Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Experimental Design
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Błońska, E.; Kacprzyk, M.; Spólnik, A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecol. Res. 2017, 32, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Piaszczyk, W.; Błońska, E.; Lasota, J.; Lukac, M. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena 2019, 179, 1–5. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Ekström, M.; Esseen, P.A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in managed Swedish forests—Policy outcomes and implications for biodiversity. For. Ecol. Manag. 2016, 376, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 2016, 92, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błońska, E.; Klamerus-Iwan, A.; Łagan, S.; Lasota, J. Changes to the water repellency and storage of different species of deadwood based on decomposition rate in a temperate climate. Ecohydrology 2018, 11, 2023. [Google Scholar] [CrossRef]
- Gutowski, J.M.; Bobiec, A.; Pawlaczyk, P.; Zub, K. Drugie Życie Drzewa; WWF Polska: Warszawa—Hajnówka, Poland, 2004. [Google Scholar]
- Russell, M.B.; Fraver, S.; Aakala, T.; Gove, J.H.; Woodall, C.W.; D’Amato, A.W.; Ducey, M.J. Quantifying carbon stores and decomposition in dead wood: A review. For. Ecol. Manag. 2015, 350, 107–128. [Google Scholar] [CrossRef]
- Magnússon, R.J.; Tietema, A.; Cornalissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soil. Sendiments 2017, 18, 2759–2769. [Google Scholar] [CrossRef] [Green Version]
- Piaszczyk, W.; Błońska, E.; Lasota, J. Soil biochemical properties and stabilisation of soil organic matter in relation to deadwood of different species. FEMS Microbiol. Ecol. 2019, 95, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.; McDonnell, K.P. The influence of added organic matter on soil physical, chemical, and biological properties: A small-scale and short-time experiment using straw. Arch. Agron. Soil Sci. 2012, 58, 201–205. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Ilek, A.; Kucza, J.; Szostek, M. The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils. Geoderma 2017, 285, 27–34. [Google Scholar] [CrossRef]
- Täumer, K.; Stoffregen, H.; Wessolek, G. Determination of repellency distribution using soil organic matter and water content. Geoderma 2005, 125, 107–115. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J.; Oostindie, K.; Boersma, O.H. Effect of drying temperature on the severity of soil water repellency. Soil Sci. 1998, 163, 780–796. [Google Scholar] [CrossRef]
- Burgeut, M.; Taguas, E.V.; Cerdà, A.; Gómez, J.A. Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena 2016, 147, 187–195. [Google Scholar] [CrossRef]
- Maser, C.; Anderson, R.G.; Cromack, J.; Kermit; Williams, J.T.; Martin, R.E. Dead and Down Woody Material. In Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington; Jack, W.T., Ed.; US Department of Agriculture Forest Service: Washington, DC, USA, 1979; pp. 78–95. [Google Scholar]
