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Abstract: We investigated changes in leaf and branch stoichiometry of Pinus massoniana caused by
seasonal variation and experimental drought in response to a three-year manipulation of the rainfall
exclusion. The results showed that (1) in response to rainfall exclusion manipulation, plant capacity
to regulate leaf potassium (K) concentrations were notably lower than for leaf nitrogen (N) and
phosphorus (P) concentrations. Thus, the plants modulated leaf N and P concentrations to improve
water use efficiency, which take part in drought resistance mechanisms. Leaf K concentrations
decreased continuously, having additional indirect negative effects on plant fitness. (2) The effects
of seasonal variation on both the leaf K and P concentrations were significantly stronger than on
leaf N concentrations. High leaf N and P concentrations and a low N:P ratio in the growing season
improved the growth rate. (3) Principal component analyses (PCA) revealed that to adapt to drought,
the plants regulated nutrient elements and then maintained certain stoichiometries as a capital to
resist stress. Our results suggest that, on nutrient-poor soils, a lack of N or P (or both) would probably
impede P. massoniana’s response to drought.
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1. Introduction

Global climate change is modifying patterns of global precipitation, leading to changes in the
frequency and magnitude of extreme climatic events, such as drought [1,2]. Increased drought
enhances tree mortality [3,4] and influences ecosystem biodiversity as well as ecosystem structure
and function [5–8]. Several studies have shown that terrestrial plants adapted and resistant to
drought can alter their physiological characteristics to increase water use efficiencies to prevent
death [9–11]. The elemental composition of a species is determined by long-term genetic adaptation
and specific ecological strategies to a particular environment [12], which is associated with responses
to environmental stress [13,14]. For example, during long-term drought, element concentrations in
different organs of plants change, promoting plant adaptation to drought stress. Therefore, the shift
in the elemental composition and stoichiometry of different plant organs can reflect the response of
plants to forest drought stress.

The main goal of ecological stoichiometry is to understand the relationships among Carbon,
Nitrogen, Phosphorus (C:N:P) ratios in organisms and environments [15]. The C:N:P ratios in organisms
can be associated with important ecological processes, such as responses to environmental stress [13,16],
ecosystem composition and diversity [17,18]. An organism’s C:N:P stoichiometry can be influenced
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by the environment through two pathways. First, environmental changes can alter the C:N:P ratios
of producers, thereby affecting the growth rate and lifestyle through nutrient cycling [19]. Growth
rate hypothesis (GRH) posits that to enhance rapid growth influenced by the intensity of the protein
synthesis the organism needs more P, which involves a low N:P ratio. It is responsible for the high
growth in the environment [20]. Previous studies on planktonic communities reported that low N:P
ratios correlate with high growth rates [6]. Similarly, terrestrial plants with low N:P ratios grow
rapidly and are more competitive for soil resources [15,21]. However, under normal growth condition,
the distributions of the elements in higher plants contribute to the operations of storage, defensive,
and anti-stress systems, as well [22]. Many studies reported how foliar stoichiometries vary along
environmental gradients [23–25]. All these studies suggested that the main climatic variables (e.g.,
temperature and precipitation) can influence the actual water content in the plant and intensities of
solar radiation arriving at the leaves, which in turn affect foliar elemental stoichiometries.

Leaf elemental compositions and stoichiometries are important in forest research, as they can
indicate the nutritional status of soil and the growth rate of plants [6,22], reflecting plant acclimatization
to climate change [23,24]. However, most studies of plants stoichiometries considered only foliar N
and P; they neglected the other photosynthetic organ, branches, and neglected other elements, as well.
The concentrations or ratios of other elements, such as K, magnesium (Mg), and iron (Fe), play more
important roles in the physiological functions of organisms [10]. The biogeochemical niche hypothesis,
which can reflect species’ growth and resources uptake strategies as well as space and time occupation,
expresses the main nutrients, such as C, N, P, K, and other essential nutrients, such as calcium (Ca), Mg,
and sulfur (S), in different proportions [10,22]. These proportions are called stoichiometrical flexibility
in response to environmental changes and competitive situations. For example, Yu et al. [26] showed
that species with higher stoichiometrical flexibility tended to have higher concentrations of N and
P and lower N:P ratios. It is easier to understand and interpret the plant stoichiometric shift in the
multivariate space of the contents N, P, and K in the plant tissues. The alterations in N and P levels
separately cannot uncover a relevant explanation of this phenomenon [27].

