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Abstract: Due to the increased frequency and intensity of forest damage caused by diseases and
pests, effective methods are needed to accurately monitor the damage degree. Unmanned aerial
vehicle (UAV)-based hyperspectral imaging is an effective technique for forest health surveying and
monitoring. In this study, a framework is proposed for identifying the severity of damage caused by
Tomicus spp. (the pine shoot beetle, PSB) to Yunnan pine (Pinus yunnanensis Franch) using UAV-based
hyperspectral images. Four sample plots were set up in Shilin, Yunnan Province, China. A total
of 80 trees were investigated, and their hyperspectral data were recorded. The spectral data were
subjected to a one-way ANOVA. Two sensitive bands and one sensitive parameter were selected
using Pearson correlation analysis and stepwise discriminant analysis to establish a diagnostic model
of the damage degree. A discriminant rule was established to identify the degree of damage based
on the median value between different degrees of damage. The diagnostic model with R690 and
R798 as variables had the highest accuracy (R2 = 0.854, RMSE = 0.427), and the test accuracy of the
discriminant rule was 87.50%. The results are important for forest damage caused by the PSB.

Keywords: UAV-based hyperspectral image; waveband selection method; model fitting; discriminant
rule; Tomicus spp.

1. Introduction

Pine shoot beetles (PSBs) [1], Tomicus spp. are important forestry pests that wreak havoc on
pine trees and pose a threat to ecological stability. The pests are difficult to find because they can
remain hidden in trees for long periods. The damage stage of Tomicus spp. can be divided into two
stages, which are the shoot-feeding stage and stem-boring stage. From May to November each year,
the adults will migrate to the current year’s shoots after eclosion, which is called the shoot feeding
stage. From November to April of the following year, the adults consume the phloem and xylem of the
trunk. Then, they mate and lay eggs in the trunk, which is called the stem-boring stage [2–4]. PSBs are
among the main pests of Yunnan pine (Pinus yunnanensis Franch). Since the first large-scale outbreak
in Yunnan, these pests have damaged Yunnan pine in dozens of cities, killing large numbers of pine
forests and affecting the forestry industry and local economies [5].

Currently, visual investigation is a common method used for surveying forest diseases and pests,
but this method is expensive in terms of manpower and material resources. It is difficult for researchers
to navigate deep into the forest hinterland if they are using visual investigation, and the accuracy is
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often low [6]. Satellite remote sensing technology is also widely used in the study of forest diseases
and pests, and vegetation damage in a large area can be observed [7,8]. In recent years, hyperspectral
technology has been widely applied to monitor the damage caused by forest diseases and pests,
and at present the method is mainly used to observe the spectral changes of infected vegetation,
to determine the damage-sensitive bands, to establish monitoring models, and to identify the affected
areas. Furthermore, hyperspectral technology can be used to monitor the levels of photosynthetic
pigments and nitrogen and water contents of vegetation [9–12].

A handheld spectrometer is used to measure the vegetation spectrum and to explore the relationship
between the spectrum and photosynthetic pigments and plant water content [12]. The changes in
chlorophyll of vegetation caused by diseases and pests can be monitored through spectral changes,
thereby realizing rapid monitoring [13]. A handheld spectrometer can measure the spectral curves
of locally damaged areas of vegetation caused by diseases and pests. Nevertheless, a handheld
spectrometer has several drawbacks with regards to monitoring diseases and pests in large areas.
Therefore, airborne and spaceborne hyperspectral techniques are increasingly being used in forest
disease and pest monitoring.

Hyperspectral imaging is also widely used in plant diseases and insect pests [14–16]. It also
has applications in forest diseases and pests. For some diseases and pests that cause leaves to wilt
and drop, hyperspectral imaging can be used to analyze the relationship between the hyperspectral
characteristics and the health status of the vegetation [17,18]. Unmanned aerial vehicle (UAV)-based
data and other multiscale hyperspectral data contain a large amount of information on vegetation
vitality that can be used to classify the damage degree to vegetation [19] and monitor vegetation
health [20].

Hyperspectral data can also be used to study the individual tree or canopy change after being
damaged. These data allow for canopy-scale studies of forest health, such as changes in the spectral
characteristics of plants after pest and disease infestation [21] or changes in pigment content after
forest decline [22]. UAV-based hyperspectral data have also been applied in studies of forest pest
monitoring at the individual tree level. The use of UAV-based hyperspectral data in combination with
Light Detection and Ranging (LiDAR) data enables effective individual tree level pest monitoring and
accurate measurement of the health of individual trees [1].

In this study, visible and partial near-infrared hyperspectral imaging techniques were used
to distinguish healthy and damaged Yunnan pine and to identify the severity of PSBs infestation.
The results of this study are beneficial for the monitoring of PSBs, and the data provide theoretical
support for the use of imaging techniques in monitoring forest diseases and pests. The objectives
of this study are to: (1) obtain hyperspectral data of a Yunnan pine canopy, (2) abstract the spectral
characteristics of the damaged Yunnan pine, (3) screen sensitive bands and spectral parameters that
are most useful for classification, (4) establish diagnostic models to estimate the degree of damage of
Yunnan pine affected by PSB, and (5) establish quantitative methods to determine the damage degree.

2. Materials and Methods

2.1. Study Area

The study area is located in the Heilongtan Reservoir forest area, Shilin County, Yunnan Province,
China (103◦19′53”–103◦20′ E, 24◦45′59”–24◦46′ N). Yunnan pine is the dominant species in the area,
characterized by young and middle-aged artificial pure forests that are susceptible to disease and pest
infestations. Combined with the historical data from the local forestry office, we identified the Yunnan
pines that were damaged by PSBs. These trees were used for the study (Figure 1). According to the
“Standard of Forest Pests Occurrence and Disaster (Document Number: LY/T 1681–2006)” issued by
the State Forestry Administration, the damage degree of individual Yunnan pine caused by PSB was
classified into four levels, as listed in Table 1.
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Figure 1. Location of the study area near the reservoir of Heilongtan in Shilin County, Yunnan 
Province, China. Four sample plots were set up in the study area with randomly selected samples 
from each plot for a total of 80 sample trees (sample plot 1: 23 trees, sample plot 2: 28 trees, sample 
plot 3: 16 trees, and sample plot 4: 13 trees). 

Table 1. The damage degree of individual Yunnan pine caused by the pine shoot beetle (PSB). 

