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Abstract: Different silvicultural treatments that are applied at plantation establishment may drive
different vegetation succession pathways. These divergent vegetation types subsequently feed back
to influence soil carbon and nitrogen cycles. One potential mechanism of feedback is through litter
decomposition, and in particular fine root decomposition (FRD; <2 mm roots). In the present study
we investigated how blade scarification, fertilization, and vegetation control influenced over- and
understory vegetation 27 years after plantation, and whether these different vegetation communities
affected FRD. In a design using factorial combinations of the three treatments at the Petawawa Research
Forest (Laurentian Hills, ON, Canada), we conducted an in situ FRD experiment, with fine roots from
the entire vegetation community (both over- and understory) of each plot. The different silvicultural
treatments affected overstory basal area, understory species richness and FRD. No correlation was
noted between understory species richness and FRD. Instead, we found that understory vegetation
(especially fern and herb) cover best explained FRD. We conclude that silvicultural treatments affect
FRD through subsequent vegetation succession and that this effect is more likely due to species-specific
effects inducing a favorable soil environment than to a higher species richness per se.

Keywords: fine root decomposition; silvicultural treatments; species richness; understory vegetation;
soil organic carbon

1. Introduction

Plant-soil interactions are complex and involve a myriad of abiotic and biotic factors.
The interactions in natural forests contribute to effectively absorb atmospheric CO,, however these
processes can be easily disrupted by disturbances such as plantation management practices. Given
that the land area devoted to tree plantations is expected to increase in coming years [1], whether for
primarily protective functions for the provision of services or for intensive timber production [2] and
in the context where global temperatures are expected to rise by 1-3 °C during the next century [3], it
is critical to more rigorously evaluate the mechanisms of soil carbon (C) dynamics associated with
different management practices in plantations.

Whether in temperate or boreal regions, the present forest overstory [4] and understory [5]
composition is often a result of past forest management decisions. Although the mechanisms involved
are not yet clear, the combined influence of silvicultural practices and subsequent forest vegetation
succession can strongly affect soil organic carbon (SOC) cycling directly through soil disturbance as
well as changes in microclimate, or indirectly through multiple factors such as changes in vegetation
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composition, decomposer community, litter input and subsequent litter decomposition rate. Regarding
the effect of vegetation composition on SOC, both plant species identity and diversity could play
an important role. For example, it has been suggested that different tree species planted within the
same sites may influence SOC differently through differences in litterfall C inputs [4]. The differences
in litterfall C inputs are especially marked when basal area and canopy cover differ widely among
species [6,7]. For example, low C stocks have been observed in forest soils in which litterfall C inputs
and basal area were also low [6]. Differences related to C inputs have also been reported between
deciduous and conifer trees (i.e., a higher root biomass has been associated with deciduous trees
compared to conifers) [8]. A higher C input to soils (i.e., with an increased root productivity and
turnover) was also reported in more diverse forest stands [9,10]. However, it is still not clear whether
plant species identity or plant species diversity has the most influence on soil C stocks.

When studying C inputs, particular attention should be given to roots, since root litter contribution
to soil C may equal or be greater than that of foliar litterfall [4,11]. Several factors such as
climate and environmental variables, soil biota and root chemistry are known to influence root
decomposition [12-14]. For example, roots characterized by high lignin concentrations or high C: N
and lignin: N ratios are associated with low rates of decomposition [12,15,16] whereas roots with high
N concentrations decompose faster [17,18]. Therefore, any factor that may influence root chemistry
such as land use (e.g., N addition) and plant species composition [14] should be taken into account
when studying root decomposition. However, uncertainties remain regarding the effect of plant
species on root decomposition. The presence of multiple pathways via which plant diversity may
affect root decomposition (e.g., root litter quality, soil biota, and soil abiotic conditions). As well,
different measures of plant diversity (e.g., plant species richness, and the presence/absence of individual
functional groups) may vary in their effects on decomposition [19,20]. Both these could explain the
lack of consistency among studies. Recent investigations have provided evidence that plant diversity
is more likely to affect root decomposition via changes in root chemical traits and soil biota, rather
than via changes in root morphological traits or soil abiotic conditions [21]. Among root chemical
traits, root lignin, N, K and Mg concentrations have been reported as important mediators of the
plant diversity-root decomposition relationships [21]. In a rare study of tree root litter mixtures on a
diversity gradient [22], the authors observed that root tissue chemical traits, rather than plant species
richness (SR), explained more of the variation in root decomposition rate. Similarly, Prieto et al. [23]
found that plant species identity effect (i.e., low tissue quality of Carex humilis in mixtures) was more
important than additive diversity effects to control root decomposition of prairie plant mixtures. Given
the uncertainties surrounding the role of plant species diversity per se vs. plant species identity on root
decomposition and soil C stocks in forests, more studies simultaneously investigating these factors
are needed.

