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Abstract: Research Highlights: Tree size and wood characteristics influenced the susceptibility of
five Amazonian timber tree species to heartwood decay and colonization by termites. Termites
occurred in the heartwoods of 43% of the trees, with Coptotermes testaceus the most abundant species.
Background and Objectives: Hollows and rotten cores in the stems of living trees have ecological
and economic impacts in forests managed for timber. The decision on whether to cut or maintain
hollow trees in such forests must account for the susceptibility of different tree species to decay.
We investigated tree and wood characteristics of living trees of five commercial timber species in the
eastern Amazon that influenced the likelihood of heartwood decay and the occurrence of termite nests
inside the rotten cores. Materials and Methods: We used Pearson’s correlations and one-way analysis of
variance (ANOVA) to explore relationships among tree basal area and hollow area. We used principal
components analysis (PCA) to analyze the variation of wood anatomical traits, followed by a linear
regression to explore the relationships between PCA scores, and heartwood hollow area. We used
a logistic model to investigate if the probability the occurrence of colonies of C. testaceus inside
tree cores varied with tree and species characteristics. Results: Heartwood hollow areas increased
with stem basal area. Larger hollows were more likely to occur in species with higher vessel and
ray densities, and smaller diameter vessels. Termites occurred in the hollows of 43% of the trees
sampled, with C. testaceus the most common (76%). The probability of encountering termite nests
of C. testaceus varied among tree species and was positively related to wood density. Conclusions:
This study shows that given the increased likelihood of stem hollows and rotten cores in large trees,
tree selection criteria in managed tropical forests should include maximum cutting sizes that vary
with the susceptibility of different tree species to stem decay.

Keywords: heartrot; hollow trees; reduced-impact logging; tropical timber; wood anatomy;
Coptotermes

1. Introduction

Stem hollows formed by wood decay in living trees are critical for many species, especially
cavity-nesting and roosting reptiles, birds, and mammals [1], but are a concern for timber stand
managers [2]. Given that in the managed tropical rain forests of eastern Amazonia, trees with hollows
can account for up to 30% of trees of commercial species and harvestable size [3], this phenomenon is of
both ecological and economic importance. From an economic perspective, forests in which trees with
unsound stems are frequent are less valued for their timber [3,4] and estimates of harvestable volumes
based on basal areas will be wrong [5,6]. During harvests, hollow trees are often felled in error or in
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the hopes of finding at least one sound marketable log; their subsequent abandonment in the forest
or on log decks often accounts for a substantial proportion of the carbon emissions from logging [2].
The coarse woody debris generated will then increase fuel loads, and consequently enhance forest
flammability [7,8]. Even if uncut, high carbon emissions may be expected from forest with abundant
hollow trees due to their susceptibility to breakage [9–11] and high mortality rates [12].

Despite the importance of understanding the causes of wood decay in living trees, the few
studies on hollow trees in Amazonia focused on their influence on estimates of timber yields and
forest biomass [4,5]. Studies conducted in other tropical forests report spatial aggregations of trees
with hollow or rotten cores related to patterns of variation in tree characteristics and environmental
conditions [6]. Furthermore, clusters of trees with stem or root damage caused by events such as fire or
logging [13–15] may favor local pathogenic infections and lead to aggregated distributions of hollow
trees. The spread of these infections depends on landscape features, spatial patterns of vegetation,
and the existence and abundance of susceptible hosts [16].

The spread of wood decay and development of stem hollows in living trees is slow, but so are the
growth rates of many tropical trees, particularly those with medium to high density wood [17]. In a
study of eight tree species in old-growth subtropical montane evergreen forest in south-east China,
for instance, stem hollows expanded radially at 2.0 mm year−1, marginally less than the rate of radial
tree growth, but vertically eight times faster [18]. Decay-causing organisms usually gain access to the
heartwood of living trees through sapwood-penetrating wounds [19,20]. Tree defenses, which can
change as trees age as well as with species and environmental conditions, mediate the rate of expansion
of decay in living trees [12,21–23]. Additionally, wood traits such as high density and vessels with
small lumen affect the availability of moisture and oxygen contents and provide mechanical barriers to
the spread of decay [18,24]. Much wood decay is caused by fungi, but termites also play a role because,
thanks to a symbiotic association with microbes, several species share with some fungi the ability to
digest wood in living trees [25]. Evidence for this ability is the presence of active and abandoned
termite colonies in hollow cores of living trees [26–28].