The tissue concentrations of K are vital in plant biology [28], and particularly in dry environments,
because K levels affect several physiological functions in plants, such as controlling the water content
of leaves by stomatal control, cell osmosis equilibrium, and water use efficiency [14,29–31]. Shifts in
foliar N:P:K ratios are related to the change in plant response to drought [32]. Some plants in dry
environments have a higher concentration of K, which is related to metabolome shifts toward increasing
concentrations of metabolites linked to osmosis control; these high levels of K help the plants to resist
drought [14,16,33]. The concentrations of K, N, and P together help to control water availability [6,34].
Drought is also the driving force of the changes in elemental C and C:nutrient ratios, especially C:N,
C:P, and C:K [35]. The published evidence suggests that decreasing water availability in drought
conditions differently affects the N and P cycles and increases the C:nutrient ratios in photosynthetic
tissues due to increased levels of C-rich compounds, such as phenolics and tannins, to avoid water
stress [14]. These are the protective mechanisms associated with slowing growth and increasing leaf
N:P ratios [32,36]. Many studies identified the relationship between high N:P stoichiometries and
low growth rates in terrestrial plants, determined by water availability [19,37]. Rivas-Ubach et al. [34]
observed increasing N:P ratios during the dry season along with the decrease in primary metabolism
and secondary anti-stress metabolism. The changes of the element concentrations in plant tissues
induced by drought can be considered the indicators of plant physiological state alteration. Thus, we
intended to map the relationships of the terrestrial plant stoichiometry to environmental changes.

We investigated the effects of drought on the stoichiometries and compositions of photosynthetic
organs (leaves and branches). We used a three-year field-simulated drought test that ran from April
2013 until January 2016 in ChangTing County, Fujian province, China (Figure 1). We aimed to provide
evidence of different drought sensitivities of on leaf and branch stoichiometry dynamics of mature
Pinus massoniana individuals, which are widely used for research in subtropical areas experiencing
red soil erosion. We measured leaf and branch C, N, P, and K concentrations and their ratios of P.
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massoniana growing in control (natural) conditions and under drought (100% rainfall exclusion). The
main aims of this study were (1) to investigate the changes of leaf and branch stoichiometries of P.
massoniana in response to three-year 100% rainfall exclusion, (2) to investigate the seasonal dynamic
characteristics in leaf and branch macro-elemental concentration of P. massoniana over the study period,
and (3) to investigate which element led to the imbalance of osmotic regulation is the key lethal factor
to drought stress.
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Figure 1. Map of the study area.

2. Materials and Methods

2.1. Study Site

This study was performed in the town of HeTian, southeast of ChangTing County, Fujian province,
China (25◦33′–25◦48′ N, 116◦18′–116◦31′ E, 310 m above sea level), which experiences some of the most
serious soil erosion in the Fujian province [38]. The main soil type is red soil, which is characterized
as nutrient-poor with coarse grain granite parent material. Most of the soil is exposed core, or even
bedrock. Because of soil depletion, shrub and grass vegetation is scarce, and the dominant plant species
are P. massoniana, Dicranopteris dichotoma (Thunb) Berhn [39]. The integrated mean concentrations of C,
N, P, and K in soil (0–30 cm) were 1.06 mg·g−1, 0.15 mg·g−1, 0.017 mg·g−1, and 4.26 mg·g−1, respectively.
The study site belongs to subtropical monsoon climate with the wet seasons typically from March to
September and the dry seasons generally from October to February. The study area experienced a
mean annual rainfall of 1696 mm in the study period, and a mean annual temperature of 19.85 ◦C, with
the variation range from −7.8 ◦C to 39.8 ◦C. Temperature, soil moisture, precipitation, and relative
humidity were recorded every 15 min from the installed automatic weather station (Monitor Automatic
Weather Station, ICT, NSW, Australia) at the study site (Figure 2). We used the linear relationship of
precipitation and temperature to define aridity conditions. The climate was classified as drought when
the temperature was 2-fold greater than the precipitation [40]. The calculated results in Figure 2 show
that the arid climate happened when the precipitation point was lower than the temperature. As a
result, arid conditions occurred for six months between April 2013 and January 2016: October 2013,
January 2014, April 2014, September 2014, October 2014, and October 2015. Hence, we concluded that
the study site was not arid, so it was used as a control area.
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2.2. Experimental Design

