Assessment of Preservative-Treated Wooden Poles Using Drilling-Resistance Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Drilling-Resistance Measurements
3. Results and Discussion
3.1. Moisture Content
3.2. Typical Drilling Resistance Profiles
3.3. Mean Drilling Resistance and Feeding Resistance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dana, H.J. Pole Soundness Tester. U.S. Patent 2,359,030, 13 November 1945. [Google Scholar]
- Kamm, W.F.G.; Voss, S. Process and Device for Determining the Internal Condition of Trees or Wooden Components. U.S. Patent 4,671,105, 9 January 1987. [Google Scholar]
- Rinn, F.; Schweingruber, F.H.; Schar, E. Resistograph and X-ray density charts of wood comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 1996, 50, 303–311. [Google Scholar] [CrossRef]
- Tannert, T.; Anthony, R.; Kasal, B.; Kloiber, M.; Piazza, M.; Riggio, M.; Rinn, F.; Widmann, R.; Yamaguchi, N. In-situ assessment of structural timber using semi-destructive techniques. Mater. Struct. 2014, 47, 767–785. [Google Scholar] [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, D.; Sass, U. Measurements of drill resistance on broadleaved trees and their anatomical interpretation. Holz Roh Werks. 1994, 52, 279–286. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R. Diagnosis and Prognosis of the Development of Wood Decay in Urban Trees; ENSPEC Pty Ltd: Rowville, Australia, 2008; pp. 1–336. [Google Scholar]
- Henriques, D.F.; Nunes, L.; Machado, J.S.; Brito, J. Timber in buildings: Estimation of some properties using Pilodin® and Resistograph®. In Proceedings of the International Conference on Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011; pp. 1–8. [Google Scholar]
- Sharapov, E.; Brischke, C.; Militz, H.; Smirnova, E. Effects of white rot and brown rot decay on the drilling resistance measurements in wood. Holzforschung 2018, 72, 905–913. [Google Scholar] [CrossRef]
- Görlacher, R.; Hättich, R. Untersuchung von altem Konstruktionsholz-Die Bohrwiderstandsmessung. Bauen Mit Holz 1990, 6, 455–459. [Google Scholar]
- Ceraldi, C.; Mormone, V.; Russo-Ermolli, E. Resistographic inspection of ancient timber structures for the evaluation of mechanical characteristics. Mater. Struct. 2001, 34, 59–64. [Google Scholar] [CrossRef]
- Park, C.Y.; Kim, S.J.; Lee, J.J. Evaluation of specific gravity in post member by drilling resistance test. Mokchae Konghak 2006, 34, 1–9. [Google Scholar]
- Bouffier, L.; Charlot, C.; Raffin, A.; Rozenberg, P.; Kremer, A. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)? Ann. For. Sci. 2008, 65, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Guo, Z.; Su, J. Application of a drill resistance technique for rapid determining wood density. Progress of Machining Technology. Key Eng. Mater. 2009, 407, 494–499. [Google Scholar] [CrossRef]
- Acuña, L.; Basterra, L.A.; Casado, M.; López, G.; Ramon-Cueto, G.; Relea, E.; Martínez, C.; González, A. Application of resistograph to obtain the density and to differentiate wood species. Mater. Constr. 2011, 61, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, B.; Grippa, M.R.; Marzo, A.; Mazzolani, F.M. Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. J. Civ. Struct. Health Monit. 2011, 1, 103–112. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Sun, Y.; Wang, X.; Yan, H. Determining modulus of elasticity of ancient structural timber. Adv. Mater. Res. 2011, 217, 407–412. [Google Scholar] [CrossRef]
