Impact of Precipitation and Temperature Variability of the East Asian Summer Monsoon (EASM) on Annual Radial Increment of Selected Tree Species in Northeast China
Abstract
:1. Introduction
- The periodically fluctuating monsoon intensities in the research area have a significant effect on the ARI of the four investigated tree species.
- The four tree species show significant differences in terms of their climate sensitivity.
2. Materials and Methods
2.1. Characteristics of the Study Site
2.2. Field and Laboratory Measurements
2.3. Statistical Analysis Methods
2.3.1. Exploratory Statistics
2.3.2. Climate Data Analysis
2.3.3. Growth Data Analysis
2.3.4. Analysis of Climate-Growth Relations
3. Results
3.1. Characterization of Annual Radial Increment and Precipitation during the Vegetation Period
3.2. Climatic Influences on ARI
3.3. Temporal Stability of Dendroclimatic Relations
3.4. Climate Sensitivity
4. Discussion
4.1. Effect of the Periodically Fluctuating Monsoon Intensities on ARI
4.2. Climate Sensitivity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Months | Precipitation (mm) | Air Temperature (°C) | ||||
---|---|---|---|---|---|---|
p-Value | SD Weichang | SD Gridded Data | p-Value | SD Weichang | SD Gridded Data | |
Jan | 0.817 | 2.3 | 2.3 | 0.750 | 1.8 | 1.7 |
Feb | 0.111 | 2.8 | 2.2 | 0.481 | 2.6 | 2.4 |
Mar | 0.948 | 6.7 | 6.4 | 0.577 | 2.0 | 2.1 |
Apr | 0.115 | 15.6 | 10.6 | 0.592 | 1.7 | 1.5 |
May | 0.132 | 23.9 | 17.2 | 0.621 | 1.0 | 1.1 |
Jun | 0.073 | 35.0 | 26.6 | 0.942 | 1.0 | 1.0 |
Jul | 0.060 | 54.0 | 42.7 | 0.739 | 1.1 | 1.0 |
Aug | 0.069 | 45.1 | 31.5 | 0.816 | 0.9 | 0.9 |
Sep | 0.102 | 29.7 | 18.5 | 0.474 | 1.0 | 1.1 |
Oct | 0.418 | 15.2 | 12.6 | 0.695 | 1.2 | 1.2 |
Nov | 0.814 | 5.2 | 5.0 | 0.736 | 1.7 | 1.6 |
Dec | 0.921 | 1.8 | 1.8 | 0.479 | 2.1 | 1.9 |
Appendix B
Variable | Observation | Factor Loadings of the Principal Components | |||
---|---|---|---|---|---|
PC 1 | PC 2 | PC 3 | PC 4 | ||
L. gmelinii | Calendar years (1925–2013) | 7.928 | −2.192 | 4.121 | 1.831 |
P. tabuliformis | 8.442 | −0.771 | 0.051 | −4.018 | |
P. asperata | 7.879 | −2.508 | −4.060 | 1.774 | |
Q. mongolica | 6.640 | 6.574 | −0.168 | 0.816 | |
Variance (%) | 68.3 | 15.6 | 9.5 | 6.6 |
Appendix C
References
- Büntgen, U.; Frank, D.; Grudd, H.; Esper, J. Long-term summer temperature variations in the Pyrenees. Clim. Dyn. 2008, 31, 615–631. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Frank, D.; Büntgen, U.; Verstege, A.; Luterbacher, J.; Xoplaki, E. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Liu, B. Effect of Climate Change on Larix gmelinii Growth in Different Latitudes. J. Northeast For. Univ. 2015, 43, 10–13. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-DBLY201503003.htm (accessed on 2 September 2020).
- Shao, X.; Xu, Y.; Yin, Z.; Liang, E.; Zhu, H.; Wang, S. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat. Sci. Rev. 2010, 29, 2111–2122. [Google Scholar] [CrossRef]
- Fang, K.; Chen, Q.; Liu, C.; Cao, C.; Chen, Y.; Zhou, F. Research advances in dendrochronology. Chin. J. Appl. Ecol. 2014, 25, 1879–1888. Available online: https://pubmed.ncbi.nlm.nih.gov/25345035/ (accessed on 2 September 2020).