Some species of termites are known to preferentially feed on wood in advanced stages of decay
in which nitrogen contents are elevated and toxic defense substances were rendered ineffective by
wood-decay fungi [22,29,30]. Results from bioassays show that some species of subterranean termites,
such as Reticulitermes flavipes, Coptotermes formosanus and C. gastroi, distinguish wood extractives
from different species and select for particular wood qualities [31–33]. Wood moisture content and
temperature may also affect the probability of termite species to colonize and survive inside living
trees [34,35].

We investigated the termites that colonized the heartwood of living trees of five commercial timber
tree species in the eastern Amazon. We examined how tree dimensions and wood traits influenced
the likelihood of heartwood decay. Finally, we collected and identified the termite species occurring
in heartwood hollows to assess the relationship between tree characteristics and species-specific
termite distributions.

2. Materials and Methods

2.1. The Study Site

Fazenda Rio Capim in Paragominas Municipality, Para, Brazil (2◦25′—4◦09′ S, 46◦25′—48◦54′ W)
has a tropical moist climate with a well-defined dry season, average annual precipitation of 1766 mm,
and an average temperature of 27.2 ◦C [36]. Soils classified as yellow latosols prevail in the flat to
slightly undulating terrain [37,38]. The area is covered by tropical dense moist forest [39], owned by
CIKEL Brasil Verde S.A., and managed for timber using reduced-impact logging techniques (RIL).
RIL practices consist of carefully planning all aspects of timber extraction to diminish the deleterious
impacts of logging on the residual forest [40]; that the concession hosts the training center of Instituto
Floresta Tropical makes us confident that RIL practices were indeed utilized in our study area.
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Timber extraction is carried out in forest management units (UTs) of approximately 100 ha.
One year prior to the harvests, all commercial timber trees ≥45 cm of diameter at breast height (DBH)
are identified and mapped, but the minimum cutting DBH was 55 cm. Harvest trees suspected of
being hollow or heartrotted are usually tested immediately prior to felling by inserting a chainsaw
vertically into the trunk at about 50 cm from the ground. Trees with hollows or rotten cores that exceed
30 cm in diameter (i.e., approximately half of 65 cm bar length) are considered non-marketable and are
not supposed to be felled. Although some hollow trees may still be erroneously felled, especially those
with large DBHs in which rotten cores are not easily accessed from outside, use of this technique helps
minimize stand damage, carbon emissions, and habitat loss.

2.2. Data Collection

In an area of 253 ha, we sampled 30 recently felled trees with hollow stems or rotten cores of
Manilkara elata (Allemão ex Miq.) Monach, 28 of M. bidentata (A. DC.) A. Chev. (both Sapotaceae),
30 of Pseudopiptadenia psilostachya (DC.) G.P. Lewis & M.P. Lima (Fabaceae), 8 of Dinizia excelsa Ducke
(Mimosaceae), and 20 of Astronium lecointei Ducke (Anacardiaceae). We selected these species on
the basis of their abundance in the study site and because loggers reported that they were prone to
heartrots. The selected species vary in wood anatomy and chemical defenses including three with
sapwood latex (Manilkara spp. and A. lecointei). All felled trees of these species were sampled in
the same area to minimize environmental heterogeneity that could influence tree susceptibility to
decay. Only trees >10 m from the nearest conspecific were sampled to assure independence. Sample
sizes were small for D. excelsa and A. lecointei because they occurred at low densities and were
infrequently hollow.

In a selectively logged forest adjacent to the study site [3], forest inventory data indicate that,
depending on species, 2.7–21.4% of trees >45 cm DBH were judged non-marketable due to the presence
of stem hollows or heartrots (Table 1) [41]. An additional 28.5–36.6% of felled trees presented hollows
or rotten cores that were not diagnosed during forest inventories (Table 1).

Table 1. Numbers of trees with stem hollows (cavities, hollow or rotten cores) detected during forest
inventories, and the additional number of felled trees with hollows not detected by inventory crews.
In parenthesis are the percentages of the total number of trees inventoried or felled for each species.