- Rodrigues, J.; Faix, O.; Pereira, H. Improvement of acetylbromide method for lignin determination within large scale screening programmers. Holz als Roh- und Werkst. 1999, 57, 341–345. [Google Scholar] [CrossRef]
- Antczak, A.; Michauszko, A.; Kosiska, T.; Drożdżek, M. Determination of the structural substances content in the field maple wood (Acer campestre L.)—comparison of the classical methods with instrumental. Ann. WULS—SGGW For. Wood Technol. 2013, 82, 11–17. [Google Scholar]
- Wessel, A.T. On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surf. Process. Landf. 1988, 13, 555–561. [Google Scholar] [CrossRef]
- Wambsganss, J.; Stutz, K.P.; Lang, F. European beech deadwood can increase soil organic carbon sequestration in forest topsoils. For. Ecol. Manag. 2017, 405, 200–209. [Google Scholar] [CrossRef]
- Stutz, K.; Kaiser, K.; Wambsganss, J.; Santos, F.; Berhe, A.A.; Lang, F. Lignin from white-rotted European beech deadwood and soil functions. Biogeochemistry 2019, 145, 81–105. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Sun, W. Using organic matter and pH to estimate the bulk density of afforested/reforested soils in Northwest and Northeast China. Pedosphere 2017, 27, 890–900. [Google Scholar] [CrossRef]
- Prévost, M. Predicting soil properties from organicmatter content following mechanical site preparation of forest soils. Soil Sci. Soc. Am. J. 2004, 68, 943–949. [Google Scholar] [CrossRef]
- Perie, C.; Ouimet, R. Organic carbon, organic matter and bulk den sity relationships in boreal forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 2017, 63, 242–247. [Google Scholar]
- Kay, B.D.; Van den Bygaart, A.J. Conservation tillage and depth stratification of porosity and soil organic matter. Soil Till. Res. 2002, 66, 107–118. [Google Scholar] [CrossRef]
- Urbanek, E.; Horn, R. Changes in soil organic matter, bulk density and tensile strength of aggregates after percolation in soils after conservation and conventional tillage. Int. Agrophysics 2006, 20, 245–254. [Google Scholar]
- Kirchamnn, H.; Gerzabek, M.H. Relationship between soil organic matter and micropores in a long-termexperiment at Ultuna, Sweden. J. Plant Nutr. Soil Sci. 1999, 162, 493–498. [Google Scholar] [CrossRef]
- Kahl, T.; Mund, M.; Bauhus, J.; Detlef, S.E. Dissolved organic carbon from European beech logs: Patterns of input to and retention by surface soil. Ecoscience 2012, 19, 1–10. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Camps-Roach, G. Effects of organic matter and calcium on soilstructural stability. Eur. J. Soil Sci. 2007, 58, 722–727. [Google Scholar] [CrossRef]
- Ganjeguente, G.K.; Condron, L.M.; Clinton, P.W.; Davis, M.R.; Mahien, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For. Ecol. Manag. 2004, 187, 197–211. [Google Scholar] [CrossRef]