The present study is part of a long-term experiment at the Petawawa Research Forest in Ontario,
Canada. This experiment was established in 1986 to evaluate the ecophysiological response of white
pine and white spruce to three intensive silvicultural treatments: blade scarification (a complete
removal of organic layer), fertilization, and vegetation control (with herbicide) [24]. After 25 years on
the present study site, Poirier et al. [5] reported that silvicultural treatments (i.e., soil scarification and
vegetation control)led to distinct overstory and understory vegetation communities, characterized by
contrasting structure and functional composition which strongly impacted C and N cycling, partly
through an effect on soil pH in the mineral soil. More specifically, Poirier et al. [5] reported that while
the vegetation control treatment was characterized by a Hardwood shrub-rich forest, soil scarification
and the combination of soil scarification and vegetation control treatments led to a Hardwood herb-rich
and a Softwood monoculture dominated forest respectively. The authors stated that the greater herb
cover in the Hardwood herb-rich community could be associated with increased litter decomposition
rates given its high-quality, nutrient-rich litter added to forest floor [25] which represents an important
source of food for soil biota. However, neither litter decomposition rates nor understory vegetation
species richness have yet been measured on this site.
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In the present study, 27 years after plantation establishment, we investigated the influence of blade
scarification, fertilization, and vegetation control on over- and understory vegetation composition
and attributes, and whether this subsequent vegetation succession affected fine root decomposition
(<2 mm). We also investigated the relationships among fine root decomposition (FRD), fine root
chemistry, plant species diversity (SR), plant species identity and soil properties, in an attempt to better
understand the mechanisms controlling fine root decomposition and the potential link with SOC and
N concentrations in surface mineral soil. We hypothesized that:

(i) A faster fine root decomposition is associated with higher plant species diversity (SR);

(ii) A faster fine root decomposition will be associated with higher SOC and N in the mineral soil;

(iii) Plant species identity is a more important driver of fine root decomposition compared to plant SR
per se.

2. Materials and Methods

2.1. Site Description

The plantation is located within the Petawawa National Research Forest in the Great Lakes
St-Lawrence Forest Region, on the north shore of Cartier Lake (45°57’50” N, 77°34’45"” W) at an
elevation of 170 m above sea level. The climate of the region is characterized by mean annual
temperature of 4.3 °C and an average rainfall of 853 mm [26]. The soils consist of deep, well-drained
loam to sandy loam developed from acidic glaciofluvial till [24] and are classified as an Orthic
Humo-Ferric Podzol [27] or Haplorthod [28].

2.2. Experimental Design

The site at Cartier Lake was clearcut in the summer of 1985 and the experimental plantation
was established in 1986. Before clear-cutting, the forest on the experimental site was composed
of aspen (Populus tremuloides Michaux), white birch (Betula papyrifera Marshall) and white spruce
(Picea glauca (Moench) Voss), with lesser components of yellow birch (Betula alleghaniensis Britton),
basswood (Tilia americana L.), white pine (Pinus strobus L.) and balsam fir (Abies balsamea (L.)Miller) [24].
The experimental site was on a flat lake plain beside Cartier Lake; soil drainage was constant throughout
and texture was relatively homogeneous within the four blocks. The experimental design consisted
of eight treatments (plots) replicated in four randomized complete blocks (8 x 4 = 32 plots in total).
Whole plots (20 by 40 m plots with 5 m buffers) were 23 factorial: two levels of three treatments,
assigned randomly in the blocks. The control plots were first clearcut and planted without subsequent
silvicultural treatment. The main treatments were blade scarification (S: levels 0 and 1), fertilization (F:
levels 0 and 1) and vegetation control treatment (V: levels 0 and 1). Level 0 represented undisturbed
condition following harvest and Level 1 the application of the treatment. Blade scarification represented
complete removal of the organic forest floor, in the spring before planting. Fertilization consisted of
an annual application of the slow-release fertilizer Osmocote (17:6:10 N-P-K plus micronutrients; N
as 9.1% NH4 " and 7.9% NO;™). In the first growing season, 30 g of Osmocote were spread on the
soil surface around each tree and this amount was increased each year to 40, 60, 80, 135 and 200 g
in the second, third, fourth, fifth and sixth growing seasons, respectively. The vegetation control
treatment represented an annual midsummer application of glyphosate isopropylamine salt (trade
name Roundup@©) at a rate of 2.0 kg-ha™! of active ingredient for each of the four years following
plantation establishment. In April 1986, each 20 by 40 m whole plot was divided in two 20 by 20 m
subplots and planted with 100 trees (3 year-old bareroot stock) each, of local provenances of white
spruce and white pine. Since our design is factorial and to simplify the study, only the subplots with
white pine were studied.
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2.3. Vegetation