Tree Species Number of Trees
Inventoried

Number of
Hollow Trees (%)

Number of Trees
Felled

Number of Felled
Hollow Trees (%)

Astronium lecointei 563 36 (6.4) 69 25 (36.2)
Dinizia excelsa 673 144 (21.4) 31 11 (35.5)

Pseudopiptadenia
psilostachya 1332 153 (11.5) 27 7 (25.9)

Manilkara elata 3967 63 (2.7) 528 160 (30.3)
Manilkara bidentata 2298 144 (3.6) 165 47 (28.5)

In August and September 2008, 1–5 days after felling and before the logs were yarded from the
forest, trunk diameters, and horizontal extents of heartwood hollows were measured for each felled
tree 50 cm from the ground. Hollow areas were calculated from two diameter measures using the
formula for an ellipse; heartwood that was degraded but not hollow was not included in this analysis.

To measure anatomical traits and wood density, two samples of 200–300 cm3 of sound heartwood
5–10 cm from the sapwood were collected from opposite sides of the hollows. From these wood
sections, five 2 × 2 × 2 cm samples were extracted and used to measure wood density (WD) by
water displacement (N = 3 samples/tree). Wood samples were oven-dried at 101–105 ◦C for 72 h
or until constant weight, measured at 0.01 g precision. Histological analysis of wood anatomy was
performed on transverse sections (N = 5 sections/species; N = 10 trees/species for all tree species but
D. excelsa, with N = 8 trees) after at least 24 h in a 1:1 solution of glycerin and distilled water 24 h
(N = 5/species). Wood was sectioned using a sliding microtome and permanent slides were prepared
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to measure maximum vessel lumen diameter (N = 5–10 vessels/section), vessel density (number of
vessels/mm2) within fields of 2 mm2, ray width at its non-dilated extent, and distance between adjacent
rays measured along 2 mm transects.

Termites forming colonies inside heartwood hollows of the 116 selected trees were collected
1–5 days after logging and identified to species [42,43]. Termite samples were stored at Instituto
Nacional de Pesquisas da Amazônia (INPA).

2.3. Data Analysis

Pearson’s correlations were used to explore relationships among tree basal area and hollow area.
To meet normality assumptions, square-root transformations were applied to hollow area data. For the
four tree species with N ≥ 20 trees sampled, interspecific variation in hollow and tree basal areas were
compared using one-way analysis of variance (ANOVA) followed by Tukey HSD post-hoc comparisons.

Relationships among wood anatomical traits were explored using principal components analysis
(PCA) with varimax rotation. Only principal components (PCs) with eigenvalues ≥ 1 and variables
loading ≥ |0.35| were reported. Linear regression was used to explore the relationships between PCA
scores, and heartwood hollow area. Among species differences in traits were investigated using
ANOVA followed by Tukey HSD post-hoc comparisons.

A logistic model of tree characteristics was created to investigate the occurrence of colonies of the
most abundant termite species (Coptotermes testaceus L.) in the sampled trunks. Tree characteristics
used were species, wood density, and interactions among these variables, with data transformed
as needed to meet normality assumptions. The best-fit model was selected based on log-likelihood
comparisons of models produced by backward elimination of non-significant variables. Log-likelihood
differences were tested using chi-squared tests at α = 0.05. All analyses were performed with SAS
Software 9.2 [44].

3. Results

Basal areas of sampled trees varied among species (F3,105 = 27.51, p < 10−4), while heartwood
hollow areas were similar among the four species with ≥ 20 individuals sampled (F3,105 = 2, p = 0.12).
Manilkara elata trees were larger than M. bidentata. Dinizia excelsa was not included in the analyses due
to its small sample size, but generally had larger hollows (up to 60% of the stem cross section with an
average of approximately 31%) than the other four tree species (10–23%; Figure 1). For the four tree
species with N ≥ 20 individuals sampled, heartwood hollow area increased with overall stem basal
area (r = 0.46, p < 10−3; Figure S1).