- Petrillo, M.; Cherubini, P.; Sartori, G.; Abiven, S.; Ascher, J.; Bertoldi, D.; Camin, F.; Barbero, A.; Larcher, R.; Egli, M. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. iForest 2015, 9, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Dai, L.M.; Gu, H.Y.; Zhong, L. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J. For. Res. 2007, 18, 48–54. [Google Scholar] [CrossRef]
- Semenov, V.M.; Pautova, N.B.; Lebedeva, T.N.; Kromychkina, D.P.; Semenova, N.A.; Lopes de Gerenyu, V.O. Plant Residues Decomposition and Formation of Active Organic Matter in the Soil of the Incubation Experiments. Eurasian Soil Sci. 2019, 52, 1183–1194. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Piaszczyk, W. Dissolved organic carbon and total nitrogen release from deadwood of different tree species in various stages of decomposition. J. Sci. Plant Nutr. 2018, 65, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Edmond, R.L.; Vogt, D.J.; Sandberg, D.H.; Driver, C.H. Decomposition of Douglas-fir and red alder wood in clear-cuttings. Can. J. For. Res. 2011, 16, 822–831. [Google Scholar] [CrossRef]
- Mao, J.; Nierop, K.G.; Dekker, S.C.; Dekker, L.W.; Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: A review. J. Soil. Sedim. 2018, 19, 171–185. [Google Scholar] [CrossRef]
- Moral Garcia, F.J.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Soil Water Repellency in the Natural Park of Donana, Southern Spain. In Soil Water Repellency Occurrence, Consequences and Amelioration; Ritsema, C.J., Dekker, L.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 121–127. [Google Scholar]
Degree | Criteria for Evaluation |
---|---|
I | Texture intact, circular, natural color of wood, bark intact, branches <3 cm, log leaning on branches |
II | Texture intact, circular, natural color of wood, bark slightly damaged, no branches <3 cm, log begins to sink |
III | Texture - larger hard fragments, circular, faded color of wood, fragmented bark, no branches <3 cm, almost entire log on the ground |
IV | Texture - small pieces, oval shape, faded color of wood, no bark, no branches <3 cm, entire log on the ground |
V | Texture soft and loose, oval shape, faded color of wood, no bark, no branches <3 cm, entire on the ground |
Species | DC | pHH2O | pHKCl | N | Ct | Lignin |
---|---|---|---|---|---|---|
Aspen | III | 4.70 ± 0.62 a | 4.18 ± 0.59 a | 0.16 ± 0.07 b | 45.35 ± 0.24 a | 26.99 ± 4.53 b |
IV | 4.44 ± 0.37 a | 3.82 ± 0.40 a | 0.66 ± 0.17 a | 45.99 ± 1.79 a | 37.24 ± 7.74 a,b | |
V | 5.00 ± 0.46 a | 4.35 ± 0.58 a | 0.88 ± 0.14 a | 46.42 ± 0.86 a | 37.60 ± 4.75 a | |
Alder | III | 4.56 ± 0.99 a | 3.86 ± 0.75 a | 0.36 ± 0.16 b | 47.00 ± 0.43 a | 30.48 ± 5.39 b |
IV | 4.20 ± 0.35 a | 3.72 ± 0.28 a | 0.49 ± 0.18 a,b | 46.32 ± 0.14 a | 32.89 ± 1.53 b | |
V | 4.71 ± 0.65 a | 4.12 ± 0.60 a | 1.10 ± 0.35 a | 46.12 ± 0.50 a | 40.92 ± 5.53 a |