Evaluation of understory vegetation species richness (the number of species present in the
community) was made in June 2013, using three 50 by 50 cm quadrats randomly distributed on each
plot (3 quadrats x 32 plots = 96 samples in total). Basal area (in m? ha~!) was determined in summer
2014, for each of the 32 plots, using a two-factor metric prism (2 m?/ha basal area factor). All trees
that were validated by the prism were counted. The basal area was then estimated by multiplying the
number of counted trees by the basal area factor. This information was used to estimate deciduous
versus conifer basal area for each of the plots.

2.4. Soil Sampling, Fine Root Decomposition and Root Chemistry

The surface mineral soil (0-15 cm depth, after removing the organic layer when necessary) was
sampled by taking three randomly located cores per plot (n = 96) with an 8-cm-diameter metal soil corer,
at the end of July 2013. Soils were sieved through a 2 mm stainless steel sieve and kept frozen until
analysis. Given the difficulties associated with the differentiation of roots according to plant species,
the roots from the cores were not differentiated and represented the entire vegetation community of
each plot. These fine roots were removed, washed and dried in a forced-air oven at 65 °C to constant
weight, then separated into two parts; one part was used for the decomposition experiment, while the
second was used for chemical analyses. For the decomposition experiment, 0.35 + 0.02 g of root dry
mass of each of the 96 samples were placed in mesh bags (5 x 10 cm each) with a pore size of 50
microns (ANKOM Technology, Macedon, NY, USA). On 4 October 2013, the mesh bags were buried
(inserted vertically in the soil) between 5 and 10 cm soil depth in the respective plot where originally
sampled and collected on 21 May 2014. After collection, roots were carefully removed from mesh bags.
Visible fungal hyphae were removed after drying roots at 65 °C to constant weight. These roots were
then reweighed, and fine root decomposition was calculated as mass loss percentage. The remaining
roots (the roots that were not used for decomposition experiment) were used for root chemistry;
the root samples were weighed and finely ground using a ball-mill mixer MM 200 (Retsch©, Haan,
Germany). C concentration was determined by dry combustion (Trumac CNS-1000, LECO Corp.,
St. Joseph, MI, USA) and the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium
(Ca)and magnesium (Mg)were determined by digestion (Parkinson and Allen, 1975) followed by
atomic absorption spectroscopy.

2.5. Soil Analyses

Soil texture was assessed by decantation [29] and soil pH was measured in a prepared 0.01 M
CaCl; solution that was added to soil in a 1:2 soil to liquid mixture. Cation exchange capacity (CEC) and
base cations (Ca, Mg, K and Na) were assessed using an unbuffered NH,CI-BaCl, 0.1 M solution [30]
and measured by inductively coupled plasma emission (Optima 4300 DV ICP-OES, Perkin-Elmer Inc.,
Waltham, MA, USA).

Soil organic carbon was determined by the Walkley-Black method and soil N was determined
using the Kjeldhal method, to be consistent with previous studies on the same site [24]. The analyses
were performed on air-dried soil samples, finely ground (<150 pm) with a ball-mill mixer MM 200
(Retsch©), Haan, Germany).

2.6. Statistical Analyses

All statistical analyses were performed with R software version 4.0.2. Available online: https:
//www.r-project.org/ (accessed on 13/10/2020).