Damage Degree Healthy Mild Damage Moderate Damage Severe Damage 
Damaged shoot ratio (DSR, %) <10 10~20 21~50 >51 

2.2. Data Acquisition 

We used a DJI M600 Pro multi-rotor UAV (DJI, Shenzhen, China) equipped with a UHD S185 
imaging spectrometer (Cubert GmbH, Ulm, Baden-Württemberg, Germany) to form a UAV-based 
hyperspectral imaging system. The global position system and inertial measurement unit modules 
were integrated onto the UAV with a horizontal and vertical position error of approximately 2.0 m 
and 5.0 m, respectively, with a positioning accuracy of approximately one degree [18,23]. For small-
area image analysis, the relative position is more important than the absolute horizontal and vertical 
position. Therefore, these error ranges are acceptable in small-area forestry surveys. The UHD S185 
spectrometer can obtain accurate hyperspectral cube data over the entire field of view 
instantaneously with its Snapshot imaging technology. The main parameters of the UHD S185 that 
we used are listed in Table 2. The data acquisition route was planned by DJI Go Pro (DJI, Shenzhen 
China) based on Google Earth information. 

Table 2. Main parameters of the UHD S185 (provided by the manufacturer). 

Parameters Value Parameters Value 
Wavelength range 450–950 nm Digital resolution 12 bit 
Sampling interval 4 nm Cube resolution 1.0 megapixels 
Spectral resolution 8 nm at 532 nm Field of view 20° 
Spectral channels 125 Imaging speed 5 Cubes/s 

Weight 470 g Spectral throughput 2500 spectra/cube 

Figure 1. Location of the study area near the reservoir of Heilongtan in Shilin County, Yunnan Province,
China. Four sample plots were set up in the study area with randomly selected samples from each plot
for a total of 80 sample trees (sample plot 1: 23 trees, sample plot 2: 28 trees, sample plot 3: 16 trees,
and sample plot 4: 13 trees).

Table 1. The damage degree of individual Yunnan pine caused by the pine shoot beetle (PSB).

Damage Degree Healthy Mild Damage Moderate Damage Severe Damage

Damaged shoot ratio (DSR, %) <10 10~20 21~50 >51

2.2. Data Acquisition

We used a DJI M600 Pro multi-rotor UAV (DJI, Shenzhen, China) equipped with a UHD S185
imaging spectrometer (Cubert GmbH, Ulm, Baden-Württemberg, Germany) to form a UAV-based
hyperspectral imaging system. The global position system and inertial measurement unit modules
were integrated onto the UAV with a horizontal and vertical position error of approximately 2.0 m and
5.0 m, respectively, with a positioning accuracy of approximately one degree [18,23]. For small-area
image analysis, the relative position is more important than the absolute horizontal and vertical
position. Therefore, these error ranges are acceptable in small-area forestry surveys. The UHD S185
spectrometer can obtain accurate hyperspectral cube data over the entire field of view instantaneously
with its Snapshot imaging technology. The main parameters of the UHD S185 that we used are listed in
Table 2. The data acquisition route was planned by DJI Go Pro (DJI, Shenzhen China) based on Google
Earth information.

UAV-based data acquisition was carried out in the study areas on 17 November 2019 from
11:00 a.m. to 2:00 p.m. under sunny and windless conditions. Taking into account the actual terrain,
the condition of the vegetation in the study area and the study area to be covered, we flew the UAV
at an altitude of 100 m above the ground, and the estimated ground sampling distances (GSD) were
0.028 m and 0.56 m for panchromatic and hyperspectral images, respectively. The flight speed was
set at 5 m/s. Eight sorties were flown, with the image forward and side overlaps were set to 70% and
60% for each flight, until the entire study area was covered. Before each flight, the UHD S185 scanned
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the Spectralon® panel (LabSphere, North Sutton, NH, USA) for giving an all-white calibration image
with a reflectance of nearly 100% (Figure 2), and then the lens cap was covered and scanned to give an
all-black calibration with 0% reflectivity. The above operations were for the correction of hyperspectral
cube data. The acquisition area was approximately 0.23 km2. The camera was used to take the photos.
Moreover, the position and orientation system (POS) were synchronized to facilitate hyperspectral data
correction. When the UAV aerial photography was completed, the aerial photograph was screened to
delete the photographs during take-off and landing, and only the photographs of flights within the
route plan were retained.

Table 2. Main parameters of the UHD S185 (provided by the manufacturer).

Parameters Value Parameters Value

Wavelength range 450–950 nm Digital resolution 12 bit
Sampling interval 4 nm Cube resolution 1.0 megapixels
Spectral resolution 8 nm at 532 nm Field of view 20◦

Spectral channels 125 Imaging speed 5 Cubes/s
Weight 470 g Spectral throughput 2500 spectra/cube
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radiometric calibration. (b) The UAV took off and collected data. 

For geometric correction of the hyperspectral data and acquisition of sample trees’ regions of 
interest (ROIs), a Red-Green-Blue (RGB) orthophoto image of the study area were acquired using DJI 
Phantom 4 RTK (DJI, Shenzhen China). The flight height was 100 m and the speed was 6 m/s. A total 
of four sorties were flown. Each flight required calibration photographs before take-off and after 
landing. DJI Go Pro was also used to plan the acquisition range of the RGB orthophoto image, which 
corresponded to the acquisition range of the hyperspectral data. However, the acquisition range of 
the RGB orthophoto image was larger than that of hyperspectral data for subsequent geometric 
correction of hyperspectral data. 

2.3. Data Preprocessing 

Rigorous preprocessing was required for the hyperspectral data in order to derive information 
from the imagery. The preprocessing of hyperspectral data is shown in Figure 3. The mosaic of RGB 
images was performed with DJI Terra 2.0 (DJI, Shenzhen, China), which allowed quick stitching of 
photographs captured by DJI Phantom 4 RTK to obtain RGB orthophoto image. The Cubert-Pilot 
software (Cubert GmbH, Ulm, Baden-Württemberg, Germany) was used to fuse each hyperspectral 
image with the corresponding panchromatic image acquired at the same time to obtain the fused 

Figure 2. Unmanned aerial vehicle (UAV)-based hyperspectral acquisition equipment. (a) UHD S185,
radiometric calibration. (b) The UAV took off and collected data.

