Stem Decay in Live Trees: Heartwood Hollows and Termites in Five Timber Species in Eastern Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindenmayer, D.B.; Laurance, W.F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 2017, 92, 1434–1458. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.W.; Gopalakrishna, T.; Goodman, R.C.; Putz, F.E.; Roopsind, A.; Umunay, P.M.; Zalman, J.; Ellis, E.A.; Mo, K.; Gregoire, T.G.; et al. Climate-effective reduced-impact logging (RIL-C) can halve selective logging carbon emissions in tropical forests. For. Ecol. Manag. 2019, 438, 255–260. [Google Scholar] [CrossRef]
- Holmes, T.P.; Blate, G.M.; Zweede, J.C.; Pereira, R., Jr.; Barreto, P.; Boltz, F.; Bauch, R. Financial and ecological indicators of reduced impact logging performance in the eastern Amazon. For. Ecol. Manag. 2002, 163, 93–110. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Carter, D.R.; Schulze, M.D.; Vidal, E. The sustainability of timber production from eastern Amazonian forests. Land Use Policy 2012, 29, 339–350. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Nelson, B.; Fearnside, P. Volume and biomass of trees in central Amazonia: Influence of irregularly shaped and hollow trunks. For. Ecol. Manag. 2016, 227, 14–21. [Google Scholar] [CrossRef]
- Heineman, K.D.; Russo, S.E.; Baillie, I.C.; Mamit, J.D.; Chai, P.P.-K.; Chai, L.; Hiondley, E.W.; Lau, B.-T.; Tan, S.; Ashton, P.S. Evaluation of stem rot in 339 Bornean tree species: Implications of size, taxonomy, and soil-related variation for aboveground biomass estimates. Biogeosciences 2015, 12, 5735–5751. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol. 2001, 15, 1515–1521. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Kennard, D.K.; Putz, F.E.; Niederhofer, M. The predictability of tree decay based on visual assessments. J. Arboric. 1996, 22, 249–254. [Google Scholar]
- Lindenmayer, D.B.; Cunningham, R.; Donnelly, C. Decay and collapse of trees with hollows in eastern Australian forests: Impacts on arboreal marsupials. Ecol. Appl. 1997, 7, 625–641. [Google Scholar] [CrossRef]
- Mattheck, C.; Bethge, K.; Tesari, I. Shear effects on failure of hollow trees. Trees 2006, 20, 329–333. [Google Scholar] [CrossRef]
- Chao, K.J.; Phillips, O.L.; Monteagudo, A.; Torres-Lezama, A.; Martínez, R.V. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 2009, 20, 260–268. [Google Scholar] [CrossRef]
- Johns, J.; Barreto, P.; Uhl, C. Logging damage during planned and unplanned logging operations in the eastern Amazon. For. Ecol. Manag. 1996, 89, 59–77. [Google Scholar] [CrossRef]
- Holzmueller, E.J.; Jose, S.; Jenkins, M.A. The relationship between fire history and an exotic fungal disease in a deciduous forest. Oecologia 2008, 155, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, E.; Pinard, M.; Woodward, S. Invasión Micótica de Lesiones Artificiales en Ficus glabrata; USAID: Santa Cruz, Bolivia, 2000; pp. 2–20.
- Holdenrieder, O.; Pautasso, M.; Weisberg, P.J.; Lonsdale, D. Tree diseases and landscape processes: The challenge of landscape pathology. Trends Ecol. Evol. 2004, 19, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.B.; Kitajima, K.; Kraft, N.J.; Reich, P.B.; Wright, I.J.; Bunker, D.E.; Condit, R.; Dalling, J.W.; Davies, S.J.; Díaz, S.; et al. Functional traits and growth-mortality trade-off in tropical trees. Ecology 2010, 91, 3664–3674. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, S.; Baskin, C.; Schaefer, D.; Yang, X.; Yang, L. Hollow in living trees develop slowly but considerably influence the estimate of forest biomass. Funct. Ecol. 2015, 30, 830–838. [Google Scholar] [CrossRef]
- Shigo, A.L.; Hillis, W.E. Heartwood, discolored wood, and microorganisms in living trees. Annu. Rev. Phytopathol. 1973, 11, 197–222. [Google Scholar] [CrossRef]
- Shigo, A.L. A New Tree Biology: Facts, Photos, and Philosophies on Trees, 2nd ed.; Shigo and Trees Associates: Durham, NC, USA, 1989; pp. 20–90. [Google Scholar]