To test the effect of silvicultural treatments on all studied variables (vegetation diversity, basal area
of the overstory, mass loss for root decomposition and soil properties), we applied a linear mixed-effect
model, developed using the Ime function in the nlme package [31], with the three silvicultural treatments
as fixed factors and blocks and plot identity as random factors. In all linear mixed-effect models,
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the normality of residuals and homogeneity of variance were tested, and transformations were
performed when necessary. Statistical significance was set at the 0.10 level given the inherent high
variability in forest soil properties. When there were significant treatment interactions, the averages of
treatment-level combinations were compared with the combination of interaction treatment Level 0
with the « level adjusted for the number of comparisons using Bonferonni’s adjustment.

Canonical correspondence analysis (CCA) was carried out to relate silvicultural treatments to
over- and understory vegetation characteristics (plant species richness, total basal area, functional
composition; that is whether trees are deciduous or conifers, using respective basal area) using the rda
function of the vegan package [32]. Variance partitioning was used to determine the unique, shared, and
total explained variation contributed by each set of explanatory variables using the varpart function of
the vegan package and represented schematically by Venn diagrams. The significance of each partition
was determined by permutation testing using partial redundancy analysis (rda function available in
the vegan package) and ANOVA. We used the rcorr function (Pearson correlation coefficient) of the
Hmisc package [33] to quantify the association among all measured soil and root variables.

3. Results

3.1. Effects of Silvicultural Treatments on Overstory and Understory Vegetation

Twenty-seven years after plantation establishment, vegetation control led to distinct plant
community composition and attributes (Figure 1 and Table 1. Also see Supplementary material
Tables S1 and S2). We observed a higher overstory volume (total basal area) and a dominance of
conifers when vegetation control was applied, while a higher understory vegetation diversity (species
richness) and a dominance of deciduous trees was observed in the absence of vegetation control.
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Figure 1. Canonical correspondence analysis of overstory vegetation composition using silvicultural
treatments 27 years after establishment of a white pine plantation. Silvicultural treatments significantly
explained overstory vegetation composition variation at p < 0.001 (R? adj = 0.49).
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Table 1. Impact of silvicultural treatments on overstory volume (Basal area), understory vegetation diversity (Species richness), fine root decomposition (FRD) and fine

root C and macronutrients, 27 years after establishment of a white pine plantation (1 = 96). S = scarification, F = fertilization, V = vegetation control, 0 = no treatment,

1 = application of treatment. Values are mean and standard errors are presented in brackets.

Species Basal Area o _ _ _ _ _ _

Rilc)hness (m? ha-1) FRD (%) C(gkg) Ni(gkg™D Root C:N P(gkg™  K(gkg) Ca(gkg™) Mglgkg™
SOFOVO  42(+03)  28.0(+19)  20.6(+0.01) 411.7(+11.8)  7.4(+0.5) 58.6 (+42)  127(+0.15)  3.35(+0.35)  11.1(x0.96)  0.93 (+0.12)
SIFOVO  5.7(x0.6)  23.0(x1.8)  19.0(x0.01) 392.6 (x15.2) 7.9 (+0.5) 51.0 (+3.4) 123 (x0.16)  455(x0.71)  9.17(x0.79)  0.86 (+0.10)
SOFIVO  3.8(x05)  315(+21)  18.1(+0.01) 4145(+138) 6.7 (x0.5) 653 (+4.5)  127(+0.12)  42(x058)  12.67(x0.7)  0.85(+0.05)
SIFIVO  56(+03)  26.0(x15)  26.1(x0.01) 4256(+7.8)  9.0(+0.7) 49.7 (£35)  1.6(+0.19)  4.55(+0.58)  8.75(+0.83)  1.05(+0.20)
SOFOV1 1.7 (x0.5)  465(+3.1)  13.6(x0.00) 4294 (x10.2)  7.5(0.6) 614 (x4.9)  123(x0.12)  247(x0.17) 496 (x0.36)  0.76 (+0.07)
SIFOV1  22(+05)  415(+17)  182(+0.01) 436.1(+89)  7.2(+0.4) 629 (+3.9)  1.31(x0.11) 278(+022)  4.94(+0.81)  0.63 (+0.03)
SOF1IV1 ~ 4.0(+08)  27.0(+1.1)  16.0(+0.01) 431.4(+11.0) 7.4 (+0.4) 602 (+3.5)  127(+0.09)  331(x02)  828(+1.01)  0.83(+0.06)
SIFIV1  28(x0.7)  37.0(x24)  185(x0.01) 4174 (x12.6) 7.9 (x0.5) 55.0 (+3.5)  1.35(x0.14)  3.54 (x0.44) 5.7 (+0.86) 0.75 (+0.04)

