Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Ecosystem Services Assessment Methods
2.3.1. Preliminary Assessment Method (PAM)
2.3.2. Air Quality Index
- was a tool for ranking common urban plant species on the basis of their ability to improve the air quality, so as to be able to map and attribute a value to the trees of the City of Turin present on the Albera.To system;
- that considered the Ozone (O3), which especially in Turin, but also in other Italian cities, is present in high concentrations [60];
- that considered the climate of the Mediterranean areas, with specific reference to the Italian reality.
2.4. Socio-Demographic Analysis
2.5. Qualitative Evaluation of Socio-Demographic Characteristics and Ecosystems Services
- -
- high represents the sum of assigned values > 0;
- -
- medium represents the sum of assigned values = 0;
- -
- low represents the sum of assigned values < 0.
3. Results
3.1. Provisioning and Regulating Services at the City Scale
3.2. Species Specific Air Quality Index at City Scale
3.3. Provisioning and Regulating Services at Neighborhood Scale
3.4. Socio-Demographic Characteristics of Neighborhoods
3.5. Qualitative Evaluation Map of Turin Neighborhoods
4. Discussions and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef] [Green Version]
- United Nations. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Methodology.pdf (accessed on 14 April 2019).
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- European Commission. 2011. Available online: https://ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/EP_resolution_april2012.pdf (accessed on 12 June 2019).
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; Maclvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet Digit. Health 2008, 372, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; Konijnendijk van den Bosch, C. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Kopperoinen, L.; Itkonen, P.; Niemelä, J. Using expert knowledge in combining green infrastructure and ecosystem services in land use planning: An insight into a new place-based methodology. Landsc. Ecol. 2014, 29, 1361–1375. [Google Scholar] [CrossRef]
- Dunford, R.; Harrison, P.; Smith, A.; Dick, J.; Barton, D.N.; Martin-Lopez, B.; Kelemen, E.; Jacobs, S.; Saarikoski, H.; Turkelboom, F.; et al. Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosyst. Serv. 2018, 29, 499–514. [Google Scholar] [CrossRef]
- Vihervaara, P.; Viinikka, A.; Brander, L.; Santos-Martín, F.; Poikolainen, L.; Nedkov, S. Methodological interlinkages for mapping ecosystem services—From data to analysis and decision-support. One Ecosyst. 2019, 4, e26368. [Google Scholar] [CrossRef] [Green Version]
- Peña, L.; Onaindia, M.; Fernández de Manuel, B.; Ametzaga-Arregi, I.; Casado-Arzuaga, I. Analysing the synergies and trade-offs between ecosystem services to reorient land use planning in metropolitan Bilbao (Northern Spain). Sustainability 2018, 10, 4376. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Zulian, G.; Geneletti, D. Assessing nature-based recreation to support urban green infrastructure planning in Trento (Italy). Land 2018, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Kleemann, J.; Fürst, C. A differentiated spatial assessment of urban ecosystem services based on land use data in Halle, Germany. Land 2018, 7, 101. [Google Scholar] [CrossRef]
- Giedych, R.; Maksymiuk, G. Specific features of parks and their impact on regulation and cultural ecosystem services provision in Warsaw, Poland. Sustainability 2017, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Odom Green, O.; Garmestani, A.S.; Albro, S.; Ban, N.C.; Berland, A.; Burkman, C.E.; Gardiner, M.M.; Gunderson, L.; Hopton, M.E.; Schoon, M.L.; et al. Adaptive governance to promote ecosystem services in urban green spaces. Urban Ecosyst. 2015, 19, 77–93. [Google Scholar] [CrossRef]
- Conway, T.M.; Almas, A.D.; Coore, D. Ecosystem services, ecological integrity, and native species planting: How to balance these ideas in urban forest management? Urban For. Urban Green. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landscape Ecol 2018, 33, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Pauleit, S.; Seeland, K.; de Vries, S. Benefits and uses of urban forests and trees. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 81–114. [Google Scholar]
- Livesley, S.J.; McPherson, G.M.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, H.J.; Doick, K.J.; Hudson, M.D.; Schreckenberg, K. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests. Environ. Res. 2017, 156, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Obersteiner, A.; Gilles, S.; Frank, U.; Beck, I.; Häring, F.; Ernst, D.; Rothballer, M.; Hartmann, A.; Traidl-Hoffmann, C.; Schmid, M. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS ONE 2016, 11, e0149545. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, X.; Thompson, L.A.; Gross, H.E.; Shenkman, E.A.; DeWalt, D.A.; Huang, I.-C. Longitudinal effect of ambient air pollution and pollen exposure on asthma control: The patient-reported outcomes measurement information system (PROMIS) pediatric asthma study. Acad. Pediatrics 2019, 19, 615–623. [Google Scholar] [CrossRef]
- IUCN—Tools for Measuring, Modelling, and Valuing Ecosystem Services. 2018. Available online: https://portals.iucn.org/library/sites/library/files/documents/PAG-028-En.pdf (accessed on 20 November 2019).