- Wu, X.; Pei, T.; Li, X.; Liu, H. Tree growth responding to climate changes. J. Beijing Norm. Univ. 2016, 52, 109–116. [Google Scholar]
- Wang, X.-Y.; Zhao, C.-Y.; Jia, Q.-Y. Impacts of Climate Change on Forest Ecosystems in Northeast China. Adv. Clim. Chang. Res. 2013, 4, 230–241. [Google Scholar] [CrossRef]
- Walther, G.; Beißner, S.; Burga, C. Trends in the upward shift of alpine plants. J. Veg. Sci. 2005, 16, 541–548. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Song, H.; Cai, Q.; Yang, Y. Long-term variation of temperature over North China and its links with large-scale atmospheric circulation. Quat. Int. 2013, 283, 11–20. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Tree Rings and Environment Dendroecology, 3rd ed.; Paul Haupt: Berne, Switzerland; Suttgart, Germany; Vienna, Austria, 1996; p. 609. [Google Scholar]
- Bao, G.; Liu, Y.; Linderholm, H.W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868AD. Palaeogeogr. Palaeocl. 2012, 313–314, 162–172. [Google Scholar] [CrossRef]
- Chen, L.; Gao, L.; Zhang, Y.; Zhang, S.; Zhao, X. Characteristics of tree-ring chronology of Pinus koraiensis and its relationship with climate factors on the northern slope of Changbai Mountain. Acta Ecol. Sin. 2013, 33, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Shi, Z.; Xu, L.; Yang, X.; Jia, Z.; Lü, S.; Feng, C.; Shang, J. Precipitation variability in Hulunbuir, northeastern China since 1829 AD reconstructed from tree-rings and its linkage with remote oceans. J. Arid Environ. 2013, 95, 14–21. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Y.; Bao, G.; Bao, M.; Wang, Y.; Ge, Y.; Zhang, L.; Bao, W.; Tian, H. A tree-ring based reconstruction of summer relative humidity variability in eastern Mongolian Plateau and its associations with the Pacific and Indian Oceans. Palaeogeogr. Palaeocl. 2015, 438, 113–123. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, H.; Song, H.; Liang, J. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since A.D. 1777. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Su, D.; Zhou, L.; Yu, D.; Lewis, B.J.; Qi, L. Major forest types and the evolution of sustainable forestry in China. Environ. Manag. 2011, 48, 1066–1078. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Q.; Chen, J.; John, H.; Birks, B.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. UK 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takao, Y.; Fujio, K.; Seita, E. Numerical Study on the Baiu Front Genesis by Heating Contrast between Land and Ocean. J. Meteorol. Soc. Jpn. 2001, 79, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben; Klindworth: Hannover, Germany, 1884; 147p. [Google Scholar]
- Van Laar, A.; Akça, A. Forest Mensuration; Springer: Heidelberg, Germany, 2007; 390p, ISBN 13-978-1-4020-5991-9. [Google Scholar]
- Windendro. Manual for Tree-Ring Analysis; Reg 2014b; Instruments Regent Inc.: Quebec, QC, Canada, 2014; Available online: http://www.regentinstruments.com (accessed on 3 September 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, Inc.: Boston, MA, USA, 2019. [Google Scholar]
- Add-in XLSTAT Version 2020.1 for Microsoft Excel 2016. Available online: https://www.xlstat.com/de/ (accessed on 3 September 2020).
- Biondi, F.; Qeadan, F. Inequality in paleorecords. Ecology 2008, 89, 1056–1067. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D. Basic chronology statistics and assessment. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 137–152. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Buras, A. A comment on the expressed population signal. Dendrochronologia 2017, 44, 130–132. [Google Scholar] [CrossRef]
- Herzog, J.; Müller-Westermeier, G. Homogenitätsprüfung und Homogenisierung klimatologischer Meßreihen im Deutschen Wetterdienst. In Berichte des Deutschen Wetterdienstes; Berichte des Deutschen Wetterdienstes: Offenbach/Main, Germany, 1998; p. 202. Available online: https://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/202_pdf.pdf?__blob=publicationFile&v=3 (accessed on 2 September 2020).
- Paesler, M. Homogenisierung. In Statistische Methoden der Klimatologie; Schlegel, M., Ed.; promet, Meteorologische Fortbildung; Deutscher Wetterdienst: Offenbach/Main, Germany, 1983; Volume 13, pp. 3–7. Available online: https://d-nb.info/1124023151/34 (accessed on 3 September 2020).