For geometric correction of the hyperspectral data and acquisition of sample trees’ regions of
interest (ROIs), a Red-Green-Blue (RGB) orthophoto image of the study area were acquired using
DJI Phantom 4 RTK (DJI, Shenzhen China). The flight height was 100 m and the speed was 6 m/s.
A total of four sorties were flown. Each flight required calibration photographs before take-off and
after landing. DJI Go Pro was also used to plan the acquisition range of the RGB orthophoto image,
which corresponded to the acquisition range of the hyperspectral data. However, the acquisition range
of the RGB orthophoto image was larger than that of hyperspectral data for subsequent geometric
correction of hyperspectral data.

2.3. Data Preprocessing

Rigorous preprocessing was required for the hyperspectral data in order to derive information
from the imagery. The preprocessing of hyperspectral data is shown in Figure 3. The mosaic of RGB
images was performed with DJI Terra 2.0 (DJI, Shenzhen, China), which allowed quick stitching of
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photographs captured by DJI Phantom 4 RTK to obtain RGB orthophoto image. The Cubert-Pilot
software (Cubert GmbH, Ulm, Baden-Württemberg, Germany) was used to fuse each hyperspectral
image with the corresponding panchromatic image acquired at the same time to obtain the fused
hyperspectral image. Then, the hyperspectral images were stitched using Agisoft PhotoScan (Agisoft
LLC, Saint Petersburg, Russia) with the aid of point cloud data from the panchromatic images to
generate hyperspectral orthophoto image. Geometric correction of hyperspectral data was carried
out using ENVI’s Image Registration Workflow via the RGB orthophoto image of the study area.
Radiometric calibration was directly performed for hyperspectral data after geometric correction,
and thus, was provided by the manufacturer. The radiometric calibration method described in Equation
(1) (the formula is provided by the manufacturer):

Fi =
ρi∑

i ∈ G Hi/m
(1)

where ρi is the standard reflection of band i; G is a collection of pixels in a white area of a mask image;
m is the number of pixels in the collection; Hi is the spectral radiance of the calibrated image after
radiation correction in band i; and Fi is the reflectivity of band i after radiation calibration.
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Figure 3. Preprocessing flow. (a) Image preprocessing flow. (b) RGB orthophoto image. (c) Correction
hyperspectral image. (d) A local magnification of the hyperspectral image. Position and orientation
system (POS); Red-Green-Blue (RGB); Region of interest (ROI).

2.4. Spectral Reflectance of Individual Yunnan Pine Canopy

Based on the canopy location information (latitude and longitude) and photographs of each
sample tree, the location and size of each canopy was determined on the RGB orthophoto image and the
canopy range was plotted (Figure 4) as the ROI. Because the canopy range of a severely damaged tree
was difficult to identify, we used the contour of the branches instead of the canopy range. These ROIs
were added to the pre-processed hyperspectral image. The average reflectance of the signal ROI was
extracted via ENVI (Harris Corporation, Melbourne, FL, USA) as the spectrum of an individual tree for
the subsequent analysis.
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Figure 4. The canopy range of different damage degrees. (A) Healthy. (B) Mild damage. (C) Moderate
damage. (D) Severe damage.

2.5. First Derivative and Spectral Parameters

The quality of the raw data was poor because the data collection was affected by environmental
factors such as soil and light. Therefore, the spectral reflectance curves were smoothed using the
Savitzky-Golay (S-G) method [24]. The method eliminates the effects of noise and improves the
data quality while preserving as much of the original spectral information as possible. In this study,
the original spectral reflectance curve was preprocessed by the 7-point and 3-term S-G method.

The first derivative of the spectral reflectance curve can reflect the position of spectral peaks and
troughs very well and plays an extremely important role in the processing of spectral data. Therefore,
the first derivative can reflect the slight spectral changes caused by PSB, and thus, it is helpful for
monitoring the damage degree. The first derivative [25] was calculated by Equation (2):

ρ′(λi)
=

[ρ (λi+1)
− ρ(λi −1)

]
2∆λ

, (2)

where λi is the wavelength at i; ρ(λi)
is the spectral value of wavelength λi; and 24λ is the difference in

the wavelength of λi−1 to λi+1, determined by the spectrum sample interval.
The vegetation index is based on the spectral reflectance characteristics of plants, using the spectral

reflectance of two or more wavelengths in various combinations and operations to enhance and extract
vegetation information, in order to evaluate the growth condition of vegetation by reflecting information
related to vegetation physiology or physics through the vegetation index [26]. Many physiological
characteristics of Yunnan pine were altered after PSB infestation. The spectral reflectance information of
the canopy was also altered. In this study, 28 parameters were selected with reference to the vegetation
indices used in previous studies, combining the canopy spectral curves and first derivative features
(Table 3).
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Table 3. Spectral parameters. Two types of spectral parameters were used in this study: vegetation
indices and hyperspectral parameters. We also list specific calculation formulas and describe specific
meanings. Normalized Difference Vegetation Index (NDVI); Red Edge Normalized Difference Vegetation
Index (NDVI705); Simple Ratio Index (SR); Photochemical Reflectance Index (PRI).

Variable Categories Variable Definitions and Formulas References

Vegetation indexes

NDVI1 =
(R(760∼850)−R(650∼670))
(R(760∼850)+ R(650∼670))

[27]

NDVI2 = (R 838−R677)/(R 838+R677) [28]

NDVI705= (R 750−R705)/(R 750+R705) [29]

SR1 =R(760∼850)/R(650∼670) [27]

SR2 = R838/R677 [28]

PRI = (R 531−R570)/(R 531+R570) [27]

Hyperspectral
parameters

Reflectance
parameters

Rg (Green mountain): Maximum reflectance in the
wavelength range of 520–560 nm [30]

Rr (Red valley): Minimum reflectance in the
wavelength range of 640–680 nm [30]

D = 1− R670

R560+
R760−R560

760−560 × (670−560)
[31]

H = 1−
R500+

R670−R500
670−500 × (560−500)

R560
[31]

Rg/Rr [31]

D/H [31]

(Rg − Rr)/(Rg + Rr) [31]

(D − H)/(D + H) [31]

First derivative
parameters

Db: The maximum value of the first derivative in the
blue edge region (470–520 nm) [30]

Dy: The maximum value of the first derivative spectra
in the yellow edge region (560–590 nm) [30]