The five tree species sampled differed only moderately in heartwood anatomy (Table 2).
Dinizia excelsa and A. lecointei had the largest vessel lumen diameters (162.4 and 151.8 µm, respectively)
and low vessel densities (5.0 and 7.9 vessels/mm2, respectively; Figures S5 and S6). M. bidentata had
the lowest average vessel lumen diameter (111.4 µm) and the highest vessel density (15.6 vessels/mm2;
Figure S3). Average ray density ranged from 5.86 in D. excelsa to 10.5 rays/mm2 in M. bidentata. Average
distance between rays was 20.7–23.4 µm for all species except P. psilostachya, in which rays were
approximately 11.7 µm apart (Figure S4). All species produce high density wood, with a range of from
0.83 g/cm3 in P. psilostachya and A. lecointei to 0.94 g/cm3 in D. excelsa.
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Figure 1. Tree stem basal area and area of stem hollows by tree species measured at 50 cm from the
ground (N = 8 for D. excelsa, N = 30 for P. psilostachya and M. elata, N = 28 for M. bidentata, and N = 20
for A. lecointei). Letters indicate differences at p < 0.05. Statistical comparisons included all species but
D. excelsa.

Table 2. Heartwood anatomical traits (mean ± SD) for the five tree species studied. Letters indicate
differences at p < 0.05.

N Number of
Vessels/mm2

Maximum Vessel
Lumen Diameter

(µm)

Number of
Rays/mm2

Inter-Ray
Distance (µm)

Wood Density
(g/cm3)

D. excelsa 8 5.01 ± 2.20 a 162.37 ± 27.19 a 5.86 ± 0.71 a 23.45 ± 4.18 a 0.94 ± 0.01 a

P. psilostachya 10 11.62 ± 2.84 b,c 127.68 ± 10.94 b 8.98 ± 1.29 b 11.73 ± 1.65 b 0.83 ± 0.06 b,d

M. elata 10 10.27 ± 2.27 b,d 123.60 ± 17.77 b 9.39 ± 1.23 b 23.46 ± 3.63 a 0.91 ± 0.02 a,c

M. bidentata 10 15.58 ± 5.94 b 111.36 ± 10.94 b 10.50 ± 1.25 b 20.68 ± 3.37 a 0.89 ± 0.05 a

A. lecointei 10 7.90 ± 1.33 a 151.82 ± 13.45 a 8.69 ± 1.74 b 22.82 ± 3.92 a 0.83 ± 0.07 b

In the PCA of wood characteristics, Manilkara spp. (Figures S2 and S3) and A. lecointei (Figure S5)
formed a diffuse cluster due to intermediate ray and vessel densities, and vessel lumen diameters.
The first two principal components (PCs) explained 63.80 and 25.67% of the variation in heartwood
anatomical traits, respectively (Figure 2). PC1 was negatively associated with ray and vessel densities,
and positively associated with maximum vessel lumen diameter. PC2 was positively associated with
both distance between rays and wood density (Figure 2).
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Figure 2. Principal components analysis of wood anatomical characteristics for D. excelsa (De; N = 8),
P. psilostachya, M. elata, M. bidentata, and A. lecointei (respectively Pp, Mh, Mb, and Al; N = 10).
Variables considered were number of vessels/mm2 (vessel_dens), number of rays/mm2 (ray_dens),
average distance between rays (ray_dist), average vessel maximum lumen diameter (vessel_avg),
and wood density (WD). Values in parenthesis correspond to the variance (%) explained by each
principal component.

PC1 scores were negatively related to hollow area (Table 3), which suggests that larger heartwood
hollows were more likely in trees with higher vessel and ray densities, and smaller diameter vessels.
Hollow size was also positively related to tree size (Table 3). Additionally, analysis of the residuals
suggested that the model results were strongly influenced by the presence of D. excelsa, a species with
large vessels, low ray and vessel densities, and large hollows.