- Rayner, A.D.M.; Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology, 1st ed.; John Wiley & Sons: Chichester, UK, 1988; pp. 20–70. [Google Scholar]
- Traniello, J.F.A.; Leuthold, R.H. Behavior and ecology of foraging termites. In Termites: Evolution, Sociality, Symbiosis, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 141–168. [Google Scholar]
- Amusant, N.; Beauchene, J.; Fournier, M.; Janin, G.; Thevenon, M.-F. Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour. Ann. For. Sci. 2004, 61, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Bolker, B.M.; Edwards, C.E. Stem responses to damage: The evolutionary ecology of Quercus species in contrasting fire regimes. New Phytol. 2009, 182, 261–271. [Google Scholar] [CrossRef]
- Roisin, Y.; Dejean, A.; Corbara, B.; Orivel, J.; Samaniego, M.; Leponce, M. Vertical extratification of the termite assemblage in a neotropical rainforest. Oecologia 2006, 149, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Apolinario, F.E.; Martius, C. Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For. Ecol. Manag. 2004, 194, 23–28. [Google Scholar] [CrossRef]
- Werner, P.A.; Prior, L.D. Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J. Trop. Ecol. 2007, 23, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.A.; Forschler, B.T.; Trettin, C.C. Not just urban: The Formosan subterranean termite, Coptotermes formosanus, is invading forests in the Southeastern USA. Biol. Invasions 2019, 21, 1283–1294. [Google Scholar] [CrossRef]
- Cornelius, M.L.; Daigle, D.J.; Connick, W.J.; Parker, A.; Wunch, K. Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J. Econ. Entomol. 2002, 95, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Kirker, G.T.; Wagner, T.L.; Diehl, S.V. Relationship between wood-inhabiting fungi and Reticulitermes spp. in four forest habitats of northeastern Mississipi. Int. Biodeter. Biodegr. 2012, 72, 18–25. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G. Nutritional ecology of the Formosan subterranean termite (Isoptera: Rhinotermitidae): Growth and survival of incipient colonies feeding on preferred wood species. J. Econ. Entomol. 2003, 96, 106–116. [Google Scholar] [CrossRef]
- Judd, T.M.; Corbin, C.C. Effect of cellulose concentration on the feeding preferences of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 2009, 53, 775–784. [Google Scholar]
- Wong, N.; Lee, C.Y. Influence of different substrate moistures on wood consumption and movement patterns of Microcerotermes crassus and Coptotermes gestroi (Blattodea: Termitidae, Rhinotermitidae). J. Econ. Entomol. 2010, 103, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Gautam, B.K.; Henderson, G. Wood consumption by Formosan subterranean termites (Isoptera: Rhinotermitidae) as affected by wood moisture contente and temperature. Ann. Entomol. Soc. Am. 2011, 104, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Oberst, S.; Lenz, M.; Lai, J.C.S.; Evans, T.A. Termites manipulate moisture content of wood to maximize foraging resources. Biol. Lett. 2019, 15, 20190365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watrin, O.S.; Rocha, A.M.A. Levantamento da Vegetação Natural e do Uso da Terra no Município de Paragominas (PA) Utilizando Imagens TM/LANDSAT; Boletim de Pesquisa 124; Embrapa—CPATU: Belem, Brazil, 1992; pp. 11–13. [Google Scholar]
- Departamento Nacional De Produção Mineral. Projeto Radam Folha SA.23 São Luis e Parte da Folha SA.24 Fortaleza; Geologia, Geomorfologia, Solos, Vegetação e Uso Potencial da Terra; Departamento Nacional De Produção Mineral: Rio de Janeiro, Brazil, 1973.
- Departamento Nacional De Produção Mineral. Projeto Radam Folha SA.22 Belém; Geologia, Geomorfologia, Solos, Vegetação e Uso Potencial da Terra; Departamento Nacional De Produção Mineral: Rio de Janeiro, Brazil, 1974.
- IBGE. Mapa de Vegetação do Brasil; Ministério da Agricultura: Brasilia, Brazil, 1988.