The experimental setting involved a three-year experiment of 100% rainfall exclusion. Starting in
April 2013, four plots (each 20 × 20 m) of mature P. massoniana were established, on a slope of 30◦ at
333 m above sea level, facing southwest. In each sample plot, there were 10 or 11 mature P. massoniana
individuals, which had been sown by plane in 1998. The mean diameter at breast height (DBH) of P.
massoniana was 4.2 cm, tree height was 2.4 m, and blade length was 8.5 cm (Figure 3). To avoid the
impact of rainwater runoff on sampling, two plots (one upslope and one downslope) subject to 100%
rainfall exclusion as the drought plot, and the other two were influenced by the rainfall events (Figure 4).
In the drought plots, a 4 m transparent wave tile coated with UV paint (light transmittance 90%) was
fixed above the canopy. To channel the rainfall flow down the slope, wave tiles were installed parallel
to the terrain. Polyvinyl chloride (PVC) strips did not have any effects on ambient temperature and
humidity. A ditch 80 cm in depth was dug along the top edge of the drought plots to intercept up-slope
runoff, which was channeled to the bottom edge. The remaining plots received no manipulation.
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2.3. Soil Moisture Content

Using a time-domain soil moisture meter (Trime-T3, Moisture Meter, IMKO, Ettlingen, Germany),
soil moisture content at depths of 20 and 80 cm in the control and drought groups were measured
every 15 min.

2.4. Leaf Water Potential

Leaf water potentials were measured before dawn (Ψd) using a WP4 dew-point potential meter
(Decagon Device, Pullman, WA, USA). Three sample trees were chosen from each plot approximately
every month from April 2013 to March 2014. We collected two south-facing branches from the top and
middle parts of each individual canopy, choosing those with healthy leaves. We immediately put the
branches into cold storage (0–4 ◦C), and brought them to the lab.

2.5. Sampling Method

After 115 days of rainfall exclusion, to avoid boundary effects, 6 randomly selected individuals (3
from the upslope and 3 from the downslope plot) were selected from the center of each treatment plot.
The date of plant sampling was determined according to the main phenological rhythm of the study
area. The specific sampling days were as follows: day 115 (18 August 2013, late summer), day 185
(27 October 2013, autumn), day 256 (6 January 2014, winter), day 332 (23 March 2014, spring), day
467 (1 August 2014, late summer), day 542 (15 October 2014, autumn), day 638 (30 December 2014,
winter), day 738 (9 April 2015, spring), day 861 (10 August 2015, late summer), day 941 (29 October
2015, autumn), and day 1032 (28 January 2016, winter).

In the study period, we collected leaf and branch samples from each individual to determine
elemental concentrations. To avoid the effects of diurnal variation, four small branches exposed to
sunlight were consistently selected from the top and middle parts of each crown, both southeast- and
northwest-facing, between 09:00 and 11:00 a.m. Well-developed leaves were collected above the branch
samples. The leaf lengths ranged from 8.3 to 8.6 cm, and the branch diameters (with bark removed)
ranged from 0.3 to 0.5 cm, which were treated as one leaf sample and one branch sample, respectively.
Before laboratory analysis, all samples were placed in cold storage (0–4 ◦C). To reduce enzymatic
activity, all samples were microwave-treated at 800 W for 5 min and then dried at 65 ◦C for 48 h until
the weight became constant [41]. The samples of leaves and branches were ball-milled into a fine
powder (Tissuelyser-24, Shanghai, China) for measuring C, N, P, and K.
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2.6. Elemental Analyses

To analyze C and N concentrations, 9–11 mg of the powders from each sample was wrapped in
tin foil for analysis. The C and N concentrations were determined using a CN elemental analyzer
(ElementarVario ELIII, München, Germany).

The plant samples were digested by a HNO3·H2O2 mixed system. Firstly, 100 mg dry plant
powder was accurately weighed and placed in 50 mL disposable fluorinated ethylene–propylene
(FEP) digestion tubes, which are suitable for graphite digestion systems and are characterized by
direct volume fixing, which prevents errors in transfer. Then, 8 mL pure HNO3 (Merck GR 2.5 L)
was slowly added along the pipe wall, and finally, 2 mL H2O2 was added for overnight treatment.
On the second day, after gently shaking the tube, gradient heating digestion in graphite furnace was
conducted as follows: temperature increased to 80 ◦C and maintained for 10 min, and then maintained
for 30 min at 100 ◦C, with continuous heating to 110 ◦C until thick white smoke was emitted. The final
solution was concentrated to 1–2 mL. After cooling, the solution was directly fixed in a fluorinated
ethylene–propylene (FEP) tube with a deionizing solution, filtered with a 0.45 microporous membrane,
and then placed in the refrigerator for testing.

P concentrations were determined using a continuous flow analyzer (SKALAR SAN++, Breda,
Netherlands), and K concentrations were determined using a flame spectrophotometer (Aopu PF640,
Shanghai, China). Plant C, N, P, and K concentrations are expressed as mg·g−1 on a dry weight basis.

