Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Soil Characteristics
2.4. Vegetation Characteristics
2.5. Data Analysis
3. Results
4. Discussion
4.1. Impact of soil pH and SOM Content on Crown Defoliation
4.2. Effect of Ash Crown Defoliation on Understory Vegetation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Fan, B. Shifts of the mean centers of potential vegetation ecosystems under future climate change in Eurasia. Forests 2019, 10, 873. [Google Scholar] [CrossRef] [Green Version]
- Poland, T.; McCullough, D. Emerald ash borer: Invasion of the urban forest and the threat to North America’s ash resource. J. For. 2006, 104, 118–124. [Google Scholar]
- Valenta, V.; Moser, D.; Kapeller, S.; Essl, F. A new forest pest in Europe: A review of Emerald ash borer (Agrilus planipennis) invasion. J. Appl. Entomol. 2017, 141, 507–526. [Google Scholar] [CrossRef]
- Marigo, G.; Peltier, J.P.; Girel, J.; Pautou, G. Success in the demographic expansion of Fraxinus excelsior L. Trees 2000, 15, 1–13. [Google Scholar] [CrossRef]
- Baral, H.O.; Queloz, V.; Hosoya, T. Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 2014, 5, 79. [Google Scholar] [CrossRef]
- Łubek, A.; Kukwa, M.; Czortek, P.; Jaroszewicz, B. Impact of Fraxinus excelsior dieback on biota of ash-associated lichen epiphytes at the landscape and community level. Biodivers. Conserv. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.J.; Beaton, J.K.; Bellamy, P.E.; Broome, A.; Chetcuti, J.; Eaton, S.; Ellis, C.J.; Gimona, A.; Harmer, R.; Hester, A.J.; et al. Ash dieback in the UK: A review of the ecological and conservation implications and potential management options. Biol. Conserv. 2014, 175, 95–109. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Hewison, R.L.; Hester, A.J.; Broome, A.; Kirby, K.J. Potential impacts of the loss of Fraxinus excelsior (Oleaceae) due to ash dieback on woodland vegetation in Great Britain. New J. Bot. 2016, 6, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, T. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 2006, 36, 264–270. [Google Scholar] [CrossRef]
- Gil, W.; Kowalski, T.; Kraj, W.; Zachara, T.; Łukaszewicz, J.; Paluch, R.; Nowakowska, J.A.; Oszako, T. Ash dieback in Poland—history of the phenomenon and possibilities of its limitation. In Dieback of European Ash (Fraxinus spp.)—Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; The Report on European Cooperation in Science and Technology (COST) Action FP1103 FRAXBACK: SLU Service, Uppsala, Sweden, 2017; pp. 176–184. [Google Scholar]
- Juodvalkis, A.; Vasiliauskas, A. The extent and possible causes of dieback of ash stands in Lithuania. LZUU Moksl. Darb. Biomed. Moksl. 2002, 56, 17–22, (In Lithuanian with English Summary). [Google Scholar]
- Douglas, G. Characteristics of Chalara disease, its status in Europe. In Proceedings of the Summary Report from a Meeting of European Experts, Based on Abstracts and Presentations of Reports from Various Countries Meeting in Cost Action fp1103 ‘Fraxback’, Vilnius, Lithuania, 13–14 November 2012; Available online: https://www.teagasc.ie/media/website/crops/forestry/advice/Chalara_workshop_Vilnius2012.pdf (accessed on 21 November 2019).