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- FAO—Guidelines on Urban and Peri-Urban Forestry. 2016. Available online: http://www.fao.org/forestry/urbanforestry/87034/en/ (accessed on 20 November 2019).
- WHO—Health as the Pulse of the New Urban Agenda. 2016. Available online: https://www.who.int/phe/publications/urban-health/en/ (accessed on 20 November 2019).
- Tree Cities of the World—Tree Cities of the World Programme. 2019. Available online: https://treecitiesoftheworld.org/ (accessed on 20 November 2019).
- Gibbons, K.H.; Ryan, C.M. Characterizing comprehensiveness of urban forest management plans in Washington State. Urban For. Urban Green. 2015, 14, 615–624. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U.; Hofmann, F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J. Geochem. Explor. 2018, 187, 97–117. [Google Scholar] [CrossRef]
- Achakzai, K.; Khalid, S.; Adrees, M.; Bibi, A.; Ali, S.; Nawaz, R.; Rizwan, M. Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan. J. Environ. Manag. 2017, 190, 252–258. [Google Scholar] [CrossRef]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; de Fátima Andrade, M.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Schwandner Ferreira, L.; Nascimento Saldiva, P.H.; et al. The role of air pollution and climate on the growth of urban trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.; Biber, P.; Pretzsch, H.; Grote, R. Modeling ecosystem services for park trees: Sensitivity of i-tree eco simulations to light exposure and tree species classification. Forests 2018, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nayak, D.; Patel, D.P.; Thakare, H.S.; Satashiya, K.; Shrivastava, P.K. Evaluation of air pollution tolerance index of trees. Res. J. Chem. Environ. Sci. 2015, 8, 7–10. [Google Scholar]
- Ministero Dell’ambiente e Della Tutela del Territorio e del Mare. 2018. Available online: https://www.minambiente.it/sites/default/files/archivio/allegati/comitato%20verde%20pubblico/strategia_verde_urbano.pdf (accessed on 6 March 2019).
- Conference of the Parties (COP 21), United Nations. 2015. Available online: https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21 (accessed on 13 June 2019).
- Wang, H.F.; Qureshi, S.; Qureshi, B.A.; Qiu, J.X.; Friedman, C.R.; Breuste, J.; Wang, X.K. A multivariate analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover and plant diversity in Beijing, China. Ecol. Indic. 2016, 60, 921–929. [Google Scholar] [CrossRef]
- ISTAT (2018). Available online: http://demo.istat.it/bilmens2018gen/index.html (accessed on 31 May 2019).
- European Environmental Agency—Copernicus Land Monitoring Service. 2018. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas (accessed on 14 April 2019).
- Regione Piemonte. 2019. Available online: http://relazione.ambiente.piemonte.it/2019/it/aria/stato/pm10 (accessed on 14 April 2019).
- Migliaretti, G.; Dalmasso, P.; Gregori, D. Air pollution effects on the respiratory health of the resident adult population in Turin, Italy. Int. J. Environ. Health Res. 2007, 17, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, V.; Casazza, M.; Malandrino, M.; Maurino, V.; Piano, A.; Schilirò, T.; Gilli, G. PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 2014, 112, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Bono, R.; Romanazzi, V.; Bellisario, V.; Tassinari, R.; Trucco, G.; Urbino, A.; Cassardo, C.; Siniscalco, C.; Marchetti, P.; Marcon, A. Air pollution, aeroallergens and admissions to pediatric emergency room for respiratory reasons in Turin, northwestern Italy. BMC Public Health 2016, 16, 722. [Google Scholar] [CrossRef] [Green Version]
- Albera.TO. Available online: http://www.comune.torino.it/verdepubblico/2016/alberi16/nasce-alberato-applicativo-gestione-patrimonio-arboreo.shtml (accessed on 04 March 2019).