2.7. Statistical Analyses

All statistical analyses were performed using SPSS 19.0 software (SPSS Inc., Chicago, IL, USA).
All results are reported as mean ± standard deviation (SD) for the six replicates of each treatment.
To study the different treatments and seasonality effects, we analyzed data using a general linear
model. A repeat measure analysis was used to analyze the effects of different treatments on the element
concentrations and ratios. To detect patterns of sample ordination with element concentrations and
ratios on seasons and drought, the data were subjected to principal component analysis (PCA). We
conducted PCA analyses using all elemental concentrations and important nutrient ratios and selected
those that had the highest loading on the main axes. PCA axes were used to detect differences among
leaves and branches of different seasons or between control and drought plots. Figures were all drawn
using Origin 8.0 software and Canoco 5.0.

3. Results

3.1. Soil Moisture Content and Leaf Water Potential

The initial soil moisture contents in the control group (24.59% at 20 cm and 36.37% at 80 cm) were
similar to the drought group (23.05% at 20 cm and 36.47% at 80 cm). In the study period, the soil
moisture contents in the drought group decreased continuously. The average soil moisture contents at
20 cm (mean 10.69%) and 80 cm (mean 17.31%) of the drought group were both significantly lower than
the corresponding soil moisture at 20 cm (mean 22.56%,) and 80 cm (mean 30.85%) in the control group
(p < 0.01; Figure 5). The decreasing amplitudes were 11.87% and 13.54%, respectively. In this regard,
the average soil moisture content in the drought group seems to meet the needs for normal metabolism,
and the average soil moisture content decreased by 10%–20% over the study period, which is only
defined as mild drought [42]. We tried to explain that 100% rainfall exclusion could only simulate mild
drought for the following reasons: (1) groundwater flow caused by moderate slope and (2) stomatal
closure of the water stress mechanism initiated by P. massoniana. Mild drought was probably a better
representation of the real scenario expected under natural conditions in the southeastern coastal areas
of China. However, soil moisture contents of 20 and 80 cm depths in the control group presented
significant seasonal fluctuations (p < 0.01; Figure 5).
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winter (W), and late spring (S). (a) Soil moisture content at 80 cm in the control and drought plots; (b)
Soil moisture content at 20 cm in the control and drought plots.

Then, we determined the leaf water potential of P. massoniana to test the effects of rainfall exclusion
from April 2013 to March 2014. Continuous drought stress led Ψd in the drought group to decrease
over the study course. The average value of the drought group (Ψd:−3.73 MPa) was significantly lower
than that of the control group (Ψd:−2.80 MPa, p < 0.05) (Figure 6), indicating that differences in soil
water could be experienced between the treatments. To further confirm these findings, the correlation
between leaf water potential and soil moisture content in different treatments were analyzed. In the
control group, we found no significant correlation in the 20 or 80 cm soil layers under normal water
supply conditions. Leaf water potential was only affected by abiotic factors. The leaf water potential
in the drought group was significantly positively correlated in the 20 cm soil layer (Ψd = 0.077 smc2

−2.012 smc + 8.813 R2 = 0.95286, p <0.01) and positively correlated in the 80 cm soil layer (Ψd = −0.009
smc2 + 0.577 smc−11.995 R2 = 0.816, p <0.05). These results showed that when the soil moisture content
was limited, the root water uptake of P. massoniana could not meet the needs of transpiration, and leaf
water potential decreased with decreasing soil moisture content.

3.2. Effect of Drought Stress on Element Concentrations

The 100% rainfall exclusion resulted in a general increase in leaf N and P concentrations over the
course of the studied years of 10.88% and 2.81%, respectively (Figure 7). Leaf N and P concentrations
shared a common characteristic: leaf N and P concentrations between the control group and the drought
group were not statistically different during the early stage of the 1032 days of study (Figure 7). Then,
in the later periods, leaf N and P concentrations in the drought group were significantly higher than in
the control group (p < 0.05), at 23.6% and 10.4%, respectively. Changes appeared on days 542–638 and
467–542 for N and P, respectively (Figure 7). In the simulated drought plots, leaf K concentrations
significantly reduced by 14.1% (p < 0.05) (Figure 7). Except for day 638, leaf K concentrations in the
drought group were all lower than in the control group. We found no significant change in leaf C
concentrations. Changes in the concentration of individual elements also contributed to the differences
in their ratios. The effects of rainfall decreased leaf C:N (p < 0.05) ratio and increased leaf N:P (p < 0.05),



Forests 2020, 11, 113 8 of 17

N:K (p < 0.01), and P:K (p < 0.01) ratios. Leaf N:P ratios were similar to N and P concentrations; after
divergence on days 542–638, leaf N:P ratios in the drought group (Table 1) were significantly higher
than in the control group.Forests 2020, 11, x FOR PEER REVIEW 8 of 20 
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Table 1. Mean (Standard Deviation, SD) of leaf C: N: P: K ratios of different treatments during the
study period.

