Stakeholders’ Perceptions of Geographical Criteria for Loblolly Pine Management for Bioenergy Production in Virginia
Abstract
:1. Introduction
2. Background
2.1. Stakeholder Perception of Bioenergy Feedstock
2.2. Environmental and Economic Aspects of Biomass for Bioenergy
3. Methods
3.1. AHP Criteria
3.1.1. Distance to Water
3.1.2. Distance from Protected Land
3.1.3. Flat Land
3.1.4. Distance to Road
3.1.5. Distance to a Mill
3.2. Survey Design
3.3. Analytical Hierarchy Process (AHP) Method
3.4. Survey Regression Model
4. Results and Discussion
4.1. AHP Analysis
4.2. Landowner Regression Analysis
4.3. Multi-Stakeholder Group Analysis
5. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Durocher, C.; Thiffault, E.; Achim, A.; Auty, D.; Barrette, J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy 2019, 120, 376–386. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Brown, M.; Acuna, M.; Sessions, J.; Gallagher, T.; Kühmaier, M.; Spinelli, R.; Visser, R.; Devlin, G.; Eliasson, L.; et al. An international review of the most productive and cost effective forest biomass recovery technologies and supply chains. Renew. Sustain. Energy Rev. 2017, 74, 145–158. [Google Scholar] [CrossRef]
- Nepal, S.; Tran, L.T. Identifying trade-offs between socio-economic and environmental factors for bioenergy crop production: A case study from northern Kentucky. Renew. Energy 2019, 142, 272–283. [Google Scholar] [CrossRef]
- Wolde, B.; Lal, P.; Alavalapati, J.; Burli, P.; Munsell, J. Factors affecting forestland owners’ allocation of non-forested land to pine plantation for bioenergy in Virginia. Biomass Bioenergy 2016, 85, 69–75. [Google Scholar] [CrossRef]
- White, W.A. Chapter 6—Economic and Social Barriers Affecting Forest Bioenergy Mobilisation: A Review of the Literature. In Mobilisation of Forest Bioenergy in the Boreal and Temperate Biomes: Challenges, Opportunities and Case Studies; Academic Press: Cambridge, MA, USA, 2016; pp. 84–101. [Google Scholar]
- Padilla-Rivera, A.; Paredes, M.G.; Güereca, L.P. A systematic review of the sustainability assessment of bioenergy: The case of gaseous biofuels. Biomass Bioenergy 2019, 125, 79–94. [Google Scholar] [CrossRef]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Schnepf, R. Cellulosic Ethanol: Feedstocks, Conversion Technologies, Economics, and Policy Options; Congressional Research Service: Washington, DC, USA, October 2010; CRS R41460. [Google Scholar]
- Langholtz, M.H.; Stokes, B.J.; Eaton, L. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; U.S. Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016; p. 448.
- Gan, J.; Mayfield, C. Benefits to Landowners from Forest Biomass/Bioenergy Production; Southern Forest Research Partnership, Inc.: Athens, GA, USA, 2011. [Google Scholar]
- Soliño, M.; Prada, A.; Vázquez, M.X. Designing a forest-energy policy to reduce forest fires in Galicia (Spain): A contingent valuation application. J. For. Econ. 2010, 16, 217–233. [Google Scholar] [CrossRef]
- Biomass as Feedstock for a Bioenergy and Bio-products Industry: The Technical Feasibility of a Billion Ton Annual Supply; DOE/GO–102995–2135; U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA): Washington, DC, USA, 2005.
- Economic Benefits of the Forest Industry in Virginia; Virginia Department of Forestry (VDoF): Charlottesville, VA, USA, 2015. Available online: http://www.dof.virginia.gov/forestry/benefits/index.htm (accessed on 17 June 2019).
- Rose, A.K. Virginia, 2009 Forest Inventory and Analysis Factsheet; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2011.
- USFS Timber Product Output Data 2003; U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis Unit: Newtown Square, PA, USA, 2003.
