The Role of Streamside Native Forests on Dissolved Organic Matter in Forested and Agricultural Watersheds in Northwestern Patagonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial Analysis
2.3. Data Collection and Laboraroty Analysis
2.4. Data Analysis
3. Results
3.1. Dissolved Organic Matter (DOM) Quantity and Quality
3.2. Relating Dissolved Organic Matter (DOM) Quantity and Quality and Streamside Native Forests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flitcroft, R.; Little, C.; Cabrera, J.; Arismendi, I. Planning Ecologically. The Importance of Management at Catchment Scales. In Freshwater Ecosystems in Protected Areas Conservation and Management, 1st ed.; Max Finlayson, C., Arthington, A.H., Pittock, J., Eds.; Routledge: London, UK, 2018; p. 14. [Google Scholar]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 2016, 71–82. [Google Scholar] [CrossRef]
- Lara, A.; Zamorano, C.A.M.; González, M.; Reyes, R. Capítulo 3: Bosques Nativos 1999–2015. In Informe País. Estado del Medioambiente en Chile. Comparación 1999–2015; Gigló, N., Ed.; Centro de Análisis de Políticas Públicas, Universidad de Chile: Santiago, Chile, 2016; pp. 167–219. [Google Scholar]
- Little, C.; Benítez, S.; Rivera, A.; Zambrano-Bigiarini, M. Capítulo 2: Aguas Continentales 1999–2015. In Informe País, Estado del Medio Ambiente en Chile. Comparación 1999–2015; Gigló, N., Ed.; Centro de Análisis de Políticas Públicas, Instituto de Asuntos Públicos, Universidad de Chile: Santiago, Chile, 2016; pp. 115–165. [Google Scholar]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Cuevas, J.G.; Soto, D.; Arismendi, I.; Pino, M.; Lara, A.; Oyarzún, C. Relating land cover to stream properties in southern Chilean watersheds: Trade-off between geographic scale, sample size, and explicative power. Biogeochemistry 2006, 81, 313–329. [Google Scholar] [CrossRef]
- Lara, A.; Little, C.; Urrutia, R.; McPhee, J.; Álvarez-Garretón, C.; Oyarzún, C.; Soto, D.; Donoso, P.; Nahuelhual, L.; Pino, M.; et al. Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For. Ecol. Manag. 2009, 258, 415–424. [Google Scholar] [CrossRef]
- Little, C.; Lara, A.; McPhee, J.; Urrutia, R. Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. J. Hydrol. 2009, 374, 162–170. [Google Scholar] [CrossRef]
- Cuevas, J.G.; Huertas, J.; Leiva, C.; Paulino, L.; Dörner, J.; Arumí, J.L. Nutrient retention in a microcatchment with low levels of anthropogenic pollution. Bosque (Valdivia) 2014, 35, 75–88. [Google Scholar] [CrossRef]
- Little, C.; Lara, A. Servicios Ecosistémicos de los Bosques Nativos del Centro sur de Chile. In Ecología Forestal. Bases Para el Manejo Sustentable y Conservación de los Bosques Nativos de Chile, 1st ed.; Donoso, C., González, M., Lara, A., Eds.; Ediciones Universidad Austral de Chile: Valdivia, Chile, 2014. [Google Scholar]
- Little, C.; Cuevas, J.G.; Lara, A.; Pino, M.; Schoenholtz, S. Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. Ecohydrology 2015, 8, 1205–1217. [Google Scholar] [CrossRef]
- Bishop, K. Identification of the riparian sources of aquatic dissolved organic carbon. Environ. Int. 1994, 20, 11–19. [Google Scholar] [CrossRef]
- Kaplan, L.A.; Cory, R.M. Chapter 6: Dissolved Organic Matter in Stream Ecosystems: Forms, Functions, and Fluxes of Watershed Tea. In Stream Ecosystems in a Changing Environment; Jones, J.B., Stanley, E.H., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 241–320. [Google Scholar]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Guevara, G.; Godoy, R.; Franco, M. Linking riparian forest harvest to benthic macroinvertebrate communities in Andean headwater streams in southern Chile. Limnologica 2018, 68, 105–114. [Google Scholar] [CrossRef]
- Singh, S.; Inamdar, S.; Scott, D. Comparison of Two PARAFAC Models of Dissolved Organic Matter Fluorescence for a Mid-Atlantic Forested Watershed in the USA. J. Ecosyst. 2013, 2013. [Google Scholar] [CrossRef]