Dr: The maximum value of the first derivative spectra
in the red-edge region (660–740 nm) [31]

Dnir: The maximum value of the first derivative
spectra in near-infrared region (760–950 nm) [31]

SDb: The sum of the first derivative values in the blue
edge region [30]

SDy: The sum of the first derivative values in the
yellow edge region [30]

SDr: The sum of the first derivative values in the
red-edge region [30]

SDnir: The sum of the first derivative values in the
near-infrared region [31]

SDr/SDb [31]

SDr/SDy [31]

SDnir/SDb [31]

SDnir/SDr [31]

(SDr − SDb)/(SDr + SDb) [31]

(SDr − SDy)/(SDr + SDy) [31]
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The spectral curves of each sample tree were obtained after data preprocessing. Pearson correlation
analysis of spectral data with the damage degree was performed using the R programming language
(AT&T Bell Laboratories, Auckland, New Zealand), and stepwise discriminant analysis was carried
out using the Statistical Product and Service Solutions (International Business Machines Corporation,
Palo Alto, CA, USA).

2.6. Ground Survey and Individual Yunnan Pine Canopy Survey

A field survey of Yunnan pine in the study area was conducted on 18 November 2019. Four sample
plots were set up, and 20 trees were selected for each damage degree. There were a total of 80 sample
trees, evenly distributed across the study area. For each sample tree, the number of damaged shoots
and total shoots was estimated by visual rough estimation, and the latitude and longitude positions of
each tree were recorded. To obtain the relationship between the damaged shoot ratio (DSR) of the
canopy (Canopy-DSR) and the DSR of ground survey (Ground-DSR), this study used an M200+Z30
((DJI, Shenzhen, China) camera to collect canopy data of Yunnan pine. A total of 80 samples were
collected with clear pictures of the canopy (Figure 5), which allowed clear visual identification of the
damaged shoot. By visual inspection, we obtained the total number of shoots and the number of
damaged shoots per canopy. Finally, we calculated the DSR.
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The DSR of one individual Yunnan pine can be calculated by Equation (3):

DSR =
n
m
× 100% (3)

where n is the number of shoots affected by PSB and m is the total number of shoots of an individual
Yunnan pine.

Canopy-DSR represents the DSR of one individual Yunnan pine canopy obtained by visual
inspection and Ground-DSR represents the DSR of one individual Yunnan pine obtained by ground
survey. Each Canopy-DSR has a corresponding Ground-DSR (Table 4).

Table 4. Comparison table for Canopy-DSR and Ground-DSR.

Sample Number Damage Degree Ground-DSR Canopy-DSR Longitude Latitude

1-001 Healthy 0.05 0 103.33114 24.76616
1-002 Healthy 0.03 0 103.33245 24.76626
2-016 Mild damage 0.12 0.19 103.33352 24.76843
4-013 Severe damage 0.93 1 103.33764 24.77149
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2.7. Model Building and Accuracy Validation

Seventy percent of the data volume was used for model building and 30% for accuracy
validation [32]. A Multivariate Linear Regression (MLR, Equation (4)) model was used to fit the
equations [33]:

Y = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn + ε, (4)

where Y is the dependent variable; X1 are independent variables; β0 is the intercept; βi is the parameters
to be estimated by linear regression analysis; and ε is the additive term of the error.

In this study, the coefficient of determination (R2, Equation (5)), the root-mean-square error (RMSE,
Equation (6)), the relative-root-mean-square error (rRMSE, Equation (7)), and the Bias (Equation (8))
were employed as the accuracy verification indicators. The value of R2 is between 0 and 1. If R2 is close
to 1, the reference value of the prediction model is high. The smaller the RMSE value was, the more
accurate the prediction model was.

R2= 1− SSE/SST, (5)

RMSE =

√∑n
i=1(yi − ŷi)

2

n
, (6)

rRMSE = RMSE
√

y, (7)

Bias =
∑n

i=1(ŷi − yi)

n
, (8)

where n is the sample size; yi is the measured value at location i; ŷi is the predicted value at location
i; y is the average value of y; and SST and SSE are the total sum of squares and residual sum of
squares, respectively.

3. Results

3.1. The Relationship between Canopy-DSR and Ground-DSR

Pearson correlation analysis was carried out between Canopy-DSR and Ground-DSR [34].
The results showed that Ground-DSR had an extremely significant positive linear correlation with
Canopy-DSR, and the Pearson correlation coefficient (PCC, r) was 0.995. Using the proportions
of 70% and 30%, 80 sampled trees were divided into a modeling dataset (56 sample trees) and a
prediction dataset (24 sample trees). Unitary linear regression was performed to the modeling set
with Canopy-DSR as the independent variable and Ground-DSR as the dependent variable; and the
equation (y = 0.007 + 1.005x) was obtained (Table 5). We then performed a linear fit between the
measured and predicted values, and the results are shown in Figure 6.

Table 5. Fitting equation of Ground-DSR (n = 56) and accuracy validation (n = 24). y is the
Ground-DSR obtained by the fitting equation, and x is the Canopy-DSR. Damaged shoot ratio (DSR);
Root-mean-square error (RMSE); Relative-root-mean-square error (rRMSE).

Regression Equation of Ground-DSR
Fitting Accuracy Prediction Accuracy

Bias
R2 RMSE rRMSE R2 RMSE rRMSE

y = 0.007 + 1.005x 0.989 0.032 0.098 0.992 0.033 0.072 <0.001

As can be seen from Table 5 and Figure 6, Canopy-DSR can be used to fit Ground-DSR, and the
accuracy was high (R2 > 0.95, RMSE < 0.05 and Bias < 0.001). Therefore, Ground-DSR can be retrieved
by Canopy-DSR to determine the damage degree to Yunnan pine.
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3.2. Spectral Characteristics of the Damaged Yunnan Pine Canopy

Figure 7a illustrates the spectral reflectance of the Yunnan pine canopy with different damage
degrees, showing the spectral changes. The spectral reflectance curves had significant peaks in the
wavelength range of 540–560 nm, and the peak decreased with an increase of the damage degree.
The magnitudes were in the order of healthy, mild damage, moderate damage, and severe damage.
The reflectance curve showed obvious troughs at 660 to 680 nm, and the value of the troughs increased
with the severity of the damage. The reflectance of the healthy Yunnan pine canopy was the lowest,
and the reflectance of the other three damage degrees showed no significant differences. At 760 to
946 nm, the reflectance of Yunnan pine canopy decreased as the damage degree increased, with clear
differences. After 890 nm, the difference between the different damage degrees decreased and the
reflectance values gradually converged.
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The first derivative curves of the canopy spectra of Yunnan pine with four damage degrees
are shown in Figure 7b. There were significant peaks at 510 to 530 nm, which gradually decreased
with the level of damage, but the differences in the values were not significant. There were three
troughs and two peaks at 550 to 670 nm, with values at the troughs increasing slightly with increasing
damage, but the differences were not significant, and values at the peaks of the four damage degrees
were not significantly different. At 700 to 720 nm, there were obvious wave peaks. As the damage
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degree increased, the peaks decreased significantly, and the position of the peak shifted slightly in the
short-wave direction, i.e., there was a “red-edge blue shift.”