- Muñoz, F.; Marçais, B.; Dufour, J.; Dowkiw, A. Rising out of the ashes: Additive genetic variation for crown and collar resistance to Hymenoscyphus fraxineus in Fraxinus excelsior. Phytopathology 2016, 106, 1535–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turczański, K. Occurrence and spread of Chalara fraxinea on common ash (Fraxinus excelsior L.) in the selected countries of Northern Europe. Sylwan 2016, 160, 539–546, (In Polish with English Summary). [Google Scholar] [CrossRef]
- Coker, T.; Rozsypálek, J.; Edwards, A.; Harwood, T.; Butfoy, L.; Buggs, R. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 2019, 1, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Kirisits, T. Ascocarp formation of Hymenoscyphus fraxineus on several-year-old pseudosclerotial leaf rachises of Fraxinus excelsior. For. Pathol. 2015, 45, 254–257. [Google Scholar] [CrossRef]
- Kräutler, K.; Treitler, R.; Kirisits, T. Hymenoscyphus fraxineus can directly infect intact current-year shoots of Fraxinus excelsior and artificially exposed leaf scars. For. Pathol. 2015, 45, 274–280. [Google Scholar] [CrossRef]
- Kowalski, T.; Czekaj, A. Disease symptoms and fungi on dying ash trees (Fraxinus excelsior L.) in Staszów Forest District stands. For. Res. Pap. 2010, 71, 357–368. [Google Scholar] [CrossRef]
- Kowalski, T.; Holdenrieder, O. Pathogenicity of Chalara fraxinea. For. Pathol. 2009, 39, 1–7. [Google Scholar] [CrossRef]
- Bakys, R.; Vasaitis, R.; Barklund, P.; Ihrmark, K.; Stenlid, J. Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathol. 2009, 58, 284–292. [Google Scholar] [CrossRef]
- Gross, A.; Holdenrieder, O.; Pautasso, M.; Queloz, V.; Sieber, T.N. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 2014, 15, 5–21. [Google Scholar] [CrossRef]
- Drenkhan, R.; Sander, H.; Hanso, M. Introduction of Mandshurian ash (Fraxinus mandshurica Rupr.) to Estonia: Is it related to the current epidemic on European ash (F. excelsior L.)? Eur. J. For. Res. 2014, 133, 769–781. [Google Scholar] [CrossRef]
- Zheng, H.D.; Zhuang, W.Y. Hymenoscyphus albidoides sp. nov. and H. pseudoalbidus from China. Mycol. Prog. 2014, 13, 625–638. [Google Scholar] [CrossRef]
- Timmermann, V.; Børja, I.; Hietala, A.M.; Kirisits, T.; Solheim, H. Ash dieback: Patogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull. 2011, 41, 14–20. [Google Scholar] [CrossRef]
- Drenkhan, R.; Hanso, M. New host species for Chalara fraxinea. New Dis. Rep. 2010, 22, 16. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, T.; Bartnik, C. Morphological variation in colonies of Chalara fraxinea isolated from ash (Fraxinus excelsior L.) stems with symptoms of dieback and effects of temperature on colony growth and structure. Acta Agrobot. 2010, 63, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Keßler, M.; Cech, T.; Brandstetter, M.; Kirisits, T. Dieback of ash (Fraxinus excelsior and Fraxinus angustifolia) in Eastern Austria: Disease development on monitoring plots from 2007 to 2010. J. Agric. Ext. Rural Dev. 2012, 4, 223–226. [Google Scholar]
- Vacek, S.; Vacek, Z.; Bulušek, D.; Putalová, T.; Sarginci, M.; Schwarz, O.; Šrůtka, P.; Podrázský, V.; Moser, W.K. European ash (Fraxinus excelsior L.) dieback: Disintegrating forest in the mountain protected areas, Czech Republic. Austrian J. For. Sci. 2015, 132, 203–223. [Google Scholar]
- Chumanová, E.; Romportl, D.; Havrdová, L.; Zahradník, D.; Pešková, V.; Černý, K. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 2019, 34, 254–266. [Google Scholar] [CrossRef]
- Cekstere, G.; Laivins, M.; Osvalde, A. Destruction of young Fraxinus excelsior L. stands and mineral nutrition status in Latvia, a pilot study. Acta Biol. Univ. Daugavp. 2013, 13, 15–27. [Google Scholar]
- Pušpure, I.; Matisons, R.; Laiviņš, M.; Gaitnieks, T.; Jansons, J. Natural regeneration of common ash in young stands in Latvia. Balt. For. 2017, 23, 209–217. [Google Scholar]
- Zollner, A.; Kölling, C. Eschenkulturen auf ungeeigneten Standorten. Allg. Forstz. 1994, 2, 61–64, (In German with English Summary). [Google Scholar]
- Berger, R.; Heydeck, P.; Baumgart, A.; Roloff, A. Neue ergebnisse zum eschentriebsterben. AFZ-Wald 2010, 65, 18–21. (In German) [Google Scholar]
- Dobrowolska, D.; Hein, S.; Oosterbaan, A.; Wagner, S.; Clark, J.; Skovsgaard, J.P. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 2011, 84, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, A. Charakterystyka Hodowlana Drzew i Krzewów Leśnych, Hodowla lasu, 1st ed.; PWRiL: Warszawa, Poland, 2011. (In Polish) [Google Scholar]
- Koltay, A.; Szabó, I.; Janik, G. Chalara fraxinea incidence in Hungarian ash (Fraxinus excelsior) forest. J. Agric. Ext. Rural Dev. 2012, 4, 236–238. [Google Scholar] [CrossRef]
- Erfmeier, A.; Haldan, K.L.; Beckmann, L.M.; Behrens, M.; Rotert, J.; Schrautzer, J. Ash dieback and its impact in near-natural forest remnants—A plant community-based inventory. Front. Plant Sci. 2019, 10, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, P.; Konatowska, M.; Wajsowicz, T. Tree-soil-water relationships in European black alder forest—Case study. Mech. Agric. Conserv. Resour. 2019, 65, 200–203. [Google Scholar]
- Zielony, R.; Kliczkowska, A. Regionalizacja Przyrodniczo-Leśna Polski 2010, 1st ed.; CILP: Warszawa, Poland, 2012; p. 356. (In Polish) [Google Scholar]
- Dzięciołowski, W. Środowisko glebotwórcze i gleby Niziny Wielkopolskiej. Rocz. Glebozn. 1979, 30, 11–33. (In Polish) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 21 November 2019).