- Putz, F.E.; Sist, P.; Fredericksen, T.; Dykstra, D. Reduced-impact logging: Challenges and opportunities. For. Ecol. Manag. 2008, 256, 1427–1433. [Google Scholar] [CrossRef]
- Eleuterio, A.A. Distribution of hollow trees in eastern Amazonia. Unpublished work. 2011. [Google Scholar]
- Constantino, R. Termites (Isoptera) from the lower Japura river, Amazonas state, Brazil. Bol. Mus. Para. Emilio Goeldi 1991, 7, 189–224. [Google Scholar]
- Constantino, R. Chave ilustrada para identificação dos gêneros de cupins (Insecta: Isoptera) que ocorrem no Brasil. Pap. Avulsos Zool. 1999, 40, 387–448. [Google Scholar]
- SAS Institute Inc. SAS Software Version 9.2 of the SAS System for Windows; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Gough, L.A.; Bierkemoe, T.; Sverdrup-Thygeson, A. Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biol. Conser. 2014, 180, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P. Trees: Their Natural History, 1st ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 231–268. [Google Scholar]
- Janzen, D.H. Why tropical trees have rotten cores. Biotropica 1976, 8, 110. [Google Scholar] [CrossRef]
- Ruxton, G.D. Why are so many trees hollow? Biol. Lett. 2014, 11, 20140555. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Blanchard, W.; Mcburney, L.; Blair, D.; Banks, S.; Likens, G.E.; Franklin, J.F.; Laurance, W.F.; Stein, J.A.R.; Gibbons, P. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS ONE 2012, 7, e41864. [Google Scholar] [CrossRef] [Green Version]
- Schwarze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees, 1st ed.; Springer: Berlin, Germany, 2000; pp. 5–30. [Google Scholar]
- Cherubini, P.; Fontana, G.; Rigling, D.; Dobbertin, M.; Brang, P.; Innes, J.L. Tree-life history prior to death: Two fungal pathogens affect tree-ring growth differently. J. Ecol. 2002, 90, 839–850. [Google Scholar] [CrossRef]
- King, D.A.; Davies, S.J.; Tan, S.; Noor, N.S.M. The role of wood density and stem support costs in the growth and mortality of tropical trees. J. Ecol. 2006, 94, 670–680. [Google Scholar] [CrossRef]
- Kuroda, K. Responses of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J. Wood Sci. 2001, 47, 425–429. [Google Scholar] [CrossRef]
- Angyalossy-Alfonso, V.; Miller, R.B. Wood anatomy of the Brazilian species of Swartzia. IAWA J. 2002, 23, 359–390. [Google Scholar] [CrossRef]
- Romero, C.; Bolker, B.M. Effects of stem anatomical and structural traits on responses to stem damage: An experimental study in the Bolivian Amazon. Can. J. For. Res. 2008, 38, 611–618. [Google Scholar] [CrossRef]
- Niklas, K. Mechanical properties of black locust (Robinia pseudoacacia L.) wood. Size- and age-dependent variations in sap- and heartwood. Ann. Bot. 1997, 79, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Noshiro, S.; Suzuki, M. Ontogenetic wood anatomy of tree and subtree species of Nepalese Rhododendron (Ericaceae) and characterization of shrub species. Am. J. Bot. 2010, 88, 560–569. [Google Scholar] [CrossRef]
- Salguero-Gómez, R.; Casper, B.B. A hydraulic explanation for size-specific plant shrinkage: Developmental hydraulic sectoriality. New Phytol. 2011, 189, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.B.; Wood, J.; McBurney, L.; Michael, D.; Crane, M.; MacGregor, C.; Montague-Drake, R.; Gibbons, P.; Banks, S.C. Cross-sectional vs. longitudinal research: A case study of trees with hollows and marsupials in Australian forests. Ecol. Monogr. 2011, 8, 557–580. [Google Scholar] [CrossRef]
- Hanula, J.L.; Ulyshen, M.D.; Wade, D.D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf flatwoods of Florida. Forests 2012, 3, 317–331. [Google Scholar] [CrossRef]
- Constantino, R. The pest termites of South America: Taxonomy, distribution and status. J. Appl. Ent. 2002, 126, 355–365. [Google Scholar] [CrossRef]
- Evans, T.A.; Forschler, B.T.; Grace, J.K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 2013, 58, 455–474. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, P.; Lindenmayer, D.B. Issues associated with the retention of hollow-bearing trees within eucalypt forests managed for wood production. For. Ecol. Manag. 1996, 83, 245–279. [Google Scholar] [CrossRef]