The spectral reflectance ratio curves of the healthy/healthy, mild damage/healthy, moderate
damage/healthy, and severe damage/healthy ratios can reflect the changes of spectral reflectance of
different damage degrees compared to healthy Yunnan pine canopy (Figure 8). From Figure 8, we can
see that the reflectance changes of mild damage, moderate damage, and severe damage in Yunnan
pine canopies relative to healthy Yunnan pine canopies were roughly similar. At 510 to 570 nm and
695 to 950 nm, the spectral values of mild damage were lower than those of healthy trees. At 500 to
610 nm and 690 to 950 nm, the spectral values of moderate damage were lower than those of healthy
trees. At 495 to 645 nm and 685 to 950 nm, the spectral values of severe damage were lower than
those of healthy trees. This indicated the range of spectral reflectance below the healthy Yunnan pine
canopy gradually increased and above the healthy Yunnan pine canopy gradually decreased as the
damage degree increased. From the overall trend, the spectral reflectance of Yunnan pine canopy of
the four damage degrees was in order of healthy, mild damage, moderate damage, and severe damage.
Therefore, the damage degree can be determined by the spectral reflectance.
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3.3. Differential Analysis of Spectra in Yunnan Pine Canopy at Different Damage Degrees

The original spectra, S-G spectra, and first derivatives of the Yunnan pine canopy were analyzed
by Pearson correlation with the damage degrees; the bands with the top 10 absolute correlation
coefficients (Table 6) were selected for one-way analysis of variance (one-way ANOVA). In the analysis,
healthy, mild, moderate, and severe damage were assigned values of 0, 1, 2, and 3, respectively.
The results are shown in Figure 9. The bands of the original and S-G spectra were identical, both
being 774–810 nm, in the near-infrared band. The band of the original spectrum with the largest
correlation coefficient was 798 nm (r = −0.897 **), and those of the S-G spectra were 798 nm and 802 nm,
respectively (r = −0.897 **). The bands of the first derivatives with the top 10 correlation coefficients
were located around the red-edge region, 698–734 nm, and the band with the largest correlation
coefficient was 714 nm (r = −0.922 **). However, the collinearity diagnosis showed that there was
severe multicollinearity between these wavelengths, with tolerance approaching 0 and VIF much
greater than 10. Therefore, the damage degree estimation model could not be established through
these bands. From Figure 9, we could see that the spectral reflectance or first derivative values of the
Yunnan pine canopy at different damage degrees were significantly different at these 10 bands (p < 0.05).
This means that the damage degree of the Yunnan pine canopy can be differentiated by the values at
these wavelengths, and thus, the hazard of an individual Yunnan pine tree can be differentiated.
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Table 6. The results of the correlation analysis and collinearity diagnosis of different spectral processing
methods. The Pearson correlation coefficient (PCC) is the result of the Pearson correlation analysis;
Tolerance and Variance Inflation Factors (VIF) are the results of the collinearity diagnosis.

The Original Spectra The S-G Spectra The First Derivative

Band PCC Tolerance VIF Band PCC Tolerance VIF Band PCC Tolerance VIF

774 −0.895 ** <0.001 3230.847 774 −0.895 ** <0.001 2556.225 698 −0.875 ** 0.006 154.402
778 −0.896 ** <0.001 8201.209 778 −0.895 ** <0.001 142,212.548 702 −0.899 ** 0.001 669.673
782 −0.895 ** <0.001 7197.148 782 −0.895 ** <0.001 9926.257 706 −0.914 ** 0.001 976.484
786 −0.895 ** <0.001 9905.203 786 −0.895 ** <0.001 176,513.343 710 −0.921 ** 0.001 1108.016
790 −0.895 ** <0.001 3117.318 790 −0.895 ** <0.001 6018.624 714 −0.922 ** 0.001 850.018
794 −0.896 ** <0.001 14,842.297 794 −0.896 ** <0.001 60,787.606 718 −0.919 ** 0.001 683.963
798 −0.897 ** <0.001 3659.827 798 −0.897 ** <0.001 51,612.218 722 −0.906 ** 0.002 607.944
802 −0.896 ** <0.001 16,819.991 802 −0.897 ** <0.001 4077.492 726 −0.888 ** 0.002 413.520
806 −0.896 ** <0.001 5105.823 806 −0.896 ** <0.001 75,617.265 730 −0.874 ** 0.004 222.503
810 −0.895 ** <0.001 3302.066 810 −0.895 ** <0.001 2483.072 734 −0.851 ** 0.024 41.300

** represent a significance level of 1%, respectively. r0.05 (n = 80) = 0.217, r0.01 (n = 80) = 0.283.
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A discriminant analysis of the damage degree was carried out via the band with the largest
correlation coefficient by using Fisher’s discriminant function and leave-one-out cross-validation.
The results are shown in Table 7. When using S-G spectral values to distinguish the damage degree,
only 798 nm was used for the analysis due to the strong collinearity between 798 nm and 802 nm.
The accuracy of all three methods exceeded 70%, with first derivative discrimination being the most
effective with an accuracy of 80%.
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Table 7. Discriminant analysis results of different spectral processing methods.