Element Ratio
Day 115 185 256 332 467 542 638 738 861 941 1032

Treatment Mean (SD)

C:N
drought 52.27

(1.84)
51.81
(4.71)

49.65
(2.19)

53.38
(2.44)

54.24
(3.5)

49.48
(4.25)

48.11
(2.26)

39.82
(2.07)

42.63
(3.25)

52.43
(5.00)

37.47
(0.49)

control 62.47
(2.47)

49.76
(6.77)

57.28
(3.33)

53.54
(4.95)

46.42
(3.97)

44.58
(2.37)

57.22
(2.79)

46.25
(6.72)

65.25
(4.12)

57.85
(8.47)

63.01
(2.44)

N:P
drought 12.34

(0.79)
16.83
(0.91)

17.5
(0.85)

17.94
(0.34)

17.67
(0.61)

15.23
(0.12)

16.23
(0.86)

18.06
(0.28)

14.52
(0.63)

16.00
(0.26)

15.31
(0.50)

control 14.3
(0.56)

19.7
(0.78)

15.43
(0.62)

16.65
(0.58)

16.72
(0.56)

22.1
(0.58)

15.86
(0.42)

16.77
(0.46)

10.81
(0.41)

14.2
(0.68)

10.47
(0.77)

N:K
drought 2.48

(0.40)
3.37

(0.10)
3.55

(0.66)
3.92

(0.24)
3.8

(0.13)
3.67

(0.15)
3.274
(0.11)

4.94
(0.42)

4.47
(0.23)

3.31
(0.14)

4.57
(0.23)

control 1.87
(0.02)

3.77
(0.23)

2.87
(0.16)

4.08
(0.07)

2.87
(0.06)

4.16
(0.29)

3.07
(0.33)

2.8
(0.17)

2.01
(0.28)

2.1
(0.02)

2.51
(0.05)

P:K
drought 0.12

(0.005)
0.20

(0.008)
0.20

(0.007)
0.22

(0.003)
0.22

(0.002)
0.24

(0.005)
0.20

(0.015)
0.27

(0.019)
0.31

(0.005)
0.21

(0.034)
0.30

(0.003)

control 0.15
(0.017)

0.19
(0.008)

0.19
(0.003)

0.22
(0.005)

0.17
(0.003)

0.17
(0.002)

0.20
(0.002)

0.17
(0.003)

0.18
(0.004)

0.17
(0.009)

0.24
(0.004)

Among tissues, for the different treatments, branches in the drought group had similar trends
in the changes in leaves, but the changes throughout the whole process were more diverse (Figure 8,
Table 2). Among them, branch N concentrations and C:N, N:P, N:K ratios showed extremely significant
differences (p < 0.01), but the other differences were not significant (Figure 8, Table 2).

Table 2. Mean (SD) of branch C: N: P: K ratios of different treatments during the study period.

Element Ratio
Day 115 185 256 332 467 542 638 738 861 941 1032

Treatment Mean(SD)

C:N
drought 110.77

(5.45)
91.81
(7.99)

99.02
(3.55)

103.1
(10.38)

88.6
(0.54)

92.59
(9.03)

96.43
(11.77)

91.56
(10.39)

79.81
(7.39)

113.38
(4.11)

85.74
(4.27)

control 122.39
(1.53)

112.03
(12.41)

120.68
(6.53)

122.98
(7.53)

92.38
(5.99)

110.75
(10.73)

100.88
(9.18)

100.5
(8.78)

105.53
(8.53)

109.05
(4.16)

100.3
(6.21)

N:P
drought 11.48

(0.54)
13.14
(0.28)

11.03
(0.29)

10.96
(0.58)

11.19
(0.53)

11.95
(0.47)

9.59
(0.76)

12.22
(0.17)

11.7
(0.21)

11.52
(0.67)

13.27
(0.34)

control 13.6
(0.31)

8.35
(0.43)

10.48
(0.93)

12.43
(0.48)

12.48
(0.41)

9.61
(0.46)

8.65
(0.66)

11.2
(0.65)