- Smith, D.M.; Larson, B.C.; Kelly, M.J.; Ashton, P.M.S. The Practice of Silviculture: Applied Forest Ecology, 9th ed.; Wiley: New York, NY, USA, 1997; p. 537. [Google Scholar]
- Dmyterko, E.; Tomusiak, R.; Wojtan, R.; Bruchwald, A. Comparative analysis of the degree of damage in common ash (Fraxinus excelsior L.) and black alder (Alnus glutinosa (L.) Gaertn.) growing in mixed or neighbour stands. Sylwan 2005, 149, 3–11, (In Polish with English Summary). [Google Scholar] [CrossRef]
- Dmyterko, E.; Bruchwald, A. The criteria for assessment of damage to important species of deciduous trees. For. Res. Pap. 2006, 3, 115–124, (In Polish with English Summary). [Google Scholar]
- Hanisch, B.; Kilz, E. Monitoring of Forest Damage: Spruce and Pine, 2nd ed.; Christopher Helm Pub Ltd.: Batsford, UK, 1991; p. 334. [Google Scholar]
- Jackson, M.L. Determinaciones de Materia Orgánica en los Suelos. Analisis Químico de Suelos, 1st ed.; Omega: Barcelona, Spain, 1964; pp. 282–310. (In Spanish) [Google Scholar]
- Czapiewska, N.; Dyderski, M.; Jagodziński, A.M. Seasonal dynamics of floodplain forest understory—Impacts of degradation, light availability and temperature on biomass and species composition. Forests 2019, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas Mit Den Alpen in Ökologischer, Dynamischer Und Historischer Sicht, 6th ed.; UTB: Stuttgart, Germany, 2010; p. 1357. (In German) [Google Scholar]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; Van Groenendael, J.M.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A database of life- history traits of the Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Pla, L.; Casanoves, F.; Di Rienzo, J. Quantifying Functional Biodiversity; Springer: Dordrecht, Germany, 2011. [Google Scholar]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity (FD) from Multiple Traits, and Other tools for Functional Ecology. 2014. Available online: https://cran.r-project.org/web/packages/FD/index.html (accessed on 21 November 2019).
- Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 1998, 199, 213–227. [Google Scholar] [CrossRef]
- Pierce, S.; Brusa, G.; Vagge, I.; Cerabolini, B.E.L. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 2013, 27, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Core, R.; Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. 2005, 54, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Michin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.; et al. Community Ecology Package. vegan 2.3.3.. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 20 December 2019).
