. Further, we examined a sensitivity
analysis to evaluate the impact of the tree volume and TTD on the model. The result indicated that,
when the volume of trees extracted increased from 0.15 to 0.50 m3, with the TTD ranging between 40
and 70 m, productivity increased by up to 30%.

In our study, mean SS extraction productivity was 6.03 ± 1.90 m3/SMH, which is very similar
to the findings by Kim and Park [30] and Lee et al. [31], whose results were 5.21 and 6.57 m3/SMH,
respectively (Figure 4). These previous studies likely operated under similar conditions: an average
DBH of 22 to 26 cm, tree volume of 0.24 to 0.27 m3, and slope of 36 to 44%. Thus, the follow-up
evaluation is deemed reasonable and acceptable in terms of accurately determining the productivity of
the SS extraction process.

The productivity and costs of SSs varied when extracting 2–4 m logs in steep terrain due to a wide
range of forest types. Numerous studies have pointed out that differences in productivity and cost of
extraction activities were due to locally variable conditions, including the volume of extracted logs,
stem size, extraction distance, and working conditions [33–35]. Our data significantly showed that
stem size and TTD were important key factors in SS productivity prediction, while the slope was not
statistically correlated.

Shovel logging productivity is affected by the number of swings and road spacing [36].
Although our data was limited to determine the effect of number of swings and road spacing,
we tested how the DBH, slope, and TTD affect SS productivity using Pearson’s correlation. We found
that stem size had a statistical impact on productivity. Numerous studies have pointed out that
stem size has been a primary factor in extraction productivity [11,34,37,38], because a larger log size
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increases the piece volume, payload, and productivity. Therefore, DBH and tree volume may be two
of the main factors influencing SS productivity. Further, tree volume, instead of DBH, was selected
in the regression model because this variable was evaluated as more stable and applicable [17,39,40].
Both the Berendt et al. [41] and Han et al. [42] studies found that the most commonly used variable is
tree volume to estimate the productivity.

Another important variable that influences productivity was significantly related to extraction
distance since the load travel time accounted for over one quarter of the variation in cycle time [43,44].
Thus, extraction productivity increases with a decrease in extraction distance [45–47]. However,
our follow-up data provide only an average total travelled distance of SS across the harvest unit,
while the extraction distance was not collected. We found that productivity and TTD were strongly
correlated. These results are consistent with many published studies, such as Matthews et al., [48],
Kumazawa et al., [49], and Berg et al., [50]. These studies posited that the driving unloading speed
increases with an increase in driving distance. During extraction operation, operator’s stress on long
distances could lead to increase driving speed.

In addition, extraction productivity may be influenced by the number of logs [46,50]. This pattern
could be explained by the fact that productivity increases with a decrease in the number of load stops
and driven distances. The operation of SS in South Korea, unlike the excavator extraction method
(a.k.a., shovel logging), uses gravity. During the operation, the throwing and rolling activity, which is
done to transfer logs from the felling area down to the landing area, may be associated with a large
number of logs and long TTD. Thus, the productivity of SS may depend on the number of throwing
stops and TTDs.

Slope is shown to be a primary factor in productivity because it affects the accessibility of the
harvesting machine [18,43,46,51,52]. However, this was also observed in Berendt et al. [41], Ghaffariyan
et al. [53], and Walsh and Strandgard [54]. These studies found that the slope did not significantly
impact loaded travel time during extraction activities. This study showed that slope had no statistically
significant influence on SS productivity, since the time spent throwing and rolling logs may be
considerably longer than the travel time. Further, in terms of extraction activity, there was no common
pattern across Korea for selecting SS operations in steeply-sloped forests.

5. Conclusions

In conclusion, this study’s findings showed that SS efficiency in extracting 2–4 m logs from stumps
to roadside/landing areas varied across harvest units in mountain forests. The mean productivity was
6.03 ± 1.90 m3/SMH, with a minimum of 2.44 m3/SMH and maximum of 9.85 m3/SMH. According to
the cost deduction, the corresponding extraction costs were estimated to be from US $4.37 to 17.66/m3.
Productivity was significantly impacted by DBH, tree volume, and TTD, whereas stand density and
slope were observed to be non-significant.

Assessing the productivity of forest operations is a challenging task due to rough and unstructured
environmental conditions. In this study, an SS productivity prediction model was derived using
follow-up data taken from 30 forest sites across South Korea. Two-thirds of the total dataset were used
to build the model, while the remaining one-third of the data was used for validation. This model
is expected to be used by harvest planners, forest managers, and decision makers to improve SS
management and extraction operations. However, these results were limited to applications across
South Korea. Further study is needed using a broader and more updated range of data with a
tree volume greater than 0.6 m3 to develop an applicable prediction model that can be used in
other countries.
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