11.62
(0.41)

11.09
(0.42)

8.12
(0.32)

N:K
drought 1.52

(0.15)
2.54

(0.18)
2.39

(0.14)
2.43

(0.11)
1.82

(0.09)
2.25

(0.12)
2.24

(0.14)
2.04

(0.04)
3.32

(0.20)
3.75

(0.24)
2.63

(0.19)

control 1.44
(0.12)

1.73
(0.03)

2.03
(0.44)

1.92
(0.14)

1.85
(0.15)

1.62
(0.23)

1.97
(0.09)

1.82
(0.16)

2.03
(0.11)

2.12
(0.11)

2.41
(0.15)

P:K
drought 0.13

(0.030)
0.2

(0.051)
0.21

(0.027)
0.22

(0.003)
0.16

(0.066)
0.19

(0.017)
0.23

(0.014)
0.17

(0.011)
0.28

(0.008)
0.227
(0.014)

0.198
(0.012)

control 0.11
(0.008)

0.21
(0.017)

0.19
(0.013)

0.17
(0.005)

0.15
(0.016)

0.17
(0.014)

0.23
(0.021)

0.16
(0.007)

0.17
(0.013)

0.19
(0.012)

0.29
(0.016)
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3.3. Effect of Season on Concentrations of Elements

In the control group, the concentrations of N, P, and K in leaves showed obvious seasonal dynamics
during the study period (Figure 7). In 2013 and 2014, from spring through summer to autumn, leaf
N concentrations showed a gradual upward trend in the growing season. The peak value of leaf N
concentrations in these two years appeared on day 185 (27 October 2013, autumn) and day 542 (15
October2014, autumn) at 10.07 mg·g−1 and 12.12 mg·g−1, respectively (Figure 7). These two days
were also the minima for the soil moisture contents at both depths (Figure 5). However, the seasonal
dynamics in 2015 were different from the previous two years (Figure 7); the peak value appeared
on day 738 (9 April 2015, spring) at 10.67 mg·g−1, which was closely related to the rainfall situation
(Figure 2). Leaf P concentrations and K concentrations were the highest in summer from 2013 to 2016.
The peak value appeared on day 115 (18 August 2013, late summer), day 467 (1 August 2014, late
summer), and day 861 (1 August 2014, late summer) (Figure 5). Leaf N:P ratios were the highest in
autumn in 2013 and 2014, but in spring in 2015 (Table 1). Leaf N:K and P:K ratios were the lowest in
summer, leaf C:N ratios were the lowest in autumn from 2013 to 2014, but in 2015, C:N ratios were
lower in spring (Table 1). We further analyzed the relationship between leaf N and P concentrations
and N:P ratios. The leaf N:P ratios were significantly positively correlated with leaf N concentrations
(R2 = 0.8658, p < 0.05) and were significantly negatively correlated with leaf P concentrations (R2 =

0.7012, p < 0.05). When leaf P concentrations increased more than N concentrations, leaves had lower
N:P ratios.

For branches, C, N, P, and K concentrations and C:N, N:P, N:K, and P:K ratios of the control group
changed more diversely than in the leaves. Although we observed certain seasonal dynamics, the
annual peak appeared in different seasons during the study period. Then analyzing the branches in
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the drought group, we found that both the elements and ratios follow a consistent trend with leaves in
the drought group (Figures 7 and 8, Table 2).

3.4. Overall Effects of Drought and Season on Leaf and Branch Nutrient Concentrations

3.4.1. Leaf Nutrient Concentrations

PCA revealed that all concentrations of elements and their ratios generally varied in the drought
and control groups. Plants at different sampling times in different treatment groups were separated
along the principal component 1 (PC1) axis. In our study, we only used leaf C, N, P, and K concentrations
and leaf C:N, N:P, N:K, and P:K ratios in different treatments as variables. In the drought group, leaf N,
P concentrations and C:N ratios were the most important factors (highest loading) in PC1 (Figure 9a),
showing that leaf N and P concentrations increased and K concentrations decreased over the course of
the drought. PCA was able to distinguish between leaves collected at different sampling points on
the PC1 axis, which explained 70.26% of the overall variance (Figure 9b), which also expressed the
sampling times with longer drought duration that were separated from the shorter duration drought
except on day 941.Forests 2020, 11, x FOR PEER REVIEW 14 of 20 
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Figure 9. Principal component analysis (PCA) with leaf element concentrations and ratios as variables,
and the corresponding variable distribution in (a) and (b) the drought group and (c) and (d) the control
group. The significant differences among scores of different sample times are depicted along the PC
axes. Note: d256 = day 256 in the drought group; c256 = day 256 in the control group.

