Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests
Abstract
:1. Introduction
2. Study Area and Method
2.1. Study Area
2.2. The InTEC Model
2.3. Model Parameters and Input Data
2.3.1. Parameters of the InTEC Model
2.3.2. Forest Distribution Data of Zhejiang Province
2.3.3. Meteorological Data
2.3.4. Soil Data
2.3.5. Leaf Area Index (LAI) Data
2.3.6. Forest Age Data
2.3.7. Nitrogen Deposition Data
2.3.8. Reference NPP
2.4. NPP–Age Parameter Optimization
2.5. Site Verification and Carbon Cycle Simulation
3. Results
3.1. NPP–Age Relationship
3.2. InTEC Model Optimization
3.3. Simulation Results of the Forest Ecosystem NEP of Zhejiang Province
3.4. Relationship between Forest Ecosystem NEP Values and Meteorological Factors in Zhejiang Province
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.V.; Moore, B.; Vörösmarty, C.J. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 1998, 396, 664–667. [Google Scholar] [CrossRef]
- Ito, A. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric. For. Meteorol. 2008, 148, 738–747. [Google Scholar] [CrossRef]
- Piao, S.; Tan, K.; Nan, H.; Ciais, P.; Fang, J.; Wang, T.; Zhu, B. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob. Planet. Chang. 2012, 98–99, 73–80. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, T.; Zhao, X.; Wu, D.; Li, Z.; Wu, H.; Luo, H. Age and climate contribution to observed forest carbon sinks in East Asia. Environ. Res. Lett. 2016, 11, 034021. [Google Scholar] [CrossRef]
- Liu, W.G. Study on Net Primary Productivity and Carbon Temporal and Spatial Variation of Terrestrial Ecosystems in Xinjiang; Xinjiang University: Wulumuqi, China, 2007. [Google Scholar]
- Tao, B.; Cao, M.; Li, K.; Gu, F.; Ji, J.; Huang, M.; Zhang, L. Spatial patterns of terrestrial net ecosystem productivity in China during 1981–2000. Sci. China 2007, 50, 745–753. [Google Scholar] [CrossRef]
- Li, J. Temporal and spatial dynamics of net ecosystem productivity in Northeast China in the past 50 years. Acta Ecol. Sin. 2014, 34, 1490–1502. [Google Scholar]
- Pan, J.H.; Huang, K.J.; Li, Z. Temporal and spatial variation of net primary productivity of vegetation in the Shule River Basin from 2001 to 2010 and its relationship with climatic factors. Acta Ecol. Sin. 2017, 37, 1888–1899. [Google Scholar]
- Lu, X.L.; Zhuang, Q.L. Evaluating climate impacts on carbon balance of the terrestrial ecosystems in the Midwest of the United States with a process-based ecosystem model. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 467–487. [Google Scholar] [CrossRef]
- Xu, S. A Summary of Methods for Estimating Forest Carbon Storage. For. Inventory Plan. 2014, 39, 28–33. [Google Scholar]
- Wang, X.; Sun, Y. Estimation Methods and Research Progress of Carbon Storage in Forest Ecosystem. World For. Res. 2008, 21, 24–29. [Google Scholar]
- Zhang, Z.; Tian, X.; Chen, E.; He, Q. A Summary of Researches on Forest Ground Biomass Estimation Methods. J. Beijing For. Univ. 2011, 33, 144–150. [Google Scholar]
- Cao, J.; Tian, Y.; Wang, X.; Sun, X. Estimation methods and development trends of forest carbon sinks. Ecol. Environ. 2009, 18, 401–405. [Google Scholar]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. Atmos. 1994, 99, 5263–5284. [Google Scholar] [CrossRef]
- Losch, M.; Schröter, J.; Wenzel, M. Testing a marine ecosystem model: Sensitivity analysis and parameter optimization. J. Mar. Syst. 2001, 28, 45–63. [Google Scholar]
- Fang, J.Y. Global Ecology Climate Change and Ecological Response; Higher education Press: Beijing, China, 2000. [Google Scholar]
- Cao, M.K.; Yu, G.R. Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle. Sci. China Ser. D Earth Sci. 2005, 48, 17–32. [Google Scholar]
- Zhao, G.S.; Wang, J.B.; Fan, W.Y. Simulation and seasonal variation of net primary productivity of vegetation in Northeast China from 2000 to 2008. Chin. J. Appl. Ecol. 2011, 22, 621–630. [Google Scholar]
- Wang, X.K.; Feng, Z.W. The potential of plants to fix atmospheric carbon in Chinese forest ecosystems. Chin. J. Ecol. 2000, 19, 72–74. [Google Scholar]
- Li, Y. Carbon storage and distribution characteristics of forest ecosystems in Zhejiang Province. Chin. J. Plant Ecol. 2016, 40, 354–363. [Google Scholar]