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming. The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Begueria, S.; Vicente-Serrano, S. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Clim. 2013, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Cadro, S.; Uzunovic, M. How to Use: Package ‘SPEI’ for Basic Calculations. Available online: https://www.researchgate.net/publication/299971042_HOW_TO_USE_Package_%27SPEI%27_For_BASIC_CALCULATIONS (accessed on 2 September 2020).
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull. 1981, 41, 45–53. Available online: https://repository.arizona.edu/handle/10150/261038 (accessed on 2 September 2020).
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976; ISBN 978-0-12-268450-0. [Google Scholar]
- Blasing, T.J.; Solomon, A.M.; Duvick, D.N. Response function revisited. Tree Ring Bull. 1984, 44, 1–15. Available online: https://www.researchgate.net/publication/235350126_Response_function_revisited (accessed on 2 September 2020).
- Biondi, F. Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 1997, 15, 139–150. Available online: https://www.researchgate.net/publication/235665557_Evolutionary_and_moving_response_functions_in_dendroclimatology (accessed on 2 September 2020).
- Fritts, H.C.; Blasing, T.J.; Hayden, B.P.; Kutzbach, J.E. Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. J. Appl. Meteor. 1971, 10, 845–864. [Google Scholar] [CrossRef] [Green Version]
- Cropper, J.P. Multicollinearity within selected western North American temperature and precipitation data sets. Tree Ring Bull. 1984, 44, 29–37. Available online: https://repository.arizona.edu/handle/10150/261279 (accessed on 3 September 2020).
- Guiot, J. The bootstrapped response function. Tree Ring Bull. 1991, 51, 39–41. Available online: https://www.researchgate.net/publication/247792247_The_bootstrapped_response_function (accessed on 2 September 2020).
- Cropper, J.P. Tree-Ring Response Functions: An Evaluation by Means of Simulations. Ph.D. Thesis, Laboratory of Tree-Ring Research, The University of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the “divergence problem” in northern forests: A review of the tree-ring evidence and possible causes. Glob. Planet Chang. 2008, 60, 289–305. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. Available online: https://www.jstatsoft.org/article/view/v082i13 (accessed on 2 September 2020). [CrossRef] [Green Version]
- Available online: http://r-eco-evo.blogspot.com/2011/08/comparing-two-regression-slopes-by.html (accessed on 3 September 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Available online: https://cran.r-project.org/web/packages/effects/effects.pdf (accessed on 3 September 2020).
- Cai, Q.; Liu, Y.; Song, H.; Sun, J. Tree-ring-based reconstruction of the April to September mean temperature since 1826 AD for north-central Shaanxi Province, China. Sci. China Ser. D Earth Sci. 2008, 51, 1099–1106. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Bao, G.; Lei, Y.; Sun, B. Tree-ring-based May–July mean temperature history for Luliang Mountains, China, since 1836. Chin. Sci. Bull. 2010, 55, 3008–3014. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Tian, H. A dendroclimatic reconstruction of May–June mean temperature variation in the Heng Mounatins, north China, since 1767 AD. Quat. Int. 2013, 283, 3–10. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Liu, H.; Ren, J. Reconstruction of drought variability in North China and its association with sea surface temperature in the joining area of Asia and Indian–Pacific Ocean. Palaeogeogr. Palaeocl. 2015, 417, 554–560. [Google Scholar] [CrossRef]
- Liang, E.; Eckstein, D.; Liu, H. Climate-growth relationships of relict Pinus tabulaeformis at the northern limit of its natural distribution in northern China. J. Veg. Sci. 2008, 19, 393–406. [Google Scholar] [CrossRef]
- Peng, J.; Sun, Y.; Chen, M.; He, X.; Davi, N.K.; Zhang, X.; Li, T.; Zhu, C.; Cai, C.; Chen, Z. Tree-ring based precipitation variability since AD 1828 in northwestern Liaoning, China. Quat. Int. 2013, 283, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Gao, R. Review on the impacts of meteorological factors on gymnosperms growth survey. For. Eng. 2014, 30, 6–9. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-SSGC201402003.htm (accessed on 2 September 2020).
- Liu, D.; Na, J.; Du, C.; Zhang, J. Changes in eco-geographical distribution of major forestry species in Heilongjiang province during 1961–2003. Adv. Clim. Chang. Res. 2007, 3, 100–105. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-QHBH200702006.htm (accessed on 2 September 2020).