Method Band
Fisher Discriminant Function

Accuracy
Healthy Mild

Damage
Moderate
Damage

Severe
Damage

The original spectra R798 590.800 510.114 439.481 335.998
71.30%(constant) −81.925 −61.429 −45.953 −27.436

The S-G spectra RS-G798 589.695 509.072 439.010 335.408
71.30%(constant) −81.735 −61.266 −45.918 −27.380

The first derivative
D714 29,055.047 23,456.192 19,216.080 13,381.829

80.00%(constant) −72.215 −47.548 −32.367 −16.411

3.4. Differential Analysis of Hyperspectral Parameters in Yunnan Pine Canopy at Different Damage Degrees

Pearson correlation analysis was performed for hyperspectral parameters and damage degrees.
The hyperspectral parameters with the 10 highest absolute correlation coefficients were selected
for one-way ANOVA and the results are shown in Figure 10 (Dr: r = −0.924 **, SDr: r = −0.920 **,
SDnir: r = 0.806 **, SDy: r = 0.771 **, SDb: r = −0.753 **, Db: r = −0.710 **, SR1: r = −0.704 **,
Rg/Rr: r = −0.704 **, (Rg − Rr)/(Rg + Rr): r = −0.699 **, and SR2: r = −0.687 **). There were significant
differences in the four damage degrees of Dr, SDr, SDnir, and SDy (p < 0.05). Therefore, the damage
degree of Yunnan pine canopy can be distinguished by these hyperspectral parameters. There were
no significant differences in SDb or Db between healthy and mild damage, but these two damage
degrees were significantly different from the other two. The values of (Rg − Rr)/(Rg + Rr), SR1, Rg/Rr,
and SR2 showed no significant difference between mild damage and moderate damage, but these
two damage degrees were significantly different from the other two damage degrees. Although some
of the 10 hyperspectral parameters could not provide a good discrimination between all four damage
degrees, they were able to distinguish severe damage from other degrees.

3.5. Screening of the Damage Degree-Sensitive Variables in Yunnan Pine Canopy

The original spectra (506–602 nm and 690–946 nm, 90 bands), S-G spectra (506–602 nm and
690–946 nm, 90 bands), first derivative values (498–546 nm, 554–618 nm, 626–662 nm, 670–758 nm,
802–830 nm, and 846–946 nm, for a total of 97 bands), and hyperspectral parameters (Dr, SDr, SDnir,
SDy, SDb, Db, SR1, Rg/Rr, (Rg − Rr)/(Rg + Rr), SR2, NDVI1, NDVI2, NDVI705, Rg, SDnir/SDb,
(SD − SDY)/(SDr + SDy), PRI, Dy, (SDnir − SDb)/(SDnir + SDb), (SDr + SDb), and SDr/SDb, for a
total of 21 spectral parameters) of the Yunnan pine canopy, which were significantly correlated with
the damage degree, were subjected to stepwise discriminant analysis using Fisher’s discriminant
function and Wilks’s Lambda classification method. In the analysis, variables were introduced or
eliminated through corresponding statistical tests. In the final discriminant function, only a small
number of variables with high discriminative power were retained, while the variables with the lowest
discriminative power were eliminated [35]. The results of the stepwise discriminant analysis are
shown in Table 8. The sensitive bands of the original spectra were 690 nm and 798 nm, denoted as R690

and R798, respectively. The sensitive bands of S-G were 690 nm and 802 nm, denoted as RS-G690 and
RS-G802. The sensitive bands of the first derivative were 650 nm and 714 nm, denoted as D650 and D714.
The sensitive parameter was Dr.

The leave-one-out cross-validation was applied to the accuracy test; the results are shown in
Table 9. The modeling accuracy of all four spectral treatments exceeded 80%, with the highest accuracy
of 86.30% for hyperspectral parameters. The first derivative had the highest cross-validation accuracy of
85.00%. According to the modeling accuracy and cross-validation results, the first derivatives were the
best discriminated and the S-G spectra were the worst discriminated. The reason for this result may be
that the average spectra of the Yunnan pine canopy was used for analysis in this study. The influences
of the atmospheric environment, soil, and temperature on the spectral curve were balanced, and the
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noise level of the curves were small. On this basis, S-G filtering may cause some of the original
information of the spectral curve to be lost, which may result in the lowest discriminative accuracy.
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Figure 10. Results of the one-way ANOVA of the hyperspectral parameters. (A) Dr, SDy, SDb, and Db.
(B) SDr, SDnir, and (Rg − Rr)/(Rg + Rr). (C) SR1, Rg/Rr, and SR2. a, b, c and d indicate that the damage
degree is significantly different at this parameter (p < 0.05), while the same letter indicates that there is
no significant difference.

Table 8. Variable screening results of different spectral processing methods. Screening results
were processed through stepwise discriminant analysis. PCCs are the results of the Pearson
correlation analysis.

Method Step Variable PCC

The original spectra 1 R798 −0.897 **
2 R690 −0.274 *

The S-G spectra 1 RS-G802 −0.897 **
2 RS-G690 −0.275 **

The first derivative
1 D714 −0.922 **
2 D650 0.694 **

Hyperspectral parameters 1 Dr −0.924 **

* and ** represent a significance level of 5% and 1%, respectively. r0.05 (n = 80) = 0.217, r0.01 (n = 80) = 0.283.

3.6. Modeling the Damage Degree of Yunnan Pine Canopy

Based on the screened original spectra, S-G spectra, first-order derivative sensitive bands and
hyperspectral sensitive parameters, MLR models were constructed. Moreover, diagnostic model
accuracy was tested via R2, RMSE, rRMSE, and Bias.

R690 and R798, RS-G690 and RS-G802, D650 and D714, and Dr were used to establish MLR models
based on the modeling dataset, respectively. The prediction dataset was used for accuracy validation
of the models (Table 10). The results showed that the original spectral model fitted best with R2, RMSE
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and Bias of 0.864, 0.416, and −0.068, respectively. The S-G spectral model gave the best prediction
with R2, RMSE and Bias of 0.827, 0.465, and −0.067, respectively. The measured values were fitted
linearly to the predicted values, and the results are shown in Figure 11, with R2 exceeding 0.8 for all
four methods. There were no significant differences among the four models, and all models could
better predict the damage degree caused by PSB to Yunnan pine.

Table 9. Stepwise discriminant analysis results for different spectral processing methods. Stepwise
discriminant analysis was carried out on the results of four spectral data processing methods and the
damage degree. The discriminant coefficient of each degree of damage is listed in Fisher’s discriminant
function. Constant represents the constant term in the discriminant function.