- Yu, Y. Temporal and Spatial Distribution of Carbon Source/Sink in Northeast China Forest Based on InTEC Model; Northeast Forestry University: Haerbin, China, 2013. [Google Scholar]
- Farquhar, G.D.; Von, C.S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kamnalrut, A. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef] [Green Version]
- Townsend, A.R.; Braswell, B.H.; Holland, E.A.; Penner, J.E. Spatial and Temporal Patterns in Terrestrial Carbon Storage Due to Deposition of Fossil Fuel Nitrogen. Ecol. Appl. 1996, 6, 806–814. [Google Scholar] [CrossRef]
- Chen, W.J.; Chen, J.M.; Cihlar, J. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecol. Model. 2000, 135, 55–79. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Liu, J.; Cihlar, J. Annual carbon balance of Canada’s forests during 1895–1996. Glob. Biogeochem. Cycles 2000, 14, 839–849. [Google Scholar] [CrossRef]
- Shao, Y.; Pan, J.; Yang, L.; Chen, J.M.; Ju, W.M.; Shi, X. Tests of soil organic carbon density modeled by InTEC in China’s forest ecosystems. J. Environ. Manag. 2007, 85, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Shaoqiang, W.; Weimin, J.; Zhe, X.; Kindermann, G.; Jingming, C.; Hao, S. Assessment of Carbon Dynamics of Forest Ecosystems in the Poyang Lake Basin Responding to Afforestation and Future Climate Change. J. Resour. Ecol. 2013, 4, 11–19. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M. Reconstruction of interannual variability of NEP using a process-based model (InTEC) with climate and atmospheric records at Fluxnet-Canada forest sites. Int. J. Climatol. 2014, 34, 1715–1722. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.M.; Pan, Y.; Birdsey, R.A.; Shen, S.; Ju, W.; He, L. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. J. Geophys. Res. Bio Geosci. 2015, 117, 109–119. [Google Scholar]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. China Basic Sci. 2010, 458, 1009–1013. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Zhou, G.; Zhang, D. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Glob. Chang. Biol. 2010, 12, 810–821. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yu, G.R.; Ren, X.B.; Liu, G.H.; Zhao, X.Q. Carbon Sequestration Effect of China’s Terrestrial Ecosystem: Advances in the Ecosystem Carbon Sequestration Task Force of the Strategic Pilot Science and Technology Special Project of the Chinese Academy of Sciences on Carbon Accident Certification and Related Issues in Addressing Climate Change. Bull. Chin. Acad. Sci. 2015, 848–857. [Google Scholar]
- Chen, W.J.; Jing, C.; Liu, J.; Cihlar, J. Approaches for reducing uncertainties in regional forest carbon balance. Glob. Biogeochem. Cycles 2000, 14, 827–838. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Baldocchi, D.; Black, T.A.; Goldstein, A.H.; Scott, R.L. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 2012, 5, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Ju, W.; Chen, J.M. Distribution of soil carbon stocks in Canada’s forests and wetland simulated based on drainage class, topography and remote sensing. Hydrol. Process. 2010, 199, 77–94. [Google Scholar]
- Parton, W.J.; Stewart, J.W.B.; Cole, C.V. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 1988, 5, 109–131. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.; Cihlar, J.; Price, D.; Liu, J.; Chen, W.; Barr, A. Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 622–641. [Google Scholar]
- Huang, L.; Shao, Q.Q.; Liu, J.Y. Forest carbon accumulation process and spatial and temporal patterns of carbon sources/sinks in Jiangxi Province. Acta Ecol. Sin. 2012, 32, 3010–3020. [Google Scholar] [CrossRef]
- Li, Y.; Han, N.; Li, X.; Du, H.; Xing, L. Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef]
- Shang, Z.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Lü, Y.; Gu, C. Moso bamboo forest extraction and aboveground carbon storage estimation based on multi-source remotely sensed images. Int. J. Remote Sens. 2013, 34, 5351–5368. [Google Scholar] [CrossRef]
- National Meteorological Center of China Meteorological Administration of Site. Available online: http://data.cma.gov.cn (accessed on 1 May 2018).