- Lal, P.; Wolde, B.; Alavalapati, J.; Burli, P.; Munsell, J. Forestland owners’ willingness to plant pine on non-forested land for woody bioenergy in Virginia. For. Policy Econ. 2016, 73, 52–57. [Google Scholar] [CrossRef]
- Silver, E.J.; Leahy, J.E.; Noblet, C.L.; Weiskittel, A.R. Maine woodland owner perceptions of long rotation woody biomass harvesting and bioenergy. Biomass Bioenergy 2015, 76, 69–78. [Google Scholar] [CrossRef]
- Markowski-Lindsay, M.; Stevens, T.; Kittredge, D.B.; Butler, B.J.; Catanzaro, P.; Damery, D. Family forest owner preferences for biomass harvesting in Massachusetts. For. Policy Econ. 2012, 14, 127–135. [Google Scholar] [CrossRef]
- Leitch, Z.J.; Lhotka, J.M.; Stainback, G.A.; Stringer, J.W. Private landowner intent to supply woody feedstock for bioenergy production. Biomass Bioenergy 2013, 56, 127–136. [Google Scholar] [CrossRef]
- Hodges, D.G.; Chapagain, B.; Watcharaanantapong, P.; Poudyal, N.C.; Kline, K.L.; Dale, V.H. Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy. Renew. Sustain. Energy Rev. 2019, 113, 109205. [Google Scholar] [CrossRef]
- Joshi, O.; Mehmood, S.R. Factors affecting nonindustrial private forest landowners’ willingness to supply woody biomass for bioenergy. Biomass Bioenergy 2011, 35, 186–192. [Google Scholar] [CrossRef]
- Gruchy, S.R.; Grebner, D.L.; Munn, I.A.; Joshi, O.; Hussain, A. An assessment of nonindustrial private forest landowner willingness to harvest woody biomass in support of bioenergy production in Mississippi: A contingent rating approach. For. Policy Econ. 2012, 15, 140–145. [Google Scholar] [CrossRef]
- Becker, D.R.; Eryilmaz, D.; Klapperich, J.J.; Kilgore, M.A. Social availability of residual woody biomass from nonindustrial private woodland owners in Minnesota and Wisconsin. Biomass Bioenergy 2013, 56, 82–91. [Google Scholar] [CrossRef]
- USEIA. Biomass and the Environment; U.S. Energy Information Administration: Washington, DC, USA, 2019. Available online: https://www.eia.gov/energyexplained/index.php?page=biomass_environment (accessed on 19 June 2019).
- Hughes, A.O.; Quinn, J.M. The effect of forestry management activities on stream water quality within a headwater plantation Pinus radiata forest. For. Ecol. Manag. 2019, 439, 41–54. [Google Scholar] [CrossRef]
- Hubbard, W.; Biles, L.; Mayfield, C.; Ashton, S. Sustainable Forestry for Bioenergy and Bio-Based Products: Trainers Curriculum Notebook; Southern Forest Research Partnership, Inc.: Athens, GA, USA, 2007; pp. 225–228. [Google Scholar]
- Klapproth, J.C.; Johnson, J.E. Understanding the Science behind Riparian Forest Buffers: Resources for Virginia Landowners; Virginia Cooperative Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- DCR. Virginia’s Managed Conservation Lands Map; Virginia Department of Conservation and Recreation: Richmond, VA, USA, 2019; Available online: http://vanhde.org/content/map (accessed on 19 June 2019).
- Lu, X.; Withers, M.R.; Seifkar, N.; Field, R.P.; Barrett, S.R.; Herzog, H.J. Biomass logistics analysis for large scale biofuel production: Case study of loblolly pine and switchgrass. Bioresour. Technol. 2015, 183, 1–9. [Google Scholar] [CrossRef]
- Hassegawa, M.; Gelinas, N.; Beaudoin, D.; Achim, A. Assessing the potential impact of a biorefinery product from sawmill residues on the profitability of a hardwood value chain. Can. J. For. Res. 2018, 48, 857–868. [Google Scholar] [CrossRef]
- Schelhas, J.; Hitchner, S.; Brosius, J.P. Envisioning and implementing wood-based bioenergy systems in the southern United States: Imaginaries in everyday talk. Energy Res. Soc. Sci. 2018, 35, 182–192. [Google Scholar] [CrossRef]
- Prisley, S.P. Baseline Analysis of Virginia’s Commercial Wood Supply. Assessment and Decision Support, 2015; pp. 1–45. Available online: https://www.cenrads.cnre.vt.edu/documents/FinalAssessmentReport.pdf (accessed on 10 June 2019).