- Comune di Torino—Verde Storico. Available online: http://www.comune.torino.it/verdepubblico/patrimonioverde/verdeto/storia.shtml (accessed on 04 March 2019).
- Giorgio Rota Report. 2015. Available online: www.rapporto-rota.it (accessed on 6 June 2019).
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Zepp, H.; Mizgajski, A.; Mess, C.; Zwierzchowska, I. A preliminary assessment of urban ecosystem services in central European urban areas. A methodological outline with examples from Bochum (Germany) and Poznań (Poland). Ber. Geogr. Landeskd. 2016, 90, 67–84. [Google Scholar]
- Urban Atlas. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 14 April 2019).
- Common International Classification of Ecosystem Services (CICES) v.5.1. Available online: https://cices.eu/ (accessed on 15 April 2019).
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating ecosystem services of forests in ten Italian metropolitan cities: Air quality improvement by PM 10 and O 3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Borbet, T.C.; Gladson, L.A.; Cromar, K.R. Assessing air quality index awareness and use in Mexico City. BMC Public Health 2018, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, Q.; Kaufman, J.S.; Wang, J.; Copes, R.; Su, Y.; Benmarhnia, T. Effect of air quality alerts on human health: A regression discontinuity analysis in Toronto, Canada. Lancet Planet. Health 2018, 2, e19–e26. [Google Scholar] [CrossRef] [Green Version]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate air quality index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Chen, Y.-S.; Zhang, J.; Lyons, T.J.; Pai, J.-L.; Chang, S.-H. Comparison of the revised air quality index with the PSI and AQI indices. Sci. Total Environ. 2007, 382, 191–198. [Google Scholar] [CrossRef]
- Murena, F. Measuring air quality over large urban areas: Development and application of an air pollution index at the urban area of Naples. Atmos. Environ. 2004, 38, 6195–6202. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Dabanlı, I.; Şişman, E.; Şen, Z. Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos. Pollut. Res. 2019, 10, 88–96. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; De Marco, A.; Paoletti, E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Governo Italiano—Presidenza del Consiglio dei Ministri—Urban Index. Available online: https://www.urbanindex.it/indicatori/indice-di-vecchiaia/ (accessed on 15 April 2019).
- ISPRA—Stato Dell’ambiente. 2017. Available online: http://www.isprambiente.gov.it/files2017/pubblicazioni/stato-ambiente/rau-2017/1_Fattori%20sociali%20ed%20economici.pdf (accessed on 15 April 2019).
- Regione Piemonte—40 Anni di Salute a Torino. 2017. Available online: http://www.epiprev.it/materiali/2017/Torino_40_anni/40anni_singole.pdf (accessed on 15 April 2019).
- Groenewegen, P.P.; van den Berg, A.E.; de Vries, S.; Verheij, R.A. Vitamin G: Effects of green space on health, well-being, and social safety. BMC Public Health 2006, 6, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertram, C.; Rehdanz, K. The role of urban green space for human well-being. Ecol. Econ. 2015, 120, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Escobedo, F.J.; Zerbe, S. Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environ. Sci. 2016, 3, 58–76. [Google Scholar] [CrossRef]
- Richards, D.R.; Edwards, P.J. Quantifying street tree regulating ecosystem services using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Suchocka, M.; Kosiacka-Beck, E.; Niewiarowska, A. Horticultural therapy as a tool of healing persons with disability on an example of support centre in Kownaty. Ecol. Quest. 2019, 30, 7–18. [Google Scholar] [CrossRef]
- Lis, A.; Pardela, Ł.; Iwankowski, P. Impact of vegetation on perceived safety and preference in city parks. Sustainability 2019, 11, 6324. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.L.; Redford, K.H.; Lindenmayer, D.B. The complementary niches of anthropocentric and biocentric conservationists. Conserv. Biol. 2014, 28, 641–645. [Google Scholar] [CrossRef]