In the control group, some of the same seasons were distributed closely, as marked by red circles
in Figure 9d and separated along PC1 (explaining 79.39% of the total variance), with leaf N and P
concentrations as the main factors (Figure 9c). The results highlighted the negative correlation between
the leaf N:P ratios and P concentrations (Figure 9c). Parts of the same seasons were assigned to the
same area; the smaller the score distance between in the PCA space, the more similar to the seasonality
of the above indicators of leaves. In the drought group, after the three-year 100% rainfall exclusion
experiments, the impact of seasonal changes completely disappeared.
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3.4.2. Branch Nutrient Concentrations

PCA did not provide effective conclusions for the eight selected indexes for branches in the
drought group (Figure 10), which suggests that different tissues have different drought adaptation
strategies. In the control group, we were unable to obtain useful information from the PCA.Forests 2020, 11, x FOR PEER REVIEW 15 of 20 
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Figure 10. PCA with branch element concentrations and ratios as variables, and the corresponding
variable distribution in (a) and (b) the drought group and (c) and (d) the control group. The significant
differences among scores of different sample times are depicted along the PC axes. Note: d256 = day
256 in the drought group; c256 = day 256 in the control group.

4. Discussion

4.1. Drought Effect on Nutrient Concentrations

Using PCA, we identified higher leaf N and P concentrations and lower leaf K concentration
under water stress. Plants, especially those adapted to harsh environments, usually respond to stress
by altering their nutrient storage [16]. Many studies have reported that leaf N concentrations in plants
increase due to a decrease in water supply [43,44], which is consistent with our findings. In the absence
of water, plant water use tends to be more efficient [45]. Increased leaf N concentrations help plants to
achieve maximum photosynthetic volume with minimal moisture content under minimal stomatal
conductance [43]. Further increased leaf P concentrations could improve water use efficiency as a
drought-resistance mechanism, which has also been widely reported [32,46,47], indicating the positive
effects of P on plant growth under drought stress, such as an increase in root growth [48], stomatal
conductance and nitrate reductase activity [49], and high cell-membrane permeability [50]. Similar to
leaf N concentrations, increasing leaf P concentrations improve photosynthetic efficiency and plant
transpiration control capacity [51]. Leaf and branch N:P ratios in the drought group were higher than
those in the control group, related to the decrease in growth rate under the condition of lacking water
and to the anti-stress mechanism strongly influencing N:P ratio, as plants in anti-stress environments
needed higher nutritional investment [14].

Potassium accordingly played a fundamental role under water stress conditions. Most studies
suggested that K concentration increases under drought conditions, which could reduce the osmotic
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potential of cells, improve the water retention capacity of the cell protoplasm, and enhance the stability
of the cell membrane [14,29–31]. Adequate K could help improve water use efficiency (WUE) and
hence, plant growth under the water deficiency condition [52]. However, in this study, we found that
with increasing water stress, leaf and branch K concentrations decreased considerably, which might
lead to the imbalance of osmotic pressure and mineral element concentrations. Concentrations of
C, N, and P underwent the self-regulation in the three-year course of 100% isolation from rainfall,
with concentrations increasing to adapt to drought conditions, but concentrations of K could not
self-regulate. K cannot be synthesized in plant cells; most of it must be absorbed or transferred from
the soil [25]. As the transport of K mainly occurs through diffusion, and water is an important factor
controlling the diffusion of K, loss of water halts the diffusion. Therefore, we think that the imbalance
in osmotic regulation caused by the decrease in K maybe the main reason for the death of P. massoniana
due to water shortage.