- Jaffe, R. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Hudson, N. Fluorescence analysis of dissolved organic matter in natural waste and polluted waters-a review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- McKnight, D.M. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Findlay, S.E.G.; Sinsabaugh, R.L. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter; Academic Press: Cambridge, MA, USA 2003. [Google Scholar]
- Thurman, E.M. Organic Geochemistry of Natural Waters, 1st ed.; Springer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Yamashita, Y.; Kloeppel, B.D.; Knoepp, J.; Zausen, G.L.; Jaffé, R. Effects of Watershed History on Dissolved Organic Matter Characteristics in Headwater Streams. Ecosystems 2011, 14, 1110–1122. [Google Scholar] [CrossRef]
- Raymond, A. Anthropogenically enhanced fluxes of water and carbon from the Mississipi river. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.A.; Cole, J.J. Increase in the Export of Alkalinity from North America’s Largest River. Science 2003, 301, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Cumberland, S.; Hudson, N. Dissolved and total organic and inorganic carbon in some British rivers. Area 2008, 40, 117–127. [Google Scholar] [CrossRef]
- Graeber, D.; Gelbrecht, J.; Pusch, M.T.; Anlanger, C.; von Schiller, D. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci. Total Environ. 2012, 438, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.O.; Lajtha, K.; Jones, J.A.; White, A.E. Fluorescent DOC characteristics are related to streamflow and pasture cover in streams of a mixed landscape. Biogeochemistry 2018, 140, 317–340. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Cheng, J.; Zheng, R.; Wang, K.; Dai, Y.; Tong, N.; Chow, A.T. Impacts of land-use on surface waters at the watershed scale in southeastern China: Insight from fluorescence excitation-emission matrix and PARAFAC. Sci. Total Environ. 2018, 627, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Graeber, D.; Boëchat, I.; Encina, F.; Esse, C.; Gelbrecht, J.; Goyenola, G.; Gücker, B.; Heinz, M.; Kronvang, B.; Meerhoff, M.; et al. Global effects of agriculture on fluvial dissolved organic matter. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Lee, B.S.; Lajtha, K. Hydrologic and forest management controls on dissolved organic matter characteristics in headwater streams of old-growth forests in the Oregon Cascades. For. Ecol. Manag. 2016, 380, 11–22. [Google Scholar] [CrossRef] [Green Version]
- García, R.D.; Reissig, M.; Queimaliños, C.P.; Garcia, P.E.; Dieguez, M.C. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Sci. Total Environ. 2015, 521, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Ebersbach, P.; von Tuempling, W.; Palma, R.; Encina, F.; Figueroa, D.; Kamjunke, N.; et al. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams. Sci. Total Environ. 2015, 537, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Little, C.; Lobos, D.; Lara, A.; Pino, M.; Acuña, A. Nutrient and sediment losses to streams after intervention of Eucalyptus plantations. J. Soil Sci. Plant Nutr. 2018, 18, 576–596. [Google Scholar] [CrossRef]
- Kottek, M. World Map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Conaf, C.N.F. Sistema de Informacion Territorial. Superficies Catastros Usos de Suelos y Recursos Vegetacionales; Universidad Austral de Chile: Valdivia, Chile, 2014. [Google Scholar]
- Lara, A.; Sandoval, V. Generación de Cartografía y Evaluación de Recursos Vegetacionales. In Planificación de Áreas Silvestres Protegidas. Un Manual Para la Planificación de Áreas Protegidas en Chile con Especial Referencia a Áreas Protegidas Privadas; Oltremari, J., Telen, K., Eds.; CONAMA—FAO: Santiago, Chile, 2003; pp. 48–73. [Google Scholar]
- DigitalGlobe Location Iñaque Basin River, Máfil, Los Ríos, Chile. Available online: https://goo.gl/maps/74333g39KZNnMUjy5 (accessed on 1 December 2018).
- Lillesand, T.M.; Kiefer, R.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- QGIS. Geographic Information System. 2015. Available online: http://qgis.osgeo.org (accessed on 1 August 2015).