- Braveman, P.A.; Cubbin, C.; Egerter, S.; Chideya, S.; Marchi, K.S.; Metzler, M.; Posner, S. Socioeconomic status in health research: One size does not fit all. JAMA 2005, 294, 2879–2889. [Google Scholar] [CrossRef]
- Maas, J. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Artmann, M. The role of urban green spaces in care facilities for elderly people across European cities. Urban For. Urban Green. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Dadvand, P.; Wright, J.; Martinez, D.; Basagaña, X.; McEachan, R.R.C.; Cirach, M.; Gidlow, C.J.; de Hoogh, K.; Gra, R. Inequality, green spaces, and pregnant women: Roles of ethnicity and individual and neighbourhood socioeconomic status. Environ. Int. 2014, 71, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Suchocka, M.; Jankowski, P.; Błaszczyk, M. Perception of urban trees by polish tree professionals vs. nonprofessionals. Sustainability 2019, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Battisti, L.; Corsini, F.; Gusmerotti, N.M.; Larcher, F. Management and perception of metropolitan natura 2000 sites: A case study of La Mandria Park (Turin, Italy). Sustainability 2019, 11, 6169. [Google Scholar] [CrossRef] [Green Version]
- Morgenroth, J. Urban tree diversity—Taking stock and looking ahead. Urban For. Urban Green. 2016, 15, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sjöman, H. Diversity and distribution of the urban tree population in ten major Nordic cities. Urban For. Urban Green. 2012, 11, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Battisti, L.; Pille, L.; Wachtel, T.; Larcher, F.; Säumel, I. Residential greenery: State of the art and health-related ecosystem services and disservices in the city of Berlin. Sustainability 2019, 11, 1815. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Gatziolis, D.; Mao, M.Y. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef]
- Blanusa, T. Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban For. Urban Green. 2019, 44, 126391. [Google Scholar] [CrossRef]
Index | Formula | Unit of Measurement | Classes | |||
---|---|---|---|---|---|---|
Low | Medium-Low | Medium-High | High | |||
Ageing index [69] 1 | - | ≤150 | 151–200 | 201–250 | >250 | |
Housing density [70] 1 | Inhabitants/km2 | ≤3000 | 3001–9000 | 9001–15,000 | >15,000 | |
Economically assisted citizens2 | % | ≤0.5 | 0.51–1 | 1.10–1.50 | >1.50 |
A | B | C | D | E | |
---|---|---|---|---|---|
Low | 2 | 2 | 2 | −2 | −2 |
Medium-low | 1 | 1 | 1 | −1 | −1 |
Medium-high | −1 | −1 | −1 | 1 | 1 |
High | −2 | −2 | −2 | 2 | 2 |
Neighborhoods | Area 1 (km2) | N° of Trees/km2 | Tree Species Richness |
---|---|---|---|
1. Centro | 3.77 | 1051 | 75 |
2. San Salvario | 2.34 | 1222 | 81 |
3. Crocetta | 2.77 | 1417 | 42 |
4. San Paolo | 2.22 | 917 | 52 |
5. Cenisia | 2.33 | 1019 | 71 |
6. San Donato | 3.02 | 818 | 56 |
7. Aurora | 2.67 | 980 | 53 |
8. Vanchiglia | 3.38 | 965 | 59 |
9. Nizza Millefonti | 3.51 | 370 | 52 |
10. Mercati Generali | 3.46 | 883 | 70 |
11. Santa Rita | 3.57 | 1190 | 78 |
12. Mirafiori Nord | 3.79 | 1240 | 74 |
13. Pozzo Strada | 4.22 | 1112 | 73 |
14. Parella | 4.91 | 815 | 98 |
15. Le Vallette | 7.54 | 487 | 68 |
16. Madonna di Campagna | 7.40 | 282 | 81 |
17. Borgata Vittoria | 3.86 | 355 | 55 |
18. Barriera di Milano | 2.83 | 507 | 52 |
19. Falchera | 12.62 | 180 | 66 |
20. Regio Parco | 6.92 | 318 | 69 |
21. Madonna del Pilone | 15.5 | - | - |
22. Borgo Po e Cavoretto | 13.61 | - | - |
23. Mirafiori Sud | 11.44 | 451 | 77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battisti, L.; Pomatto, E.; Larcher, F. Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests 2020, 11, 25. https://doi.org/10.3390/f11010025
Battisti L, Pomatto E, Larcher F. Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests. 2020; 11(1):25. https://doi.org/10.3390/f11010025
Chicago/Turabian StyleBattisti, Luca, Enrico Pomatto, and Federica Larcher. 2020. "Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy)" Forests 11, no. 1: 25. https://doi.org/10.3390/f11010025
APA StyleBattisti, L., Pomatto, E., & Larcher, F. (2020). Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests, 11(1), 25. https://doi.org/10.3390/f11010025