- Kloiber, M.; Tippner, J.; Hrivnak, J. Mechanical properties of wood examined by semi-destructive devices. Mater. Struct. 2014, 47, 199–212. [Google Scholar] [CrossRef]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; Saporiti-Machado, J. Predicting the density of structural timber members in service. The combine use of wood cores and drill resistance data. Mater. Constr. 2014, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.T.S.; Wang, X.; Vidaurre, G. Assessing specific gravity of young Eucalyptus plantation trees using a resistance drilling technique. Holzforschung 2017, 71, 137–145. [Google Scholar] [CrossRef]
- Karlinasari, L.; Danu, M.I.; Nandika, D.; Tujaman, M. Drilling resistance method to evaluate density and hardness properties of resinous wood of agarwood (Aquilaria malaccensis). Wood Res. 2017, 6, 683–690. [Google Scholar]
- Downes, G.M.; Lausberg, M.; Potts, B.M.; Pilbeam, D.L.; Bird, M.; Bradshaw, B. Application of the IML Resistograph to the infield assessment of basic density in plantation eucalypts. Aust. For. 2018, 81, 177–185. [Google Scholar] [CrossRef]
- Fundova, I.; Funda, T.; Wu, H.X. Non-destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn. PLoS ONE 2018, 13, e0204518. [Google Scholar] [CrossRef]
- Sharapov, E.; Brischke, C.; Militz, H.; Smirnova, E. Prediction of modulus of elasticity in static bending and density of wood at different moisture contents and feed rates by drilling resistance measurements. Eur. J. Wood Wood Prod. 2019, 77, 833–842. [Google Scholar] [CrossRef]
- Brashaw, B.K.; Vatalaro, R.J.; Wacker, J.P.; Ross, R.J. Condition Assessment of Timber Bridges 1. Evaluation of a Micro-Drilling Resistance Tool; General Technical Report FPL-GTR-159; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2005; p. 8. [Google Scholar]
- Kappel, R.; Mattheck, C. Inspection of timber construction by measuring drilling resistance using Resistograph F300-S. WIT Trans. Built Environ. 2003, 66, 825–834. [Google Scholar]
- Branco, J.M.; Sousa, H.S.; Tsakanika, E. Non-destructive assessment, full-scale load-carrying tests and local interventions on two historic timber collar roof trusses. Eng. Struct. 2017, 140, 209–224. [Google Scholar] [CrossRef]
- Frontini, F. In situ evaluation of a timber structure using a drilling resistance device. Case study: Kjøpmannsgata 27, Trondheim (Norway). Int. Wood Prod. J. 2017, 8, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Imposa, S.; Mele, G.; Corrao, M.; Coco, G.; Battaglia, G. Characterization of decay in the wooden roof of the S. Agata Church of Ragusa Ibla (Southeastern Sicily) by means of sonic tomography and resistograph penetration tests. Int. J. Archit. Herit. 2014, 8, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Nowak, T.P.; Jasienko, J.; Hamrol-Bielecka, K. In situ assessment of structural timber using the resistance drilling method–Evaluation of usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Gezer, E.D.; Ali Temiz, A.; Yüksek, T. Inspection of wooden poles in electrical power distribution networks in Artvin, Turkey. Adv. Mater. Sci. Eng. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Reinprecht, L.; Šupina, P. Comparative evaluation of inspection techniques for impregnated wood utility poles: Ultrasonic, drill-resistive, and CT-scanning assessments. Eur. J. Wood Prod. 2015, 73, 741. [Google Scholar] [CrossRef]
- Winandy, J.E. Effects of waterborne preservative treatment on mechanical properties: A review. In Proceedings of the American Wood-Preservers’ Association, New York, NY, USA, 21–24 May 1995; USDA Forest Service: Washington, DC, USA, 1995; Volume 914, pp. 17–33. [Google Scholar]
- Ross, R.J.; Brashaw, B.K.; Wang, X.; White, R.H.; Pellerin, R.F. Wood and Timber Condition Assessment Manual, 2nd ed.; General Technical Report FPL-GTR-234; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2014; p. 92. [Google Scholar]