Classes | Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 |
---|---|---|---|---|---|---|---|
WDPT | <5 s | 5–60 s | 1–10 min | 10–60 min | 1–3 h | 3–6 h | >6 h |
wettable | slightly water repellent | strongly water repellent | severely water repellent | extremely water repellent | extremely water repellent | extremely water repellent |
Properties | Decay Classes | ||||||
---|---|---|---|---|---|---|---|
C | III | IV | V | III | IV | V | |
Common Aspen | Common Alder | ||||||
pH H2O | 4.66 ± 0.76 a | 4.49 ± 0.35 a | 4.15 ± 0.27 a | 4.27 ± 0.32 a | 4.89 ± 0.23 a,c | 5.43 ± 0.26 b | 5.26 ± 0.19 b,c |
pH KCl | 3.94 ± 0.75 a | 3.77 ± 0.36 a | 3.59 ± 0.24 a | 3.29 ± 0.30 a | 4.02 ± 0.11 a | 4.81 ± 0.16 b | 4.62 ± 0.25 b |
N | 0.56 ± 0.23 a | 0.61 ± 0.13 a | 0.66 ± 0.13 a,b | 0.82 ± 0.16 b | 0.64 ± 0.23 a | 1.12 ± 0.26 b | 1.33 ± 0.27 b |
Ct | 8.34 ± 3.52 a | 9.99 ± 2.15 a | 12.50 ± 2.35 a | 16.13 ± 3.15 b | 9.18 ± 3.39 a | 17.78 ± 4.04 b | 20.81 ± 4.27 b |
sand | 69.9 ± 9.0 a | 67.0 ± 8.4 a | 68.0 ± 7.0 a | 65.0 ± 10.4 a | 68.0 ± 7.0 a | 68.0 ± 8.4 a | 67.0 ± 9.6 a |
silt | 27.1 ± 6.0 a | 28.5 ± 7.9 a | 30.1 ± 5.5 a | 28.9 ± 6.0 a | 25.8 ± 5.8 a | 26.8 ± 7.2 a | 27.4 ± 8.2 a |
clay | 2.5 ± 1.8 a | 3.3 ± 1.9 a | 2.0 ± 1.4 a | 3.9 ± 2.2 a | 3.7 ± 2.3 a | 3.2 ± 2.0 a | 3.5 ± 1.5 a |
Properties | Decay Classes | ||||||
---|---|---|---|---|---|---|---|
C | III | IV | V | III | IV | V | |
Common Aspen | Common Alder | ||||||
Dw | 2.53 ± 0.05 a,b | 2.51 ± 0.21 a | 2.47 ± 0.09 a,b | 2.32 ± 0.14 b | 2.42 ± 0.14 a | 2.36 ± 0.14 a | 1.95 ± 0.16 b |
BDa | 1.15 ± 0.10 a | 1.07 ± 0.11 a,b | 0.92 ± 0.12 b | 0.76 ± 0.11 c | 0.92 ± 0.24 a,b | 0.84 ± 0.20 b | 0.50 ± 0.10 c |
BDd | 0.97 ± 0.09 a | 0.85 ± 0.11 a,b | 0.78 ± 0.12 b | 0.63 ± 0.10 c | 0.75 ± 0.23 a,b | 0.63 ± 0.18 b | 0.31 ± 0.09 c |
Mw % | 18.8 ± 1.7 a | 26.6 ± 4.7 b | 19.2 ± 2.9 a | 20.7 ± 4.9 a | 24.9 ± 7.8 a,b | 35.5 ± 8.3 b | 66.2 ± 16.4 c |
Mv % | 18.2 ± 1.5 a | 22.1 ± 2.3 b | 14.6 ± 0.8 c | 12.8 ± 2.9 c | 17.1 ± 2.6 a | 21.1 ± 2.4 b | 19.3 ± 1.9 a,b |
Por % | 61.7 ± 3.4 a | 66.3 ± 3.3 a,b | 68.6 ± 4.0 b,c | 72.9 ± 4.2 c | 69.5 ± 8.1 a,b | 73.7 ± 6.4 b | 84.4 ± 3.1 c |
Pa % | 9.1 ± 3.8 a | 11.8 ± 4.8 a | 20.0 ± 6.8 b | 18.6 ± 4.4 b | 13.3 ± 9.4 a | 13.1 ± 8.5 a | 7.8 ± 7.7 a |
CWCw % | 54.7 ± 5.1 a | 65.5 ± 10 a | 63.6 ± 9.9 a | 89.2 ± 22.1 b | 82.6 ± 27.4 a | 103.4 ± 28.2 a | 267.9 ± 86.3 b |
CWCv % | 52.6 ± 0.8 a,b | 54.4 ± 2.9 a | 48.6 ± 4.6 b | 54.3 ± 5.2 a | 56.2 ± 5.2 a | 60.6 ± 3.1 a | 76.7 ± 7.6 b |
A.1–2 mm [pc.] * | 1193.3 ± 304.2 a,b | 1112.1 ± 257.1 a | 1448.2 ± 364.9 a,b | 1677.7 ± 568.9 b | 1618.7 ± 491.9 a | 1354.6 ± 324.7 a | 2821.0 ± 862.3 b |
A.2–5 mm [pc.] * | 350.9 ± 124.4 a | 230.2 ± 58.0 a | 255.4 ± 75.7 a | 237.3 ± 73.8 a | 300.6 ± 73.3 a | 346.3 ± 114.6 a | 337.9 ± 104.4 a |
A.5–10 mm [pc.] * | 11.4 ± 6.5 a | 11.9 ± 3.1 a | 11.4 ± 6.4 a | 14.8 ± 6.7 a | 5.7 ± 3.3 a,b | 9.4 ± 3.6 a | 2.02 ± 4.0 b |