- Fellman, J.B.; D’Amore, D.; Hood, E.; Boone, R.D. Fluorescence Characteristics and Biodegradability of Dissolved Organic Matter in Forest and Wetland Soils from Coastal Temperate Watersheds in Southeast Alaska. Biogeochemistry 2008, 88, 169–184. [Google Scholar] [CrossRef]
- Stedmon, C.A. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R.R. Openfluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 2014, 6, 658–661. [Google Scholar] [CrossRef]
- Aiken, G. Fluorescence and Dissolved Organic Matter: A Chemist’s Perspective. In Aquatic Organic Matter Fluorescence; Coble, P.G., Lead, J., Baker, A., Reynolds, D.M., Spencer, R.G.M., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 35–74. [Google Scholar]
- MATLAB and Statistics Toolbox. The MathWorks. Available online: https://www.mathworks.com/ (accessed on 1 August 2015).
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr. 2005, 50, 1415–1426. [Google Scholar] [CrossRef]
- Weishaar, J.L. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 34, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Parlanti, E. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: ’ggplot2’ Based Publication Ready Plots. R Package. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 1 December 2018).
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 751. [Google Scholar]
- Pohlert, T. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R Package. Available online: http://CRAN.R-project.org/package=PMCMR (accessed on 1 December 2018).
- Wei, T. corrplot: Visualization of a Correlation Matrix. R Package. Available online: https://cran.r-project.org/web/packages/corrplot/index.html (accessed on 1 December 2018).
- Computing, T. R. P. f. S. Available online: https://www.r-project.org/ (accessed on 1 December 2018).
- R, R. I. D. f. Available online: http://www.rstudio.com/ (accessed on 1 December 2018).
- Wickham, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R Package. Available online: https://ggplot2.tidyverse.org (accessed on 1 December 2018).
- Kominoski, J.S.; Rosemond, A.D. Conservation from the bottom up: Forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshw. Sci. 2012, 31, 51–68. [Google Scholar] [CrossRef]
- Rosemond, A.D.; Benstead, J.P.; Bumpers, P.M.; Gulis, V.; Kominoski, J.S.; Manning, D.W.P.; Suberkropp, K.; Wallace, J.B. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 2015, 347, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Lajtha, K.; Jones, J.A. Forest harvest legacies control dissolved organic carbon export in small watersheds, western Oregon. Biogeochemistry 2018, 140, 299–315. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 1990, 348, 432–435. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2008, 2, 37–41. [Google Scholar] [CrossRef]
- Romero, F.I.; Cozano, M.A.; Gangas, R.A.; Naulin, P.I. Zonas ribereñas: Protección, restauración y contexto legal en Chile. Bosque (Valdivia) 2014, 35, 3–12. [Google Scholar] [CrossRef]
- Cory, R.M.; Boyer, E.W.; McKnight, D.M. Spectral Methods to Advance Understanding of Dissolved Organic Carbon Dynamics in Forested Catchments. In Forest Hydrology and Biogeochemistry. Ecological Studies (Analysis and Synthesis); Levia, D.C.-M.D., Tanaka, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 216. [Google Scholar]
Watersheds | Sampled Sites | Drainage Area (ha) | Elevation Range (m a.s.l.) | Number of Locations Sampled for DOM Quantity | Number of Locations Sampled for DOM Quality | Description of Land Cover in Entire Watershed | Description of Land Cover in 30 and 60-m Wide Buffer Strips |
---|---|---|---|---|---|---|---|