- Van Lanen, H.A.J.; Peters, E. Definition, effects and assessment of groundwater droughts. In Drought and Drought Mitigation in Europe, Advances in Natural and Technological Hazards Research; Vogt, J.V., Somma, F., Eds.; Springer: Dordrecht, Germany, 2000; Volume 14, pp. 49–61. [Google Scholar] [CrossRef]
- Schütt, P. Erste Ausätze zur Experimentellen klärung des Tannensterbens. Schweiz. Z. Forstwes. 1981, 132, 443–452. (In German) [Google Scholar]
- Farfał, D. The effect of habitat on European ash root growth in the topsoil layers. For. Res. Pap. 2011, 72, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Ellenberg, H. Vegetation Ecology of Central Europe, 4th ed.; Cambridge University Press: Cambridge, UK, 1988; p. 499. [Google Scholar]
- Holeksa, J.; Woźniak, G. Biased vegetation patterns and detection of vegetation changes using phytosociological databases. A case study in the forests of the Babia Góra National Park (the West Carpathians, Poland). Phytocoenologia 2005, 35, 1–18. [Google Scholar] [CrossRef]
- Czapiewska, N.; Paź, S.; Dyderski, M.K.; Jagodziński, A.M. Continuum of floristic composition between two plant communities—Carici elongatae-Alnetum and Fraxino-Alnetum. For. Res. Pap. 2017, 78, 285–296. [Google Scholar] [CrossRef]
- Fleituch, T.; Leichtfried, M. Ash tree leaf litter (Fraxinus excelsior L.) breakdown in two different biotopes and streams. Int. Rev. Hydrobiol. 2004, 89, 508–518. [Google Scholar] [CrossRef]
- Jacob, M.; Viedenz, K.; Polle, A.; Thomas, F.M. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 2010, 164, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horodecki, P.; Nowiński, M.; Jagodziński, A.M. Advantage of mixed tree stands in restoration of upper soil layers on post-mining sites: A five-year leaf litter decomposition experiment. Land Degrad. Dev. 2019, 30, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Arao, T. In Situ detection of changes in soil bacterial and fungal activities by measuring 13 C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 1999, 31, 1015–1020. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.V. Soil Organisms. In Soil Ecology; Lavelle, P., Ed.; Springer: New Delhi, India, 2005; pp. 234–256. [Google Scholar]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Skovsgaard, J.P.; Thomsen, I.M.; Skovgaard, I.M.; Martinussen, T. Associations between symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). For. Pathol. 2010, 40, 7–18. [Google Scholar] [CrossRef]
- Bakys, R.; Vasiliauskas, A.; Ihrmark, K.; Stenlid, J.; Menkis, A.; Vasaitis, R. Root rot, associated fungi and their impact on health condition of declining Fraxinus excelsior stands in Lithuania. Scand. J. For. Res. 2011, 26, 128–135. [Google Scholar] [CrossRef]
- Orlikowski, L.B.; Ptaszek, M.; Rodziewicz, A.; Nechwatal, J.; Thinggaard, K.; Jung, T. Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. For. Pathol. 2011, 41, 510–519. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Knight, K.S.; Oleksyn, J.; Jagodziński, A.M.; Reich, P.B.; Kasprowicz, M. Overstorey tree species regulate colonization by native and exotic plants: A source of positive relationships between understorey diversity and invasibility. Divers. Distrib. 2008, 14, 666–675. [Google Scholar] [CrossRef]
- Denslow, J.S.; Spies, T. Canopy gaps in forest ecosystems. Can. J. For. Res. 1990, 20, 617–667. [Google Scholar] [CrossRef]
- Jonášová, M.; Matìjková, I. Natural regeneration and vegetation changes in wet spruce forests after natural and artificial disturbances. Can. J. For. Res. 2007, 37, 1907–1914. [Google Scholar] [CrossRef]