Table 3. Regression with the two most important principal components (PC) for heartwood anatomical
traits on hollow area.

d.f. Estimate SE t-Value p > |t|

Intercept 1 253.63 392.74 0.64 0.52
Tree Basal Area 1 0.14 0.07 2.10 0.04

PC1 1 −391.46 174.18 −2.25 0.03
PC2 1 206.55 165.46 1.25 0.22

Termites colonies occupied the stem hollows of 50 (43%) of the 116 trees sampled. Approximately
76% of the termite colonies encountered were of Coptotermes testaceus (Table S1). This species most
commonly formed colonies in heartwood hollows of M. elata (Figure 3). The logistic model used to
predict the presence of C. testaceus showed that the probabilities of encountering termite colonies
varied among the four tree species sampled with N ≥ 20 trees (F3,104 = 3.03; p = 0.03) and was positively
related to wood density (F1,104 = 5.42; p = 0.02; Table 4). The likelihoods of encountering C. testaceus
colonies were respectively highest and lowest for the two congeneric species, M. elata and M. bidentata
(Figure 3).
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Figure 3. The probability of a tree hosting a Coptotermes testaceus colony as a function of wood density.
Samples sizes were as follows: P. psilostachya and M. elata (N = 30), M. bidentata (N = 28), and A. lecointei
(N = 20).

Table 4. Logistic regression estimates for the presence of Coptotermes testaceus colonies in heartwood
hollows of the four tree species with N ≥ 20 individuals sampled: P. psilostachya and M. elata (N = 30),
M. bidentata (N = 28), and A. lecointei (N = 20).

Estimate SE d.f. t-value p > |t|

Intercept −10.1030 3.9592 104 −2.55 0.0122
Species

P. psilostachya 0 - - - -
M. elata 0.8493 0.5918 104 −1.19 0.2365

M. bidentata −0.8247 0.6927 104 1.44 0.1542
A. lecointei −0.5888 0.7160 104 −0.82 0.4128

WD 10.8358 4.6548 104 2.33 0.0219
−2 Log Likelihood 120.97

Pearson χ2/d.f. 0.98

4. Discussion

Heartwood hollow areas increased with stem basal area but were similar among the four species
with ≥20 individuals sampled. Larger hollow areas were more likely to occur in species with higher
vessel and ray densities, and smaller diameter vessels. Termites occurred in the stem hollows of 43% of
the trees sampled; approximately 76% of the infested trees hosted Coptotermes testaceus. The probability
of encountering termite nests of C. testaceus varied according to the tree species, was positively related
to wood density, and was highest and lowest in Manilkara elata and M. bidentata, respectively. Large and
old trees perform diverse roles in forest ecosystems, such as assisting the distribution of water and
nutrients in the soil and providing wildlife habitat [1]. In forests managed for timber, such trees are
often harvested. The results of this study suggest that tree selection criteria should consider tree species’



Forests 2020, 11, 1087 8 of 12

susceptibility to development of stem hollows. The fact that heartwood hollow area increased with
tree stem basal area may indicate that a maximum DBH (besides the minimum DBH already applied)
should be considered when selecting trees for logging. Setting a DBH range may assist in diminishing
the loss of tree cavities that are so important for biodiversity [45] and reduce economic losses due to
wasteful felling [4].

During their ontogeny, trees are often damaged and suffer environmental stresses that weaken
their defenses and increase their vulnerability to attacks by pathogens and herbivores [46]. Rotten tree
cores may confer benefits to the living tree, such as soil fertilization [47]. Heartwood decay may
also represent a low cost to the tree compared to the costs of wood protection [48]. Wood decay in
living trees is a slow process in which a variety of organisms [49], many of which are thought to be
saprophytes, benefit from periods of weakened defense during which they can successfully avoid
the induced defenses produced by living sapwood tissues and colonize and break down constitutive
phenolic compounds in heartwood tissues [21,50]. Decay organisms more often succeed in colonizing
the heartwood of larger trees at least partially because such trees must invest substantial energy in
maintaining their biomass, thereby having fewer resources to invest in inducible and constitutive
defenses [51,52]. That the larger trees are also often older, and therefore were exposed to damage and
decay organisms more years, also needs to be considered.

Heartwood anatomical traits in the five tree species analyzed were correlated with the incidence
of heartwood decay. Stem hollows were larger in trees with high densities of vessels and rays,
and large diameter vessels. These results partially support previous studies that showed that small
vessels and low vessel and ray densities slow wood degradation apparently by slowing the growth of
decay organisms through two of the most commonly used routes of wood colonization, vessels and
parenchymatous tissues [53–55]. The observed relationships between anatomical traits and hollow
areas might be partially explained by ontogenetic changes in wood anatomy insofar as previous
research demonstrated that with tree size, wood density and vessel diameter increase while ray width
and ray and vessel densities decrease [56–58].