- Guber, A.K.; Pachepsky, Y.A.; Van Genuchten, M.T.; Rawls, W.J.; Simunek, J.; Jacques, D.; Cady, R.E. Field-Scale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water Retention. Vadose Zone J. 2006, 2006, 234–247. [Google Scholar] [CrossRef]
- Koren, V.; Smith, M.; Duan, Q. Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. Calibration Watershed Models 2003, 239, 103–106. [Google Scholar]
- Fang, H.; Wei, S.; Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Xijia, L.I.; Xiao, Z.; Wang, J.; Ying, Q.U.; Jin, H. Dual Ensemble Kalman Filter assimilation method for estimating time series LAI. J. Remote Sens. 2014, 18, 27–44. [Google Scholar]
- Chen, J.M.; Deng, F.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Li, X.J. Carbon Flux Simulation of Bamboo Forest Ecosystem Based on Double Set Kalman Filter LAI Assimilation Combined with BEPS Model. Chin. J. Appl. Ecol. 2016, 27, 3797–3806. [Google Scholar]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xu, X.; Han, N.; Chen, L. Assimilating leaf area index of three typical types of subtropical forest in China from MODIS time series data based on the integrated ensemble Kalman filter and PROSAIL model. J. Photogramm. Remote Sens. 2017, 126, 68–78. [Google Scholar] [CrossRef]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Ad, J.; Veefkind, P.; Dentener, F.; Swen, M.; Cristina, G. Simulation of the Aerosol Optical Depth over Europe for August 1997 and a Comparison with Measurements. J. Geophys. Res. Atmos. 2002, 106, 28295–28311. [Google Scholar]
- Mao, F.; Du, H.; Zhou, G.; Li, X.; Xu, X.; Li, P.; Sun, S. Coupled LAI assimilation and BEPS model for analyzing the spatiotemporal pattern and heterogeneity of carbon fluxes of the bamboo forest in Zhejiang Province, China. Agric. For. Meteorol. 2017, 242, 96–108. [Google Scholar] [CrossRef]
- Chen, W.J.; Chen, J.M.; Price, D.T.; Cihlar, J. Effects of stand age on net primary productivity of boreal black spruc. Rev. Can. Rech. For. 2002, 32, 833–842. [Google Scholar] [CrossRef]
- Niu, X.D. Carbon and Water Flux and Water Vapor Stable Isotope Observations in the Old Forest Ecosystem of Tianmu Mountain; Zhejiang A&F University: Hangzhou, China, 2015. [Google Scholar]
- Fang, C.Y. Study on Energy and CO2 Flux of Evergreen and Deciduous Broad-Leaved Mixed Forest in Tianmu Mountain; Zhejiang A&F University: Hangzhou, China, 2016. [Google Scholar]
- Niu, X.D. Characteristics of CO2 Flux in Old Forest Ecosystem of Tianmu Mountain in Zhejiang Province. Chin. J. Appl. Ecol. 2016, 27, 1–8. [Google Scholar]
- Liu, Y.L. Analysis of Dynamics and Driving Forces of Carbon Budget in Two Typical Bamboo Forest Ecosystems; Zhejiang A&F University: Hangzhou, China, 2018. [Google Scholar]
- Du, H.; Zhou, G.; Fan, W.; Ge, H.; Xu, X.; Shi, Y.; Fan, W. Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory. Plant Ecol. 2010, 207, 131–139. [Google Scholar] [CrossRef]
- Province, D.F.Z. Zhejiang Forestry Natural Resources—Forest Volume; China Agricultural Science and Technology Press: Beijing, China, 2002. [Google Scholar]
- Yang, J.B.; Wang, L. Evaluation method of ecological benefit of returning farmland to forest. China Land Sci. 2003, 17, 54–58. [Google Scholar]
- Li, D.Q. Simulation Characteristics of Carbon Budget of Subtropical Forests and Its Genesis Simulation: A Case Study of Jiangxi Province; Nanjing University: Nanjing, China, 2014. [Google Scholar]
- Wen, X.F.; Wang, H.M.; Wang, J.L.; Yu, G.R. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences 2010, 7, 357–369. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Yu, Z.L. Carbon storage and carbon balance of major forest ecosystems in China. Chin. J. Plant Ecol. 2000, 24, 518–522. [Google Scholar]
- Zhang, F.; Du, Q.; Ge, H.L.; Liu, A.X.; Fu, W.J.; Ji, B.Y. Spatial distribution of forest carbon in Zhejiang Province based on geostatistics and CFI plots. Acta Ecol. Sin. 2012, 32, 5275–5286. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycles 2012, 26, 3. [Google Scholar] [CrossRef]