- Amelung, W.; Martius, C.; Bandeira, A.G.; Garcia, M.V.B.; Zech, W. Lignin characteristics and density fractions of termite nests in an Amazonian rain forest—Indicators of termite feeding guilds? Soil Biol. Biochem. 2002, 34, 367–372. [Google Scholar] [CrossRef]
- Eltz, T.; Brühl, C.; Imiyabir, Z.; Linsenmair, K.E. Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. For. Ecol. Manag. 2003, 172, 301–313. [Google Scholar] [CrossRef]
- Remm, J.; Lõmus, A. Tree cavities in forests—The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 2011, 262, 579–585. [Google Scholar] [CrossRef]
- Penton, C.E.; Woolley, L.-A.; Radford, I.J.; Murphy, B.P. Blocked off: Termitaria cause overestimation of tree hollow availability by ground-based surveys in northern Australia. For. Ecol. Manag. 2020, 458, 117707. [Google Scholar] [CrossRef]
- Verma, M.; Sharma, S.; Prasad, R. Biological alternatives for termite control: A review. Int. Biodeter. Biodegr. 2009, 63, 959–972. [Google Scholar] [CrossRef]
- Ohmura, W.; Ozaki, M.; Yamaoka, R. Behavioral and electrophysiological investigation on taste response of the termite Zootermopsis nevadensis to wood extractives. J. Wood Sci. 2006, 52, 261–264. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, G. Nutritional ecology of the Formosan subterranean termite (Isoptera: Rhinotermitidae): Feeding response to commercial wood species. J. Econ. Entomol. 2001, 94, 516–523. [Google Scholar] [CrossRef] [PubMed]
Tree Species | Number of Trees Inventoried | Number of Hollow Trees (%) | Number of Trees Felled | Number of Felled Hollow Trees (%) |
---|---|---|---|---|
Astronium lecointei | 563 | 36 (6.4) | 69 | 25 (36.2) |
Dinizia excelsa | 673 | 144 (21.4) | 31 | 11 (35.5) |
Pseudopiptadenia psilostachya | 1332 | 153 (11.5) | 27 | 7 (25.9) |
Manilkara elata | 3967 | 63 (2.7) | 528 | 160 (30.3) |
Manilkara bidentata | 2298 | 144 (3.6) | 165 | 47 (28.5) |
N | Number of Vessels/mm2 | Maximum Vessel Lumen Diameter (μm) | Number of Rays/mm2 | Inter-Ray Distance (μm) | Wood Density (g/cm3) | |
---|---|---|---|---|---|---|
D. excelsa | 8 | 5.01 ± 2.20 a | 162.37 ± 27.19 a | 5.86 ± 0.71 a | 23.45 ± 4.18 a | 0.94 ± 0.01 a |
P. psilostachya | 10 | 11.62 ± 2.84 b,c | 127.68 ± 10.94 b | 8.98 ± 1.29 b | 11.73 ± 1.65 b | 0.83 ± 0.06 b,d |
M. elata | 10 | 10.27 ± 2.27 b,d | 123.60 ± 17.77 b | 9.39 ± 1.23 b | 23.46 ± 3.63 a | 0.91 ± 0.02 a,c |
M. bidentata | 10 | 15.58 ± 5.94 b | 111.36 ± 10.94 b | 10.50 ± 1.25 b | 20.68 ± 3.37 a | 0.89 ± 0.05 a |
A. lecointei | 10 | 7.90 ± 1.33 a | 151.82 ± 13.45 a | 8.69 ± 1.74 b | 22.82 ± 3.92 a | 0.83 ± 0.07 b |
d.f. | Estimate | SE | t-Value | p > |t| | |
---|---|---|---|---|---|
Intercept | 1 | 253.63 | 392.74 | 0.64 | 0.52 |
Tree Basal Area | 1 | 0.14 | 0.07 | 2.10 | 0.04 |
PC1 | 1 | −391.46 | 174.18 | −2.25 | 0.03 |
PC2 | 1 | 206.55 | 165.46 | 1.25 | 0.22 |
Estimate | SE | d.f. | t-value | p > |t| | |
---|---|---|---|---|---|
Intercept | −10.1030 | 3.9592 | 104 | −2.55 | 0.0122 |
Species | |||||
P. psilostachya | 0 | - | - | - | - |
M. elata | 0.8493 | 0.5918 | 104 | −1.19 | 0.2365 |
M. bidentata | −0.8247 | 0.6927 | 104 | 1.44 | 0.1542 |
A. lecointei | −0.5888 | 0.7160 | 104 | −0.82 | 0.4128 |
WD | 10.8358 | 4.6548 | 104 | 2.33 | 0.0219 |
−2 Log Likelihood | 120.97 | ||||
Pearson χ2/d.f. | 0.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleuterio, A.A.; Jesus, M.A.d.; Putz, F.E. Stem Decay in Live Trees: Heartwood Hollows and Termites in Five Timber Species in Eastern Amazonia. Forests 2020, 11, 1087. https://doi.org/10.3390/f11101087
Eleuterio AA, Jesus MAd, Putz FE. Stem Decay in Live Trees: Heartwood Hollows and Termites in Five Timber Species in Eastern Amazonia. Forests. 2020; 11(10):1087. https://doi.org/10.3390/f11101087
Chicago/Turabian StyleEleuterio, Ana Alice, Maria Aparecida de Jesus, and Francis E. Putz. 2020. "Stem Decay in Live Trees: Heartwood Hollows and Termites in Five Timber Species in Eastern Amazonia" Forests 11, no. 10: 1087. https://doi.org/10.3390/f11101087
APA StyleEleuterio, A. A., Jesus, M. A. d., & Putz, F. E. (2020). Stem Decay in Live Trees: Heartwood Hollows and Termites in Five Timber Species in Eastern Amazonia. Forests, 11(10), 1087. https://doi.org/10.3390/f11101087