WNF | A | 144 | 270–384 | 5 | 20 | Old-growth forest/Mixed broadleaved evergreen (Laureliopsis philippiana) | Second-growth forest/Mixed broadleaved evergreen (Laureliopsis philippiana, Chusquea quila and Aristotelia chilensis) |
B | 29.6 | 246–367 | 5 | 20 | Second-growth forest/Mixed broadleaved evergreen. (Laureliopsis philippiana and Nothofagus obliqua) | ||
C | 26.1 | 233–246 | 2 | 8 | |||
D | 17.3 | 228–232 | 2 | 8 | |||
WFP | A | 42.8 | 98–153 | 3 | 12 | Industrial plantation of Eucalyptus nitens and Eucalyptus globulus (14 years) | Second-growth forest/Deciduous (Nothofagus obliqua) |
B | 66.6 | 82–172 | 3 | 12 | Industrial plantation of Eucalyptus globulus (14 years) and Plantation of Pinus radiata (3 years after clear-cutting). | Second-growth forest/Mixed broadleaved evergreen (Laureliopsis philippiana, Chusquea quila and Aristotelia chilensis) | |
C | 15.4 | 97–180 | 4 | 16 | Industrial plantation of Pinus radiata (3 years after clear-cutting). | ||
D | 79.1 | 96–139 | 4 | 16 | Industrial plantation of Pinus radiata (14 years) | ||
WAL | A | 145 | 246–274 | 3 | 12 | Grasslands of Holcus lanatus | Second-growth forest/Deciduous (Nothofagus obliqua, Chusquea quila) |
B | 108 | 169–245 | 4 | 16 | |||
C | 21 | 201–284 | 3 | 12 | |||
D | 219.5 | 279–295 | 4 | 16 | Grasslands of Holcus lanatus and presence grazing animals | ||
TOTAL | 12 | 42 | 168 |
Components | Excitation Max (nm) | Emission Max (nm) | Name Component | Sources |
---|---|---|---|---|
Component 1 (C1) | 240 | 418.5 | Similar to humic-like | Terrestrial material |
Component 2 (C2) | 240 | 486.5 | Similar to fulvic-like | Terrestrial material |
Component 3 (C3) | 280 | 32.6 | Similar to tryptophan-like | Proteins or less degraded peptide material |
Component 4 (C4) | 240 | 338 | Similar to protein-like | Autochthonous or microbially altered terrestrial |
Title | WNF | WFP | WAL |
---|---|---|---|
DIC (mg C L−1) | 0.16 ± 0.09A | 0.52 ± 0.27B | 1.07 ± 0.5C |
DOC (mg C L−1) | 0.16 ± 0.06 | 0.17 ± 0.09 | 0.15 ± 0.04 |
FI | 1.45 ± 0.8 | 1.82 ± 1.29 | 1.45 ± 0.41 |
HIX | 8.9 ± 10.1A | 3.07 ± 2.78B | 3.94 ± 1.72A |
β: α | 0.35 ± 0.21A | 0.51 ± 0.17B | 0.41 ± 0.21AB |
SUVA254 (L mg−1 m−1) | 4.48 ± 2.51 | 3.99 ± 2.29 | 6.01 ± 8.45 |
C1 (R.U./mg C L−1) | 0.34 ± 0.13A | 0.42 ± 0.18A | 0.61 ± 0.19B |
C2 (R.U./mg C L−1) | 0.28 ± 0.12A | 0.35 ± 0.17AB | 0.38 ± 0.11B |
C3 (R.U./mg C l−1) | 0.08 ± 0.09A | 0.19 ± 0.13B | 0.22 ± 0.19B |
C4 (R.U./mg C l−1) | 0.20 ± 0.22A | 0.42 ± 0.30B | 0.30 ± 0.29B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Rodas, C.; Little, C.; Lara, A.; Sandoval, J.; Osorio, S.; Nimptsch, J. The Role of Streamside Native Forests on Dissolved Organic Matter in Forested and Agricultural Watersheds in Northwestern Patagonia. Forests 2019, 10, 595. https://doi.org/10.3390/f10070595
Becerra-Rodas C, Little C, Lara A, Sandoval J, Osorio S, Nimptsch J. The Role of Streamside Native Forests on Dissolved Organic Matter in Forested and Agricultural Watersheds in Northwestern Patagonia. Forests. 2019; 10(7):595. https://doi.org/10.3390/f10070595
Chicago/Turabian StyleBecerra-Rodas, Constanza, Christian Little, Antonio Lara, Jorge Sandoval, Sebastián Osorio, and Jorge Nimptsch. 2019. "The Role of Streamside Native Forests on Dissolved Organic Matter in Forested and Agricultural Watersheds in Northwestern Patagonia" Forests 10, no. 7: 595. https://doi.org/10.3390/f10070595
APA StyleBecerra-Rodas, C., Little, C., Lara, A., Sandoval, J., Osorio, S., & Nimptsch, J. (2019). The Role of Streamside Native Forests on Dissolved Organic Matter in Forested and Agricultural Watersheds in Northwestern Patagonia. Forests, 10(7), 595. https://doi.org/10.3390/f10070595