V * V e V ** V *% S *3% S *3% NS V ot \S/::: V *%
SxFxV** F** o

*, ** *** the symbols indicate the significance at 0.1, 0.05 and 0.01 probability levels, respectively; NS indicates not significant.
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3.2. Effects of Silvicultural Treatments on Fine Root Decomposition and Chemistry

We observed a significant effect of the silvicultural treatments on fine root decomposition.
The fastest FRD occurred when scarification and fertilization treatments were combined without
vegetation control and the slowest was recorded when vegetation control was applied alone (Table 1).
Fine root C, fine root C: N and macronutrients also responded to silvicultural treatments (Table 1).
Vegetation control resulted in higher root C and lower root Mg. Blade scarification was associated with
higher root N concentration. Root K increased with fertilization and decreased with vegetation control.
Scarification and vegetation control contributed to lower root Ca concentration, while fertilization was
associated with an increase in root Ca. The root C: N decreased with scarification alone while root P
concentration was not affected by the silvicultural treatments.

3.3. Effects of Subsequent Vegetation on Fine Root Decomposition

The variation partitioning analysis revealed that understory vegetation abundance alone explained
41.8% of the FRD (Figure 2A). Within understory vegetation, the same variation partitioning
analysis identified a stronger contribution of fern cover (25.5%) compared to herb and shrub covers,
in controlling FRD (Figure 2B). We also found that the abundance of 8 of the 32 referenced species (see
Supplementary material Table S1 for details) best explained fine root decomposition (Table 2).

(A) (B)

Overstory
vegetation

Understory
vegetation

41.8%

1.2%

Sylvicultural
treatments

Residuals = 50.6%

Residuals = 54.1%

Figure 2. Venn diagram displaying the results of unique, shared, and total variation of the fine root
decomposition explained by (A) the three silvicultural treatments and over- and understory vegetation
percent cover, (B) understory vegetation composition.

Table 2. Understory vegetation species (abundances) that best explained fine root decomposition
(FRD), according to a forward selection of explanatory variables. The (+) sign represents a positive
relationship between the abundance of the species and FRD.

Correlation with FRD  Adj R? Adj R? Cum F p-Values
Onoclea sensibilis +) 0.104 0.104 12.034 0.010
Trientalis borealis (+) 0.106 0.210 13.553 0.006
Polytrichum sp (+) 0.123 0.332 18.077 0.002
Rubus idaeus (+) 0.052 0.385 8.841 0.015
Maianthemum canadense (+) 0.031 0.415 5.771 0.016
Lycopodium obscurum +) 0.025 0.440 4.954 0.050
Diervilla lonicera +) 0.020 0.460 4.329 0.039
Fern sp +) 0.021 0.481 4.623 0.037

3.4. Effects of Silvicultural Treatments on Surface Mineral Soil Properties

Silvicultural treatments had different effects on mineral soil chemical properties (Table 3). Blade
scarification treatment resulted in lower soil pH and exchangeable Ca, while vegetation control
contributed to lower exchangeable Mg and K. Exchangeable K decreased in response to the combined
effect of scarification and vegetation control. The mineral SOC was significantly lower following
scarification but silvicultural treatments did not affect mineral N concentration. Consequently, the soil
C: N was also significantly lower with blade scarification.
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Table 3. Impact of silvicultural treatments on surface mineral soil (0-15 cm) properties, 27 years after establishment of a white pine plantation (n = 96). S = scarification,

F = fertilization, V = vegetation control, 0 = no treatment, 1 = application of treatment. Values are the mean, and standard errors are presented in brackets.