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Nguyen, H.L.; Fong, C.-M.; Ho, C.-T. Using Analytical Hierarchy Process in Decision Analysis—The Case of Vietnam State Securities Commission. Business 2010, 2, 139–144. [Google Scholar] [CrossRef]
- Dos Santos, P.H.; Neves, S.M.; Sant’Anna, D.O.; De Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Ananda, J.; Herath, G. The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. For. Policy Econ. 2003, 5, 13–26. [Google Scholar] [CrossRef]
- Dwivedi, P.; Alavalapati, J.R. Stakeholders’ perceptions on forest biomass-based bioenergy development in the southern US. Energy Policy 2009, 37, 1999–2007. [Google Scholar] [CrossRef]
- Goepel, K.D. Implementing the Analytic Hierarchy Process as a Standard Method for Multiple Criteria Decision Making in Corporate Enterprises—A new AHP Excel Template with Multiple Inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process 2013, Kuala Lumpur, Malaysia, 23–36 June 2013; pp. 1–10. [Google Scholar]
- Tomashevskii, I. Eigenvector ranking method as a measuring tool: Formulas for errors. Eur. J. Oper. Res. 2015, 240, 774–780. [Google Scholar] [CrossRef]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef]
Stakeholder Group | Forest Landowner | Private Forest Consultant | Forest Management Researcher or Educator | Federal or State Agency Forester | ||||
---|---|---|---|---|---|---|---|---|
Weighted criteria | +/− | +/− | +/− | +/− | ||||
Distance to a water body | 0.106 | 3.4% | 0.087 | 2.4% | 0.052 | 1.6% | 0.070 | 0.9% |
Distance from protected land | 0.082 | 2.1% | 0.053 | 1.4% | 0.038 | 1.6% | 0.057 | 1.3% |
Distance to a road | 0.254 | 4.7% | 0.362 | 7.1% | 0.260 | 14.5% | 0.301 | 5.3% |
Distance to a mill | 0.375 | 6.2% | 0.342 | 7.4% | 0.531 | 33.2% | 0.378 | 8.6% |
Flat land | 0.184 | 1.5% | 0.157 | 4.7% | 0.118 | 4.6% | 0.194 | 6.0% |
Consistency ratio | 0.021 | 0.028 | 0.099 | 0.022 | ||||
Consensus | 62.0% | 74.2% | 82.4% | 78.2% |
Term | Estimate of Model Coefficient | Std Error | t Ratio | Prob > |t| |
---|---|---|---|---|
What is your stand density for LLP when harvesting? | 0.0001 | 0.0001 | 1.82 | 0.0833 |
How would you rate your level of experience managing LLP {1, 2–3, 4 and 5} | 0.0095 | 0.0017 | 5.43 | <0.0001 * |
Term | Estimate of Model Coefficient | Std Error | t Ratio | Prob > |t| |
---|---|---|---|---|
How many acres of land do you own/manage? | 0.0000929 | 0.000051 | 1.82 | 0.1331 |
What is your rotation age with loblolly pine? | 0.00945 | 0.00174 | 5.43 | <0.0001 * |
Level | - Level | Difference | Std Err Dif | Lower CL | Upper CL | p-Value | |
---|---|---|---|---|---|---|---|
4 | 2 | 6.500000 | 4.622898 | −2.85069 | 15.85069 | 0.1676 | |