Method Band
Fisher’s Discriminant Function

Modeling
Accuracy Cross-Validation

Healthy Mild
Damage

Moderate
Damage

Severe
Damage

The original
spectra

R690 −539.930 −322.091 −227.446 −98.199
83.80% 82.50%R798 788.055 627.785 522.575 371.874

(constant) −93.288 −65.472 −47.969 −27.812

The S-G spectra
RS-G690 −544.965 −327.158 −233.401 −100.343

82.50% 78.80%RS-G802 794.239 633.431 528.802 375.697
(constant) −93.823 −65.918 −48.486 −28.076

The first
derivative

D650 −15,686.086 −13,897.181 −14,131.453 6483.093
85.00% 85.00%D714 28,460.216 22,929.199 18,680.203 13,627.674

(constant) −72.911 −48.095 −32.932 −16.530

Hyperspectral
parameters

Dr 31,819.500 25,766.666 21,463.581 15,099.681
86.30% 83.80%(constant) −79.503 −52.610 −36.930 −18.977

Table 10. Multivariate Linear Regression (MLR) model of the damage degree of the Yunnan pine
canopy caused by PSB.

Model Regression Equation
Fitting Accuracy Prediction Accuracy

Bias
R2 RMSE rRMSE R2 RMSE rRMSE

The original
spectra y = 5.224 + 27.346R690 − 24.592R798 0.864 0.416 0.277 0.822 0.472 0.315 −0.068

The S-G spectra y = 5.231 + 27.360RS-G690 − 24.623RS-G802 0.862 0.419 0.279 0.827 0.465 0.310 −0.067
The first

derivative y = 4.855 + 1098.028D650 − 896.053D714 0.861 0.420 0.280 0.821 0.474 0.316 −0.051

Hyperspectral
parameters y = 5.123 − 1010.441Dr 0.862 0.420 0.280 0.824 0.469 0.313 −0.047

3.7. Quantitative Discriminant Rules of the Damage Degree of the Yunnan Pine Canopy

The quantification discriminant rules of the damage degree were established by the diagnostic
model. First, the diagnostic model was used to calculate predicted values of the damage degree
for the modeling dataset. Then, the average of the predicted values for each damage degree was
calculated. The averages of the predicted values of the two damage degrees were used to calculate the
median value between these two damage degrees, and this was used as the threshold to establish the
discriminant rule. Finally, the damage degree of the prediction dataset was determined by the rule to
verify the accuracy of the discriminant rule. The discriminant rules are shown in Table 11, and the
accuracy test results are shown in Table 12. The discriminant rule based on the original spectra had
the highest test accuracy of 87.50%; however, the first derivative was the lowest at 79.17%. This rule
had the best discrimination for healthy Yunnan pine canopy and the worst discrimination for severe
damaged Yunnan pine canopy. Nevertheless, healthy trees could be separated from damaged trees
according to this rule.
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Table 11. Quantitative discriminant rules of the damage degree of Yunnan pine canopy caused by
PSB (n = 56). The threshold value was determined based on the median of the average values of the
two degrees of damage.

Model Value Healthy Mild Damage Moderate Damage Severe Damage

The original
spectra

Average 0.190 1.123 1.850 2.838
Threshold value <0.657 (0.657,1.486) (1.486,2.344) ≥2.344

The S-G spectra Average 0.192 1.119 1.850 2.838
Threshold value <0.655 (0.655,1.484) (1.484,2.344) ≥2.344

The first
derivative

Average 0.239 1.084 1.784 2.893
Threshold value <0.661 (0.661,1.434) (1.434,2.339) ≥2.339

Hyperspectral
parameters

Average 0.219 1.109 1.807 2.867
Threshold value <0.664 (0.664,1.458) (1.458,2.337) ≥2.337
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Table 12. Accuracy test results of the rules (n = 24).

Model Damage
Degree Healthy Mild Moderate Severe Test

Accuracy
Overall

Accuracy

The original
spectra

Healthy 6 0 0 0 100.00%

87.50%
Mild 0 6 0 0 100.00%

Moderate 0 1 5 0 83.33%
Severe 0 0 2 4 66.67%

The S-G spectra

Healthy 6 0 0 0 100.00%

83.33%
Mild 0 6 0 0 100.00%

Moderate 0 2 4 0 66.67%
Severe 0 0 2 4 66.67%

The first
derivative

Healthy 6 0 0 0 100.00%

79.17%
Mild 0 6 0 0 100.00%

Moderate 0 2 4 0 66.67%
Severe 0 0 3 3 50.00%

Hyperspectral
parameters

Healthy 6 0 0 0 100.0%

83.33%
Mild 0 6 0 0 100.0%

Moderate 0 1 5 0 83.33%
Severe 0 0 3 3 50.00%

4. Discussion

Forest tree mortality is the result of multiple factors, making it difficult to predict and discern
the causes of mortality [36]. In recent years, hyperspectral remote sensing has been widely applied
in field of agriculture and forestry to rapidly obtain effective information concerning vegetation and
crops. In our study, Yunnan pine defoliation and mortality were mainly related to PSB. Thus, this study
focused on the spectral characteristics, sensitive variables, and discriminant rules for the Yunnan pine
canopy after damage by the PSB. Using UAV-based hyperspectral imaging, we developed diagnostic
models and discriminant rules for Yunnan pine following damage by PSB, highlighting the application
of UAV tools in forest pest management and monitoring and early warning.

4.1. Spectral Characteristics of Damaged Yunnan Pine

In recent decades, a large number of Yunnan pine forests have killed by PSB, which affected the
ecological stability and economic outputs of forests [37]. In the study area, PSB has been identified as
the most serious forest pest of Yunnan pine. Forest trees affected by pests exhibit specific symptoms,
such as yellowing and reddening of leaves, an increased proportion of withering and defoliated
trees, a decrease in leaf photosynthetic efficiency, and sudden death [38]. The damage degree was
determined by Ground-DSR, but only the vegetation canopy could be observed using satellite and
UAV remote sensing. Therefore, we established a relationship between Ground-DSR and Canopy-DSR
to determine the damage degree by Canopy-DSR. By analyzing the spectral data, we found that the
spectra of damaged Yunnan pine had obvious changes in the green peak (510–560 nm), red valley
(640–680 nm), red-edge region (680–740 nm), and near-infrared bands (740–950 nm), consistent with
previous studies on the spectral responses of damaged vegetation [6,21,39]. Such spectral changes
in leaves and tree canopies indicate that remote sensing could be useful for the monitoring of forest
diseases and pests [40].