Exch.Ca

Exch.Mg

Exch.K

C Concentration

N Concentration

pH (mmol (+) kg1 s0il)  (mmol (+) kg~1soil)  (mmol (+) kg~ soil) (gkg) gkg™) Seil &N
SOFOVO 43 (x0.1) 2.36 (£0.63) 0.23 (0.05) 0.26 (+0.03) 18.25 (+3.12) 132 (+0.14) 13.20 (+1.1)
SIFOVO  4.2(20.1) 1.62 (+0.25) 0.21 (£0.04) 0.23 (£0.02) 15.59 (+1.84) 132 (£0.07) 11.50 (+1.0)
SOF1VO 4.6 (x0.1) 3.88 (+0.97) 0.34 (0.08) 0.31 (£0.03) 19.23 (+3.83) 135 (+0.16) 13.30 (1.1)
SIFIVO 4.1 (0.1) 122 (£0.21) 0.17 (£0.03) 0.21 (£0.02) 14.25 (+0.87) 1.24 (+0.06) 11.70 (£0.8)
SOFOV1  4.2(20.2) 2.21 (+0.38) 0.13 (£0.02) 0.17 (£0.01) 16.06 (+1.40) 1.19 (0.07) 13.30 (£0.5)
SIFOV1 4.1 (0.1) 107 (0.22) 0.13 (+0.02) 0.18 (£0.01) 12.99 (+1.22) 1.20 (+0.05) 10.70 (0.7)
SOF1VI 4.3 (20.1) 2.56 (+0.48) 0.21 (£0.04) 0.20 (£0.02) 19.33 (£2.20) 132 (+0.08) 14.30 (+1.0)
SIFIVI  43(20.0) 173 (0.24) 0.22 (+0.04) 0.20 (£0.03) 14.78 (+1.70) 1.1 (0.08) 13.60 (+1.4)

S* S’("("(‘ V** V’(‘*’(‘ S* NS S*

*, **, *#* the symbols indicate the significance at 0.1, 0.05 and 0.01 probability levels, respectively; NS indicates not significant.
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3.5. The Relationship between Fine Root Decomposition and Surface Mineral Soil Properties

Correlation analyses among all measured variables showed no correlations between FRD and soil
properties (see Supplementary material, Table S3).

4. Discussion

The aim of our study was to investigate how the influence of three silvicultural treatments (blade
scarification, fertilization, and vegetation control) on over- and understory vegetation, 27 years after
plantation establishment, affected fine root decomposition. We hypothesized that a faster FRD will
be associated with higher SR and higher SOC and N in the mineral soil, and also that plant species
identity could be a more important driver of community fine root decomposition than plant SR per se.
We started from the statistically validated observation that the three silvicultural treatments had an
effect on both forest total overstory volume (basal area) and understory vegetation diversity (species
richness), 27 years after plantation establishment (Figure 1, Table 1). Neither of our two hypotheses
that faster fine root decomposition will be associated with a higher plant species diversity, and that a
faster FRD will result in higher SOC and N in the mineral soil were validated. However, we did find
that species identity is important for FRD.

4.1. Silvicultural Treatment Effects on Overstory and Understory Vegetation

Vegetation control had a negative effect on understory species richness while it increased total
overstory volume (Figure 1, Table 1). These opposing effects underline the trade-off between maintaining
biodiversity and maximizing target tree productivity (for wood products). A complementary study on
the same study site [5] analyzed vegetation community composition and showed that blade scarification
led to the development of a hardwood (mainly aspen) herb-rich community, suggesting that both
vegetation control and scarification treatments affected overstory and understory vegetation.

The fastest FRD was observed when blade scarification and fertilization were combined without
vegetation control. Conversely, the slowest FRD was observed on plots where vegetation control
was applied alone (Table 1). Vegetation control by herbicide seems to have other negative effects on
fine roots, since Shan et al. [34] reported a significant decrease in fine root production and mortality
in response to this treatment, which resulted in lower soil C storage. Given the generally positive
relationship between biodiversity and ecosystem functioning [35], we expected to observe a faster
FRD associated with a higher understory species richness, however, this was not the case. The lack of
plant species richness effect on FRD in our study was observed elsewhere [22]. In this latter study,
tree root decomposition in tropical plantations was mediated by root quality (structural, anatomical,
and chemical characteristics) and soil environment rather than by tree species richness. Similarly, in a
leaf litter mixing study on the latter experimental site, only species-specific effects on decomposition
rate were observed [36]. In our study, we did not find correlations between FRD and fine root chemistry
(please see Table S3 of the Supplementary material showing only significant correlations among all
vegetation, root and soil measured variables). Instead, variance partitioning identified that understory
vegetation cover, especially fern and herb cover, was the stronger driver of FRD compared to overstory
vegetation, silvicultural treatments and soil properties (Figure 2). In a boreal forest in northern Sweden,
De Long et al. [37] also noted a stronger effect of understory plant functional group removal on leaf
litter decomposition rate, compared to either successional stage or increased soil temperature.