- Dobrowolska, D. The role of disturbances in forest regeneration. For. Res. Pap. 2010, 71, 391–405. [Google Scholar] [CrossRef]
- Czortek, P.; Delimat, A.; Dyderski, M.K.; Zięba, A.; Jagodziński, A.M.; Jaroszewicz, B. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—A rare arctic-alpine species in the Tatra Mts. Sci. Total Environ. 2018, 618, 1628–1637. [Google Scholar] [CrossRef]
- Orczewska, A.; Czortek, P.; Jaroszewicz, B. The impact of salvage logging on herb layer species composition and plant community recovery in Białowieża Forest. Biodivers. Conserv. 2019, 28, 3407. [Google Scholar] [CrossRef] [Green Version]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Czortek, P.; Ratyńska, H.; Dyderski, M.K.; Jagodziński, A.M.; Orczewska, A.; Jaroszewicz, B. Cessation of livestock grazing and windthrow drive a shift in plant species composition in the Western Tatra Mts. Tuexenia 2018, 38, 177–196. [Google Scholar] [CrossRef]
- Olden, J.D.; Comte, L.; Giam, X. The Homogocene: A research prospectus for the study of biotic homogenisation. NeoBiota 2018, 37, 23–36. [Google Scholar] [CrossRef] [Green Version]
No. | District Division | Main Tree Species Proportion (%) | Ash Age | Soil Characteristic WRB 2015 | Coordinates of the Study Plots | |
---|---|---|---|---|---|---|
N | E | |||||
1. | B 243c | 90 F, 10 Q | 79 | Arenic Gleyic Phaeozem | 52°26'37.692" | 17°4'6.244" |
2. | B 231l | 90 F, 10 U | 57 | Colluvic Greyzernic Phaeozem | 52°27'6.107" | 17°4'41.754" |
3. | B 225d | 80 F, 10 Q, 10 T | 100 | Ochric Brunic Arenosol | 52°27'30.791" | 17°4'19.11" |
4. | B 218b | 100 F | 114 | Colluvic Gleyic Phaeozem | 52°27'29.987" | 17°4'3.955" |
5. | B 226d | 80 F, 10 L, 10 Q | 87 | Colluvic Fluvic Cambisol | 52°26'58.596" | 17°3'39.512" |
6. | B 224i | 80 F, 10 U, 10 Q | 102 | Siltic Gleyic Phaeozem | 52°27'31.461" | 17°4'26.068" |
7. | B 224h | 80 F, 10 U, 10 Q | 120 | Colluvic Fluvic Cambisol | 52°27'33.842" | 17°4'24.141" |
8. | B 224c | 80 F, 20 Q | 52 | Arenic Calcaric Cambisol | 52°27'40.327" | 17°4'46.34" |
9. | B 223i | 90 F, 10 Q | 85 | Arenic Calcaric Cambisol | 52°27'44.637" | 17°4'48.887" |
10. | K 281c | 90 F, 10 U | 106 | Hyperhumic Gleyic Phaeozem | 52°13'11.121" | 16°43'39.585" |
11. | K 282b | 80 F, 20 A | 73 | Hyperhumic Gleyic Phaeozem | 52°13'24.06" | 16°43'25.671" |
12. | K 286a | 90 F, 10 U | 109 | Humic Mollic Gleysol | 52°13'9.247" | 16°44'25.939" |
13. | K 287d | 100 F | 52 | Humic Mollic Gleysol | 52°13'8.269" | 16°44'14.987" |
14. | K 287h | 90 F, 10 Q | 123 | Ochric Brunic Arenosol | 52°13'4.573" | 16°44'6.423" |
15. | K 288a | 90 F, 10 U | 119 | Hyperhumic Gleyic Phaeozem | 52°13'4.05" | 16°44'3.199" |
16. | K 288j | 90 F, 10 U | 79 | Hyperhumic Gleyic Phaeozem | 52°13'0.473" | 16°44'0.881" |
17. | K 59b | 80 F, 20 Q | 68 | Ochric Brunic Arenosol | 52°12'52.495" | 16°44'1.288" |
18. | L 257a | 90 F, 10 Q | 144 | Loamic Dystric Cambisol | 52°29'49.713" | 16°57'3.233" |
19. | L 255s | 100 F | 98 | Arenic Fluvic Cambisol | 52°29'30.49" | 16°57'53.237" |
20. | L 254h | 80 F, 20 A | 74 | Humic Gleyic Fluvisol | 52°29'46.855" | 16°57'53.582" |
21. | L 251c | 80 F, 10 U, 10 A | 69 | Humic Gleyic Fluvisol | 52°30'17.183" | 16°57'44.836" |
22. | L 217g | 90 F, 10 A | 68 | Humic Gleyic Fluvisol | 52°30'23.024" | 16°57'6.738" |
23. | L 205d | 80 F, 20 Q | 74 | Colluvic Fluvic Cambisol | 52°30'41.062" | 16°56'34.311" |
24. | P 475j (1) | 100 F | 83 | Siltic Gleyic Phaeozem | 52°25'23.309" | 16°52'58.823" |
25. | P 475j (2) | 90 F, 10 U | 83 | Siltic Gleyic Phaeozem | 52°25'27.169" | 16°52'36.643" |