- Brischke, C.; Rapp, A.O. Dose–response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci. Technol. 2008, 42, 663–677. [Google Scholar] [CrossRef]
- Mattheck, C.; Bethge, K.; Albrecht, W. How to read the results of resistograph M. Arboric. J. 1997, 21, 331–346. [Google Scholar] [CrossRef]
- Lin, C.J.; Wang, S.Y.; Lin, F.C.; Chiu, C.M. Effect of moisture content on the drill resistance value in Taiwania plantation wood. Wood Fiber Sci. 2003, 35, 234–238. [Google Scholar]
- Ukrainetz, N.K.; O’Neill, G.A. An analysis of sensitivities contributing measurement error to Resistograph values. Can. J. For. Res. 2010, 40, 806–811. [Google Scholar] [CrossRef]
- Sharapov, E.; Brischke, C.; Militz, H.; Smirnova, E. Combined effect of wood moisture content, drill bit rotational speed and feed rate on drilling resistance measurements in Norway spruce (Picea abies (L.) Karst.). Wood Mater. Sci. Eng. 2018, 1–7. [Google Scholar] [CrossRef]
- James, W.L. Electric Moisture Meters for Wood; General Technical Report FPL-GTR-6; USDA Forest Service, Forest Products Laboratory, Department of Agriculture: Madison, WI, USA, 1988; p. 17. [Google Scholar]
- Brischke, C.; Lampen, S.C. Resistance based moisture content measurements on native, modified and preservative treated wood. Eur. J. Wood Wood Prod. 2014, 72, 289–292. [Google Scholar] [CrossRef]
- Gerhards, C.C. Effect of the moisture content and temperature on the mechanical properties of wood and analysis of immediate effects. Wood Fiber Sci. 1982, 14, 4–36. [Google Scholar]
- Franz, N.C. An Analysis of the Wood-Cutting Process; University of Michigan Press: Ann Arbor, MI, USA, 1958; pp. 1–166. [Google Scholar]
- Ivanovskii, E.G. Rezanie Drevesiny [Wood Cutting]; Lesnaya Promyshlennost [Forest Industry]: Moscow, Russia, 1975; pp. 1–200. [Google Scholar]
- Sharapov, E.; Brischke, C.; Militz, H.; Toropov, A. Impact of drill bit feed rate and rotational frequency on the evaluation of wood properties by drilling resistance measurements. Int. Wood Prod. J. 2019, 1–11. [Google Scholar] [CrossRef]
- Humar, M.; Krzisnik, D.; Brischke, C. The effect of preservative treatment on mechanical strength and structural integrity of wood. In Proceedings of the International Research Group on Wood Protection; IRG/WP 15-30667, Viña del Mar, Chile, 10–14 May 2015. [Google Scholar]
- Ulunam, M.; Özalp, M.; Sofuoğlu, S.D.; Çerçioğlu, M. Changes in technological properties of black pine and larex woods impregnated with olive oil and Korasit-KS under open air conditions. In Proceedings of the 2nd International Conferences on Science and Technology; Life Science and Technology (ICONST-2019), Prizren, Kosovo, 26–30 August 2019; pp. 198–206. [Google Scholar]
- Chuchała, D.; Orłowski, K.A. Forecasting values of cutting power for the sawing process of impregnated pine wood on band sawing machine. Mechanik 2018, 91, 766–768. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharapov, E.; Brischke, C.; Militz, H. Assessment of Preservative-Treated Wooden Poles Using Drilling-Resistance Measurements. Forests 2020, 11, 20. https://doi.org/10.3390/f11010020
Sharapov E, Brischke C, Militz H. Assessment of Preservative-Treated Wooden Poles Using Drilling-Resistance Measurements. Forests. 2020; 11(1):20. https://doi.org/10.3390/f11010020
Chicago/Turabian StyleSharapov, Evgenii, Christian Brischke, and Holger Militz. 2020. "Assessment of Preservative-Treated Wooden Poles Using Drilling-Resistance Measurements" Forests 11, no. 1: 20. https://doi.org/10.3390/f11010020
APA StyleSharapov, E., Brischke, C., & Militz, H. (2020). Assessment of Preservative-Treated Wooden Poles Using Drilling-Resistance Measurements. Forests, 11(1), 20. https://doi.org/10.3390/f11010020