4.2. Seasonal Variation in Element Concentrations

The concentrations of N, P, and K in leaves of P. massoniana are closely related to their own
structural characteristics and growth rhythm, which all change with the seasons. In the control group,
the seasonal variation trend of leaf P concentrations in P. massoniana during the 1032 days was consistent
with the data published by other studies [24,53,54]. We observed an obvious upward trend from winter
through spring to summer, which then decreased significantly in autumn and increased again from
autumn to winter. The reasons behind this trend are as follows: In the early growing season (spring to
summer), the photosynthetic organs gradually recovered their normal photosynthetic capacity from
low temperature in winter while the plant leaves were small; to organize leaves and grow structural
tissue continuously, leaf cells are in the stage of rapid division, which requires large amounts of protein
and nuclein. Therefore, the selective absorption of P increased strengthened, and the concentrations
of P were higher [55]. During the peak growing season (summer to autumn), leaf cells multiply
rapidly and expand, so the absorption of nutrient elements by plant roots could not keep pace with the
expansion rate of leaf cells, resulting in the gradual dilution of leaf P concentration [56]. From autumn
to winter, after the plant stopped growing, leaf P concentration in the three-year study period increased
by 3.07%, 9.51%, and 26,23% [18]. The seasonal variations in leaf K concentrations were consistent
with those of leaf P, which could be explained using similar reasons. The trend and consistency of the
seasonal dynamic change in leaf N were slightly different from leaf P and K concentrations. The peaks
in 2013 and 2014 occurred in autumn, and in 2015, the peak occurred in spring. This conclusion is
contrary to the findings of other studies, which reported that change process of leaf N was coordinated
with that of leaf P. The analysis showed that P. massoniana, as a pioneer tree species in eroded red soil
areas in ChangTing county, have formed their own adaptive mechanism after years of adversity. They
reserve as many nitrogen compounds as possible before winter dormancy to resist severe cold and
various stress.

Our research supported GRH in the analysis of the effects of seasonal dynamics on leaf N and P
concentrations and N:P ratios. In the control group, leaf N:P ratios were lowest in spring, summer, and
winter from 2013 to 2016 and highest in autumn. The lowest leaf N:P ratios occurred in spring and
summer [57], which was consistent with the GRH predictions. This indicates that plants often have
high leaf N and P concentrations and with low N:P ratio in the growing season to maximize the growth
rate capacity [16,24]. The reduction in leaf N:P ratios in the winter is not associated with growth rate,
but with the effect of the temperature [23]. With decreasing temperature, leaf N concentrations of plants
are basically unchanged, P concentrations increase, and the N:P ratios decrease [24,53,54]. Because
at low temperature, plants might activate a temperature-sensitive mechanism that increases leaf P
concentration, thus, improving the enzyme efficiency and reducing the rate of RNA synthesis [23]. As
a non-photosynthetic organ, the N and P concentrations in branches did not change significantly with
the season, so the seasonal variations in branch N:P ratios were inconsistent.
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4.3. Effects of Soil Nutrient Availability

The relationship between N and P concentrations in plants was determined by soil nutrient
conditions and the plasticity of the plants [58]. Many studies generally reported that the leaf N:P
ratio could be used as an indicator of soil nutrient deficit; N:P < 14 or N:P > 16 were used to indicate
N restrictions or P restrictions, respectively [23,56,59]. However, these results were more common
in humid areas. These results areas where water is severely deficient are lacking [60]. Our sample
plot had red soil that differentially develops from coarse grain granite and characterized by poor
nutrient levels and lack of water, which reduce the availability of N and P in the soil [60]. Our results
confirm this conclusion. The average concentration of leaf N in the control group was 9.87 ± 1.35
mg·g−1, and the leaf P concentration was 0.65 ± 0.063 mg·g−1. Both were significantly lower than
for terrestrial plants globally (N: 20.1 ± 8.7 mg·g−1, P: 1.8 ± 1.1 mg·g−1) [15,23]. Because the decrease
in soil moisture limits the process of organic matter production and mineralization, the release of P
from parent material slowed down, soil organic matter concentration reduced, which was consistent
with the availability of N [61]. When the concentration of leaf P decreased more than that of leaf N
concentration in the drought group, the average N:P value was 15.73 ±3.31, which is significantly
higher than that of terrestrial plants globally and, similar to that of desert plants in China [62,63]. Plant
P concentrations were closely related to soil P concentration. The concentration of soil P in most parts
of China [53] is lower than the global level, which directly affects the P absorbed by plants.

5. Conclusions

In summary, we conducted a continuous study to analyze the element dynamics of P. massoniana
induced by three-year rainfall exclusion. In the drought group, leaf N and P concentrations increased
to improve water use efficiency as a drought resistance mechanism. However, leaf K concentrations
decreased continuously and were not regulated in response to water stress, which may be the main
reason for death due to water shortages. The changes in elements in leaves and branches produced by
ontogeny and seasonality were significantly greater than by experimental drought. In the growing
season, high leaf N and P concentrations and low N:P ratios were consistent with the GRH prediction.
Leaf N concentrations were highest when the soil moisture content was lowest in the annual cycle.
Thus, leaves and branches can regulate the nutrient elements and then maintain certain stoichiometries
as a method to adapt to stress. Therefore, our findings suggest that in red soil erosion, a lack of N or P
(or both) would probably impede P. massoniana’s response to drought, and therefore, one would expect
drought-related dieback to occur earlier.
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