4 | 3 | 4.666667 | 4.063754 | −3.55305 | 12.88638 | 0.2578 | |
4 | 1 | 4.050000 | 3.817232 | −3.67108 | 11.77108 | 0.2952 | |
1 | 2 | 2.450000 | 3.553650 | −4.73793 | 9.63793 | 0.4946 | |
3 | 2 | 1.833333 | 3.817232 | −5.88775 | 9.55441 | 0.6337 | |
1 | 3 | 0.616667 | 2.787712 | −5.02201 | 6.25535 | 0.8261 |
Level | - Level | Difference | Std Err Dif | Lower CL | Upper CL | p-Value | |
---|---|---|---|---|---|---|---|
1 | 3 | 183.5833 | 39.45678 | 103.707 | 263.4594 | <0.0001 * | |
1 | 4 | 167.7500 | 59.18517 | 47.936 | 287.5641 | 0.0073 * | |
1 | 2 | 141.9167 | 50.29773 | 40.094 | 243.7391 | 0.0076 * | |
2 | 3 | 41.6667 | 54.02843 | −67.708 | 151.0415 | 0.4454 | |
2 | 4 | 25.8333 | 69.75040 | −115.369 | 167.0356 | 0.7132 | |
4 | 3 | 15.8333 | 62.38665 | −110.462 | 142.1285 | 0.8010 |
Count | 1 | 2 | 3 | 4 | 5 | Total |
---|---|---|---|---|---|---|
Total % | ||||||
Col % | ||||||
Row % | ||||||
Landowner | 0 | 5 | 4 | 6 | 5 | 20 |
0 | 11.63 | 9.3 | 13.95 | 11.63 | 46.51 | |
0 | 71.43 | 50 | 50 | 33.33 | ||
0 | 25 | 20 | 30 | 25 | ||
Federal or state agency forester | 0 | 0 | 1 | 1 | 4 | 6 |
0 | 0 | 2.33 | 2.33 | 9.3 | 13.95 | |
0 | 0 | 12.5 | 8.33 | 26.67 | ||
0 | 0 | 16.67 | 16.67 | 66.67 | ||
Private forest consultant | 0 | 1 | 0 | 5 | 6 | 12 |
0 | 2.33 | 0 | 11.63 | 13.95 | 27.91 | |
0 | 14.29 | 0 | 41.67 | 40 | ||
0 | 8.33 | 0 | 41.67 | 50 | ||
Forest management researcher or educator | 1 | 1 | 3 | 0 | 0 | 5 |
2.33 | 2.33 | 6.98 | 0 | 0 | 11.63 | |
100 | 14.29 | 37.5 | 0 | 0 | ||
20 | 20 | 60 | 0 | 0 | ||
Total | 1 | 7 | 8 | 12 | 15 | 43 |
2.33 | 16.28 | 18.6 | 27.91 | 34.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, M.; Nguyen, G.; Wieczerak, T.; Wolde, B.; Lal, P.; Munsell, J. Stakeholders’ Perceptions of Geographical Criteria for Loblolly Pine Management for Bioenergy Production in Virginia. Forests 2019, 10, 801. https://doi.org/10.3390/f10090801
Smith M, Nguyen G, Wieczerak T, Wolde B, Lal P, Munsell J. Stakeholders’ Perceptions of Geographical Criteria for Loblolly Pine Management for Bioenergy Production in Virginia. Forests. 2019; 10(9):801. https://doi.org/10.3390/f10090801
Chicago/Turabian StyleSmith, Meghann, Gia Nguyen, Taylor Wieczerak, Bernabas Wolde, Pankaj Lal, and John Munsell. 2019. "Stakeholders’ Perceptions of Geographical Criteria for Loblolly Pine Management for Bioenergy Production in Virginia" Forests 10, no. 9: 801. https://doi.org/10.3390/f10090801
APA StyleSmith, M., Nguyen, G., Wieczerak, T., Wolde, B., Lal, P., & Munsell, J. (2019). Stakeholders’ Perceptions of Geographical Criteria for Loblolly Pine Management for Bioenergy Production in Virginia. Forests, 10(9), 801. https://doi.org/10.3390/f10090801