Handa et al. [38] observed that plant functional type controlled leaf litter decomposition across a
range of biomes; reducing litter functional types decreased decomposition rate of litter mixtures. In the
present study, principally percent cover of ferns (Onoclea sensibilis), herbs (Trientalis borealis), and moss
(Polytrichum sp.) contributed to best explain FRD (Table 2). Given the absence of a root chemistry
effect, we suggest that the increased FRD associated with these species could be due to indirect effects.
Two factors may contribute to a favorable decomposition environment; one is increased soil moisture,
the other by locally increasing soil pH [37,39], since microbes are sensitive to soil pH [40]. In the
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present study, we did not measure soil moisture nor the microbial community, and no correlation
was found between FRD and soil pH. A species-specific response related to litter quality, such as
proximate carbon chemistry: lignin, lignin/N, solubles and fibres (not measured in the present study),
could also represent a mechanism influencing root decomposition. In an earlier study on the same
site, Poirier et al. [5] observed a preponderant role of herb cover rather than overstory functional
composition (whether trees are deciduous or conifers) on mineral and subsurface soil properties,
particularly mineral N availability.

4.2. Silvicultural Treatment and Fine Root Decomposition Effects on Soil Properties

We observed differences in soil properties under plots where blade scarification (which represents
a complete removal of organic layer) and vegetation control were applied (Table 3). Notably, blade
scarification contributed to lower soil pH, and SOC concentration, while no effects of the three
silvicultural treatments were observed on N concentration in surface mineral soil, suggesting that
the C and N cycles are decoupled in this situation. The lower exchangeable bases and lower soil
pH under scarification and vegetation control treatments may be related to greater leaching of bases
under these conditions, accompanying greater nitrification with higher soil temperatures (observed
earlier on this site by Munson et al. [24] and elsewhere by Vitousek and Matson [41]). Given the
frequently observed role of vegetation cover on soil properties [4,42-47], we suggest that the effects of
silvicultural treatments could be due, at least partially, to subsequent differences in vegetation cover
among treatments, as also observed by Poirier et al. on the same site [5].

We expected the increase of FRD to have a positive effect on SOC and N concentrations [48].
However, contrary to our hypothesis, we observed no correlations between FRD and soil properties,
suggesting that in the present study the observed effects of silvicultural treatments on SOC and N did
not occur through FRD.

Twenty-seven years after conifer plantation establishment in a temperate forest, C concentrations
in the surface mineral soil (0-15 cm) following blade scarification have not recovered to the levels of
control plots, which underlines the need to be prudent when choosing silvicultural treatments in a
context of C mitigation by plantation establishment (for example for carbon credits) and by soil carbon
stabilization. Our study also demonstrates that silvicultural and vegetation succession impacts on
soil C and N cycles are important to consider over long periods, in order to understand vegetation
feedback, both aboveground and belowground inputs, on these processes with succession.

5. Conclusions

Our experiment continues a series of studies conducted at the Cartier Lake experimental intensive
silviculture plantation since its establishment in 1986. Twenty-seven years after plantation establishment,
silvicultural treatments represent disturbances that clearly induced changes in both plant species
diversity and composition as well as soil properties. These vegetation changes rather than soil
properties influenced fine root decomposition to a greater degree. We observed that understory
vegetation identity (especially fern and herbs), rather than understory species richness, overstory basal
area, root chemistry or soil properties, explained to a greater degree the fine root mass loss during
decomposition. This is a rare study to identify to the species level the understory species influencing
FRD. However, we are not able to identify the precise mechanism of control. A study measuring
variables such as soil temperature and moisture, fine root turnover, soil microbial community structure
and activity, would be useful to describe the directed dependencies among these variables, thus moving
from a correlative to a causal approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/10/1091/s1,
Table S1: Description of understory vegetation cover in the subplots of the plantation measured during the
2013 growing season, Table S2: Total basal area of the various overstory functional composition (whether trees
are deciduous or conifers) and individual contributions by species, Table S3: Significant correlations among all
vegetation, root and soil measured variables.
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