26. | P 473d | 80 F, 10 T, 10 Q | 63 | Hyperhumic Gleyic Phaeozem | 52°26'1.955" | 16°52'39.371" |
27. | P 430k | 100 F | 73 | Clayic Haplic Luvisol | 52°24'16.2" | 17°1'30.72" |
Term | Estimate | SE | Z | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | −2.627 | 0.776 | −3.384 | 0.001 |
Soil pH | 0.230 | 0.127 | 1.809 | 0.070 |
Soil organic matter | 0.090 | 0.031 | 2.918 | 0.004 |
Precision parameter φ | 18.955 | 5.047 | 3.756 | <0.001 |
Pseudo-R2 | logLik | AICc | AICc0 | df of residuals |
0.525 | 23.146 | −36.474 | −22.403 | 23 |
Term | Estimate | SE | Z | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | −3.023 | 0.948 | −3.188 | 0.001 |
Soil pH | 0.417 | 0.157 | 2.649 | 0.008 |
Soil organic matter | 0.074 | 0.041 | 1.805 | 0.071 |
Precision parameter φ | 10.757 | 2.814 | 3.823 | <0.001 |
Pseudo-R2 | logLik | AICc | AICc0 | df of residuals |
0.496 | 15.483 | −21.148 | −8.123 | 23 |
Table | Estimate | SE | T | Pr(>|t|) |
---|---|---|---|---|
μ estimation, link function: logit (Intercept) | −2.024 | 0.308 | −6.581 | <0.001 |
Soil organic matter | 0.140 | 0.040 | 3.503 | 0.002 |
σ estimation, link function: logit (Intercept) | 2.221 | 0.279 | 7.970 | <0.001 |
ν estimation, link function: log (Intercept) | −1.482 | 0.495 | −2.991 | 0.006 |
Pseudo-R2 | logLik | AICc | AICc0 | df of residuals |
0.299 | 3.091 | 3.636 | 10.453 | 23 |
Hypothesis | Term | df | Variance | F | Pr(>F) |
---|---|---|---|---|---|
Impact of soil pH and defoliation | Soil pH | 1 | 0.07848 | 5.4243 | 0.001 |
Mean defoliation | 1 | 0.02216 | 1.5662 | 0.079 | |
Residual | 25 | 0.33954 | - | - | |
AIC | −24.18 | AIC0 | −24.48 | - | |
Impact of soil pH only | Soil pH | 1 | 0.07848 | 5.4243 | 0.001 |
Residual | 25 | 0.36170 | - | - | |
AIC | −21.174 | AIC0 | −24.48 | - |
Variable | Abbreviation | RDA1 | PC1 | r2 | Pr(>r) |
---|---|---|---|---|---|
Ecological indicator value—light | EIV_L | −0.894 | −0.447 | 0.255 | 0.033 |
Ecological indicator value—moisture | EIV_M | −0.889 | −0.457 | 0.748 | 0.001 |
Ecological indicator value—soil reaction | EIV_SR | −0.995 | 0.099 | 0.815 | 0.001 |
Ecological indicator value—soil fertility | EIV_N | −0.881 | 0.473 | 0.710 | 0.001 |
CWM of height | height_CWM | 0.926 | −0.377 | 0.502 | 0.002 |
CWM of specific leaf area | SLA_CWM | 0.388 | 0.922 | 0.455 | 0.003 |
CWM of seed mass | seed_mass_CWM | 0.976 | −0.219 | 0.476 | 0.001 |
Functional evenness | FEve | 0.474 | −0.880 | 0.269 | 0.030 |
Functional dispersion | FDis | 0.988 | −0.156 | 0.260 | 0.028 |
Species richness | Richness | −0.278 | −0.961 | 0.118 | 0.251 |
Species diversity (Shannon index) | Shannon | 0.141 | −0.990 | 0.358 | 0.008 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turczański, K.; Rutkowski, P.; Dyderski, M.K.; Wrońska-Pilarek, D.; Nowiński, M. Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation. Forests 2020, 11, 22. https://doi.org/10.3390/f11010022
Turczański K, Rutkowski P, Dyderski MK, Wrońska-Pilarek D, Nowiński M. Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation. Forests. 2020; 11(1):22. https://doi.org/10.3390/f11010022
Chicago/Turabian StyleTurczański, Krzysztof, Paweł Rutkowski, Marcin K. Dyderski, Dorota Wrońska-Pilarek, and Mirosław Nowiński. 2020. "Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation" Forests 11, no. 1: 22. https://doi.org/10.3390/f11010022
APA StyleTurczański, K., Rutkowski, P., Dyderski, M. K., Wrońska-Pilarek, D., & Nowiński, M. (2020). Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation. Forests, 11(1), 22. https://doi.org/10.3390/f11010022