- Guo, J.; Ding, X.; Gong, J.; Liu, N. Relationship between the growth of Larix principis-rupprechtii and climate factors in Mulan forest area. Hebei J. For. Orchard Res. 2015, 30, 21–25. [Google Scholar]
- Liu, M.; Mao, Z.J.; Li, Y.; Sun, T.; Li, X.H.; Huang, W.; Liu, R.P.; Li, Y.H. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Chin. J. Appl. Ecol. 2016, 27, 1341–1352. [Google Scholar] [CrossRef]
- Mitscherlich, G. Wald, Wachstum und Umwelt; 3. Band. Boden, Luft und Produktion; Sauerländer’s Verlag: Frankfurt, Germany, 1975; 352p. [Google Scholar]
- Chang, Y.; Chen, Z.; Zhang, X.; Bai, X.; Zhao, X.; Li, J.; Lu, X. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chin. J. Plant Ecol. 2017, 41, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bai, X.; Zhang, X.; Chang, Y.; Lu, X.; Zhao, X.; Chen, Z. Different responses of natural Pinus sylvestris var. mongolica growth to climate change in southern and northern forested areas in the Great Xing’an Mountains. Acta Ecol. Sin. 2017, 37, 7232–7241. [Google Scholar] [CrossRef] [Green Version]
- Isaac-Renton, M.; Montwé, D.; Hamann, A.; Spiecker, H.; Cherubini, P.; Treydte, K. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 2018, 9, 5254. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, K.; Guan, W. Reconstruction of early summer temperature and annual aridity index at Mulan Weichang in northern China. Sci. Soil Water Conserv. 2015, 13, 141–148. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBC201506021.htm (accessed on 2 September 2020).
- Spiecker, H. Growth dynamics in a changing environment—Long-term observations. In Nutrient Uptake and Cycling in Forest Ecosystems; Nilsson, L.O., Hüttl, R.F., Johansson, U.T., Eds.; Development in Plant and Soil Sciences: Dordrecht, The Netherlands, 1995; Volume 62, pp. 555–561. [Google Scholar]
- Yan, B.; Lin, W.; Liu, Q.; Yu, J. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China. J. Beijing For. Univ. 2017, 39, 58–65. Available online: http://j.bjfu.edu.cn/en/article/doi/10.13332/j.1000-1522.20170161 (accessed on 2 September 2020).
Months | Precipitation [mm] | Air temperature [°C] | ||||
---|---|---|---|---|---|---|
1925–1950 | 1951–1980 | 1981–2013 | 1925–1950 | 1951–1980 | 1981–2013 | |
Jan | 1 | 2 | 1 | −13.9 | −13.2 | −12.5 |
Feb | 2 | 4 | 3 | −10.5 | −10.3 | −8.6 |
Mar | 7 | 8 | 7 | −3.1 | −2.8 | −1.4 |
Apr | 15 | 15 | 18 | 6.7 | 6.4 | 7.5 |
May | 43 | 37 | 38 | 13.5 | 13.8 | 14.6 |
Jun | 63 | 75 | 74 | 18.5 | 18.1 | 18.9 |
Jul | 136 | 138 | 122 | 21.3 | 20.7 | 21.3 |
Aug | 99 | 103 | 91 | 19.3 | 18.9 | 19.7 |
Sep | 47 | 48 | 50 | 13.4 | 12.8 | 13.8 |
Oct | 17 | 21 | 22 | 6.3 | 5.9 | 6.5 |
Nov | 6 | 5 | 6 | −3.7 | −3.3 | −3.2 |
Dec | 2 | 2 | 2 | −12.0 | −11.0 | −10.3 |
MAPT | 438 | 456 | 434 | |||
MAAT | 4.6 | 4.7 | 5.5 |
Parameter | Tree Species | ||||
---|---|---|---|---|---|
L. gmelinii | P. tabuliformis | P. asperata | Q. mongolica | ||
Number of stands | 10 | 10 | 10 | 10 | |
Number of trees | 28 | 30 | 29 | 30 | |
Tree age (y) | Range | 39–98 | 40–106 | 27–106 | 40–102 |