- Kljun, N.; Black, T.A.; Griffis, T.J.; Barr, A.G.; Gaumont-Guay, D.; Morgenstern, K.; Nesic, Z. Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought. Ecosystems 2007, 10, 1039–1055. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.F.; Barr, A.G.; Black, T.A.; Gaumont-Guay, D.; Iwashita, H.; Kidson, J.; Saigusa, N. Net ecosystem productivity of boreal jack pine stands regenerating from clearcutting under current and future climates. Glob. Chang. Biol. 2010, 13, 1423–1440. [Google Scholar] [CrossRef]
- Li, D.Q.; Zhou, Y.; Wang, H. Simulation Analysis of the Influence of Solar Radiation Variation on the Total Primary Productivity of Subtropical Artificial Evergreen Coniferous Forest. Chin. J. Plant Ecol. 2014, 38, 219–230. [Google Scholar]
- Zhang, L.; Xiao, J.; Li, J.; Wang, K.; Lei, L.; Guo, H. The 2010 spring drought reduced primary productivity in southwestern China. Environ. Res. Lett. 2012, 7, 045706. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Liu, D. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Cui, R.; Gu, C. Spatiotemporal heterogeneity of Moso bamboo aboveground carbon storage with Landsat Thematic Mapper images: A case study from Anji County, China. Int. J. Remote Sens. 2013, 34, 4917–4932. [Google Scholar] [CrossRef]
Pool | ID | Description | Broadleaf | Coniferous | Unit |
---|---|---|---|---|---|
Biomass Carbon pool | fw | NPP allocation coefficient to wood | 0.4626 | 0.3010 | None |
fcr | NPP allocation coefficient to coarse root | 0.1190 | 0.1483 | None | |
fl | NPP allocation coefficient to leaf | 0.2226 | 0.2128 | None | |
ffr | NPP allocation coefficient to fine root | 0.1960 | 0.3479 | None | |
Kw | Wood turnover rate | 0.0288 | 0.0279 | yr−1 | |
Kcr | Coarse root turnover rate | 0.0448 | 0.0269 | yr−1 | |
Kl | Leaf turnover rate | 1.0000 | 0.1925 | yr−1 | |
Kfr | Fine root turnover rate | 0.5948 | 0.5948 | yr−1 | |
SLA | Specific leaf area | 31.5 | 70.0 | m2kg2 | |
Soil Carbon pool | Kssl | Surface structural leaf litter decomposition rate | 3.9·Lc *·A * | yr−1 | |
Ksml | Surface metabolic leaf litter decomposition rate | 14.8·A * | yr−1 | ||
Krsl | Soil structural litter decomposition rate | 4.8·Lc *·A * | yr−1 | ||
Kfml | Soil metabolic litter decomposition rate | 18.5·A * | yr−1 | ||
Kw | Woody litter decomposition rate | 2.88·Lc *·A * | yr−1 | ||
Ksm | Surface microbe decomposition rate | 6.0·A * | yr−1 | ||
Km | Soil microbe decomposition rate | 7.3·A *·Tm * | yr−1 | ||
Ks | Slow C decomposition rate | 0.2·A *·Cr * | yr−1 | ||
Kp | Passive C decomposition rate | 0.0045·A *·Cr * | yr−1 |
Site | Country | Latitude | Longitude | Forest Type |
---|---|---|---|---|
Anji | China | 30.46 | 119.66 | Bamboo |
Tianmushan | China | 30.35 | 119.43 | Evergreen broadleaf |
Qianyanzhou | China | 26.74 | 115.06 | Artificial coniferous |
Data Type | Index | Time | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|
Forest distribution data | Three forest distribution data | 1984–2014 | Every four years | 1 km |
Meteorological data | Tmax | 1985–2015 | Monthly | 1 km |
Tmin | 1985–2015 | Monthly | 1 km | |
Precipitation | 1985–2015 | Monthly | 1 km | |
Relative humidity | 1985–2015 | Monthly | 1 km | |
Radiation | 1985–2015 | Monthly | 1 km | |
Soil data | Silt and clay fraction | 1 km | ||
Soil depth | 1 km | |||
Soil water holding capacity | 1 km | |||
Wilt point | 1 km | |||
Soil bulk | 1 km | |||
LAI | Leaf area index | 2004 | Yearly | 1 km |
Age | Forest age | 2004 | Yearly | 1 km |
Ndep | N decomposition | 1985–2015 | Yearly | 1 km |
NPP | Reference NPP | 2004 | Yearly | 1 km |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Mao, F.; Du, H.; Li, X.; Zhou, G.; Dong, L.; Zhang, M.; Han, N.; Liu, T.; Xing, L. Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests 2019, 10, 708. https://doi.org/10.3390/f10080708
Zheng J, Mao F, Du H, Li X, Zhou G, Dong L, Zhang M, Han N, Liu T, Xing L. Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests. 2019; 10(8):708. https://doi.org/10.3390/f10080708
Chicago/Turabian StyleZheng, Junlong, Fangjie Mao, Huaqiang Du, Xuejian Li, Guomo Zhou, Luofan Dong, Meng Zhang, Ning Han, Tengyan Liu, and Luqi Xing. 2019. "Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests" Forests 10, no. 8: 708. https://doi.org/10.3390/f10080708
APA StyleZheng, J., Mao, F., Du, H., Li, X., Zhou, G., Dong, L., Zhang, M., Han, N., Liu, T., & Xing, L. (2019). Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests, 10(8), 708. https://doi.org/10.3390/f10080708