A.> 10 mm [pc.] * | 4.0 ± 4.3 a | 10.1 ± 3.6 b | 6.6 ± 2.8 a,b | 4.5 ± 3.4 a | 2.5 ± 1.2 a,b | 5.6 ± 3.2 a | 1.2 ± 1.9 b |
WDPTd min | 3.33 ± 4. a | 10.4 ± 15.1 a | 36.3 ± 26.2 b | 39.4 ± 16.3 b | 18.4 ± 28.3 a | 2.9 ± 2.2 a | 72.5 ± 38.2 b |
WDPTf min | 0.3 ± 0.3 a | 0.6 ± 1.3 a | 1.4 ± 1.3 a | 23.0 ± 42.2 a | 1.4 ± 1.5 a | 4.2 ± 10.1 a,b | 13.1 ± 8.2 b |
pHH2O | pH KCl | N | Ct | |
---|---|---|---|---|
Dw | −0.272 * | −0.283 * | −0.767 * | −0.744 * |
BDa | −0.155 | −0.178 | −0.795 * | −0.819 * |
BDd | −0.227 | −0.257 * | −0.829 * | −0.832 * |
Ww | 0.414 * | 0.471 * | 0.816 * | 0.725 * |
Wv | 0.436 * | 0.485 * | 0.077 | −0.067 |
Por | 0.22 | 0.258 * | 0.829 * | 0.829 * |
Pa | −0.401 * | −0.381 * | 0.083 | 0.197 |
CWCw | 0.328 * | 0.364 * | 0.807 * | 0.748 * |
CWCv | 0.516 * | 0.532 * | 0.657 * | 0.565 * |
A.1-2 mm | 0.249 * | 0.248 * | 0.488 * | 0.458 * |
A.2-5 mm | 0.311 * | 0.305 * | 0.096 | 0.007 |
WDPTf | −0.027 | −0.023 | 0.409 * | 0.463 * |
WDPTd | −0.083 | -0.029 | 0.196 | 0.248 * |
BDd | |||
---|---|---|---|
F | p Value | ||
DC | 14.9516 | 0.00000 | |
Species | 0.8857 | 0.35091 | |
Ct | 68.4818 | 0.00000 | |
DC *species | 9.0507 | 0.00006 | |
DC *Ct | 22.8415 | 0.00000 | |
Species *Ct | 0.0038 | 0.95120 |
Dw | BDa | BDd | Mw | Mv | Por | Pa | CWCw | CWCv | A.1–2 mm | A.2–5 mm | WDPTf | WDPTd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dw | |||||||||||||
BDa | 0.851 * | ||||||||||||
BDd | 0.871 * | 0.989 * | |||||||||||
Mw | −0.841 * | −0.737 * | −0.806 * | ||||||||||
Mv | 0.024 | 0.260 * | 0.114 | 0.314 * | |||||||||
Por | −0.806 * | −0.978 * | −0.989 * | 0.802 * | −0.115 | ||||||||
Pa | 0.014 | −0.340 * | −0.270 * | −0.151 | −0.523 * | 0.293 * | |||||||
CWCw | −0.876 * | −0.796 * | −0.829 * | 0.949 * | 0.069 | 0.825 * | −0.165 | ||||||
CWCv | −0.714 * | −0.580 * | −0.646 * | 0.822 * | 0.322 * | 0.637 * | −0.551 * | 0.853 * | |||||
A.1–2 mm | −0.671 * | −0.583 * | −0.603 * | 0.669 * | 0.016 | 0.573 * | −0.075 | 0.671 * | 0.561 * | ||||
A.2–5 mm | −0.016 | 0.006 | −0.029 | 0.144 | 0.231 | 0.041 | −0.217 | 0.09 | 0.21 | 0.14 | |||
WDPTf | −0.565 * | −0.586 * | −0.578 * | 0.480 * | −0.165 | 0.561 * | 0.062 | 0.545 * | 0.440 * | 0.656 * | 0.017 | ||
WDPTd | −0.226 | −0.262 * | −0.250 * | 0.17 | −0.126 | 0.246 * | 0.334 * | 0.158 | −0.054 | 0.116 | −0.037 | 0.314 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2020, 11, 24. https://doi.org/10.3390/f11010024
Piaszczyk W, Lasota J, Błońska E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests. 2020; 11(1):24. https://doi.org/10.3390/f11010024
Chicago/Turabian StylePiaszczyk, Wojciech, Jarosław Lasota, and Ewa Błońska. 2020. "Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil" Forests 11, no. 1: 24. https://doi.org/10.3390/f11010024
APA StylePiaszczyk, W., Lasota, J., & Błońska, E. (2020). Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests, 11(1), 24. https://doi.org/10.3390/f11010024