Mean | 67 | 76 | 54 | 68 | |
SD | 20.4 | 23.4 | 29.7 | 9.6 | |
Tree height (m) | Range | 9.0–30.6 | 10.0–25.8 | 10.8–27.7 | 7.4–16.8 |
Mean | 21.5 | 17.8 | 18.5 | 12.7 | |
SD | 7.3 | 4.9 | 5.2 | 2.7 | |
DBH (cm) | Range | 13.6–58.0 | 21.2–46.8 | 18.3–42.9 | 15.0–29.2 |
Mean | 35.5 | 34.3 | 27.9 | 24.9 | |
SD | 11.8 | 7.0 | 7.6 | 12.3 | |
ARI at 1.3 m (mm) | Range | 0.2–8.7 | 0.2–6.8 | 0.2–8.3 | 0.3–4.6 |
Mean | 2.4 | 2.1 | 2.9 | 1.4 | |
SD | 1.4 | 1.1 | 1.5 | 0.7 | |
Number of annual tree-rings at 1.3 m | Range | 37–96 | 36–103 | 24–99 | 34–96 |
Mean | 63 | 71 | 47 | 66 | |
SD | 20.4 | 22.4 | 27.1 | 10.1 |
Indicator | P. asperata | P. tabuliformis | L. gmelinii | Q. mongolica |
---|---|---|---|---|
G | 0.615 | 0.571 | 0.581 | 0.602 |
EPS | 0.865 | 0.908 | 0.904 | 0.884 |
Climate Variable | Month | Tree Species | |||
---|---|---|---|---|---|
P. asperata | P. tabuliformis | L. gmelinii | Q. mongolica | ||
temp | MAY | n. s. | n. s. | −0.244 | n. s. |
JUN | −0.206 | −0.175 | −0.271 | −0.262 | |
prec | aug | n. s. | n. s. | 0.194 | n. s. |
sep | 0.238 | 0.186 | n. s. | n. s. | |
MAY | n. s. | n. s. | n. s. | n. s. | |
JUN | 0.255 | 0.242 | n. s. | 0.254 | |
SPEI-1 | JUL | n. s. | n. s. | n. s. | −0.278 |
Dependent Variable | Fixed Effects | Estimate | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|
ARI | precv | 1.559 * 10−3 | 1.521 * 10−4 | 10.25 | <0.001 |
TSPa | 1.098 * 10−1 | 1.669 * 10−1 | 0.66 | 0.512 | |
TSPt | −2.445 * 10−1 | 1.367 * 10−1 | −1.79 | 0.075 | |
TSQm | −3.178 * 10−1 | 1.239 * 10−1 | −2.56 | 0.011 | |
TSPa: precv | −4.399 * 10−4 | 2.550 * 10−4 | −1.73 | 0.084 | |
TSPt: precv | −6.897 * 10−5 | 2.097 * 10−4 | −0.33 | 0.742 | |
TSQm: precv | −4.608 * 10−4 | 1.924 * 10−4 | −2.40 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hipler, S.-M.; Speicher, B.; Sprengel, L.; Kahle, H.-P.; Spiecker, H.; Wu, S. Impact of Precipitation and Temperature Variability of the East Asian Summer Monsoon (EASM) on Annual Radial Increment of Selected Tree Species in Northeast China. Forests 2020, 11, 1093. https://doi.org/10.3390/f11101093
Hipler S-M, Speicher B, Sprengel L, Kahle H-P, Spiecker H, Wu S. Impact of Precipitation and Temperature Variability of the East Asian Summer Monsoon (EASM) on Annual Radial Increment of Selected Tree Species in Northeast China. Forests. 2020; 11(10):1093. https://doi.org/10.3390/f11101093
Chicago/Turabian StyleHipler, Sandra-Maria, Benedikt Speicher, Lars Sprengel, Hans-Peter Kahle, Heinrich Spiecker, and Shuirong Wu. 2020. "Impact of Precipitation and Temperature Variability of the East Asian Summer Monsoon (EASM) on Annual Radial Increment of Selected Tree Species in Northeast China" Forests 11, no. 10: 1093. https://doi.org/10.3390/f11101093
APA StyleHipler, S. -M., Speicher, B., Sprengel, L., Kahle, H. -P., Spiecker, H., & Wu, S. (2020). Impact of Precipitation and Temperature Variability of the East Asian Summer Monsoon (EASM) on Annual Radial Increment of Selected Tree Species in Northeast China. Forests, 11(10), 1093. https://doi.org/10.3390/f11101093