Termites were present in heartwood of almost half of the trees sampled, with Coptotermes testaceus
the most common species. This species was previously reported to be associated with heartwood
hollows in Amazonian forest trees [42,43], but at low frequencies [26]. Species of Reticulitermes, another
member of the Rhinotermitidae, and other species of Coptotermes are reportedly common colonizers of
the heartwoods of urban trees and trees in forests subjected to prescribed burns [59,60]. The Formosan
subterranean termite, C. formosanus, which is considered an urban pest, for instance, was present in 37
and 52% of forest fragments near two urban areas in Southeastern USA [28]. Coptotermes testaceus is
also a minor pest of eucalyptus, cassava and rubber tree crops in several South American countries
including Brazil [61]. Although we did not aim to assess the pest status of C. testaceus, this species
displays the three characteristics that authors of reference [62] name as shared by invasive termite
species: it eats wood, nests in wood, and produces reproductive propagules. The fact that this species
was so abundant in commercial trees in our study site reinforces the importance of avoiding its
introduction elsewhere in the world.

Given that C. testaceus reduces timber yields but helps maintain forest biodiversity by contributing
to the formation of hollow cores and tree cavities, more attention should be paid to its impacts on
tropical forests. Cavities in living and dead-standing trees, like those opened by termites, provide
nesting and roosting sites for numerous species of birds, reptiles, mammals, and invertebrates [1,63–66].
In contrast, it should be noted that in a forest in northern Australia, termites blocked almost half the
tree hollows identified during ground surveys, thereby reducing the availability of cavities for several
threatened mammal species [67].

Subterranean termites in the genus Coptotermes build their nests in the soil and infest sound wood
in direct contact with the ground [68]. In our study area, C. testaceus nests were more frequent in M. elata
heartwood than in M. bidentata, a congeneric species with which it shares anatomical features and
the production of latex by the sapwood. This finding suggests that this termite species differentiates
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among tree species, presumably on the basis of wood extractives, as observed in bioassays with
Zootermopsis nevadensis [69]. The other species that also produced latex, A. lecointei, was generally not
inhabited by termites. Nutritional qualities of wood may also influence tree selection by termites [33,70].
Higher cellulose content in heartwood was possibly related to C. testaceus preference for trees with
higher wood density [34].

5. Conclusions

Heartwood decay increased with tree size for the studied commercial timber species in eastern
Amazonia. Heartwood anatomical traits of vessel lumen diameter and vessel and ray densities
explained much of the among-species variation in hollow size. Further studies on heartwood decay and
wood properties will benefit from larger samples sizes and from the selection of tree species with a wider
variation in wood traits. Our results indicate that tree species characteristics affect their susceptibility
to wood-decay organisms and that hollow dimensions increase with tree size, which indicates that
older and larger trees are particularly susceptible. For this reason, we recommend that, to diminish the
loss of cavity trees and associated biodiversity impacts, avoidable stand damage, and carbon emissions,
there should be an upper size limit on trees allowed to be felled. For the sake of efficiency, the retained
large trees might be categorized as seed trees during forest inventories, which would reduce the
time spent testing them for hollow or rotten cores. More studies are required to set species-specific
limits that reflect their size-specific susceptibility to decay. Given that Coptotermes testaceus presents
invasive abilities and is considered a pest of urban forests and diverse crops in its native range, special
attention should be paid to the handling of wood in which there is evidence for the presence of this
species. Finally, more research is needed on the factors that control the distribution and abundance
of the cavity-excavating organisms that are so important to forest ecology and the profitability of
forest management.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/10/1087/s1,
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(N = 20)), Figure S2: Wood anatomy of Manilkara elata (Sapotaceae). Scale bar = 200 µm, Figure S3: Wood
anatomy of Manilkara bidentata (Sapotaceae). Scale bar = 200 µm, Figure S4: Wood anatomy of Pseudopiptadenia
psilostachya (Fabaceae). Scale bar = 200 µm, Figure S4: Wood anatomy of Astronium lecointei (Anacardiaceae).
Scale bar = 200 µm, Figure S5: Wood anatomy of Dinizia excelsa (Mimosaceae). Scale bar = 200 µm, Table S1:
Termite species sampled in heartwood hollows of the five studied tree species.
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