4.2. Sensitive Band and Parameter Screening

The development of hyperspectral technology has brought new vitality to the monitoring of forest
tree diseases and pests. The using of hyperspectral data increases the amount of data storage and
transmission as well as the rich spectral information, but it also causes some problems. The whole
data processing is tedious and time-consuming because of a large amount of data noise and data
redundancy [18]. These shortcomings bring obstacles to the popularization and application of
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hyperspectral technology. Hence, it is very important to streamline data and improve data processing
efficiency. New indicators are formed by the combination of different original bands or function
transformation, and sensitive bands are selected by statistical analysis or other methods according to
the spectral differences of different monitoring targets [41–43]. In recent years, several new methods
have emerged for the selection of hyperspectral bands or feature extraction [44], such as the screening
of sensitive bands through principal component analysis, the successive projection algorithm, or other
algorithms [44–47].

In this study, Pearson correlation analysis and stepwise discriminant analysis were used to screen
sensitive bands and spectral parameters in the spectrum of damaged Yunnan pine. All selected bands
were located in red and near-infrared regions, and the parameter (Dr) was also related to the red-edge
position. These results are consistent with the characteristics of the spectral changes of damaged
Yunnan pine. These bands and parameters were used to establish diagnostic models for the damage
degree, with all R2 being greater than 0.8, allowing monitoring of the damage caused by the PSB. Thus,
the optimal band and parameter selection method were verified as suitable for the sensitive variable
selection of defoliation and yellowing of Yunnan pine needles and can be applied to other pine stands.

4.3. Quantitative Discriminant Rule for the Damage Degree

When establishing the model, we assigned different values to the damage degrees, so it is
necessary to establish quantitative discriminant rules to determine the prediction results of the model.
The averages of the predicted values of the two different damage degrees were used to calculate the
median value between these two damage degrees. Then, the median value was used as the threshold
to establish the discriminant rule, and the discriminant accuracy of the degrees of damage reached
87.50%. The rule was most effective in identifying healthy Yunnan pine trees and could distinguish
healthy Yunnan pine trees from damaged trees. This discriminant rule can also be applied to the
monitoring of other diseases and pests. The method of establishing the discriminant rule based on the
median value between two different classes as the threshold is simple to implement and it is effective
in discriminating the damaged tree.

4.4. Monitoring Infestation by Tomicus spp.

With the development of remote sensing technology, more and more studies focus on the use
of hyperspectral technology for vegetation health and forest management, especially UAV-based
hyperspectral imaging for high-resolution and low-cost monitoring of forest pests [1,17–19]. In addition,
hyperspectral sensors are capable of identifying subtle spectral changes. In the study of defoliation
of forest vegetation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak, the sensitive
spectral bands for defoliation rates were located in the green bands and near the red-edge region [18].
Furthermore, in another study of the damage caused by the European spruce bark beetle, it was found
that the wavelengths closely related to the different damage classes were in the red and near-infrared
bands [19]. In this study, we found that the sensitive bands for the damage degree caused by PSB were
located near the red-edge region and in the near-infrared region. It is worth noting from these studies
that the red-edge position and the near-infrared band are very sensitive to forest pests. In addition,
the red-edge indices are important for the monitoring of forest disease and pest [17]. This has also
been confirmed in our study. The spectral characteristic and discriminant analysis of single damaged
trees by UAV-based hyperspectral technology will lay the foundation for low-cost, high- resolution
monitoring of forest diseases and pests in large areas.

This study aimed to establish a framework to assess the damage degree to Yunnan pine affected
by PSB as follows: (1) the selection of an optimal spectral pretreatment method and the establishment
of a diagnostic model and quantitative discriminant rule using sensitive bands based on Pearson
correlation analysis and stepwise discriminant analysis or (2) the establishment of a diagnostic model
and quantitative discriminant rule using sensitive parameters based on the band combination of the
spectrum. Although the framework might not be the best, it is superior to visual investigation in
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identifying the damage degree caused by PSB. In addition, it is both simple and efficient to implement.
The highest discriminant accuracy of this framework for determining the damage degree caused by
PSB reached 87.50% with only one or two variables. This result can be combined with multi-spectral
satellite remote sensing or other effective methods for large-scale monitoring and accurate identification
of damage caused by forest diseases and pests in the future.

4.5. Outlook

The monitoring framework for the damage degree caused by PSB is composed of some simple
methods. We drew the tree canopy ROIs manually to extract the spectra. This process involves
human participation, which may lead to a reduction in the identification accuracy, and it is not fully
applicable to the identification of forest damage at the canopy level. Therefore, in follow-up research,
an algorithm can be used to identify the tree canopy according to the textural features. Furthermore,
LiDAR can be used to detect a single tree and obtain the tree canopy, which can be combined with
UAV-based hyperspectral data for forest disease and pest monitoring [1]. The three-dimensional
structure information of a single tree can be obtained according to the LiDAR data, which is also helpful
for the monitoring of forest diseases and pests. Furthermore, LiDAR can also be used to monitor
insect behavior [48]. Pearson correlation analysis and stepwise discriminant analysis were adopted in
the screening of sensitive bands and parameters; these are simple methods. In the future, different
algorithms can be used to acquire sensitive bands and parameters to improve the monitoring accuracy.

5. Conclusions

This study proposed a low-cost and miniaturized hyperspectral image data analysis system based
on UAV remote sensing. Our study shows the potential of UAV-based hyperspectral remote sensing
technology for forest disease and pest monitoring. This technology can be used to distinguish the
anomalous reflectance characteristics of trees in small areas. Pearson correlation analysis and stepwise
discriminant analysis were used to analyze the damage of Yunnan pine caused by PSB in order to
obtain the sensitive bands and spectral parameters. First, the relationship between Ground-DSR and
Canopy-DSR was verified, and it was found that there was a highly significant positive correlation
and a strong linear relationship between the two indexes. We extracted the canopy spectra through
the hand-drawn ROIs to analyze the spectral characteristics of damaged Yunnan pine. Then, Pearson
correlation analysis and stepwise discriminant analysis were used to select sensitive bands and
spectral parameters. Based on these sensitive variables, diagnostic models of the damage degree
were established, and the quantitative discriminant rule was established using the median value as
a threshold. The results showed that the diagnostic model with R690 and R798 as parameters was
able to determine the damage degree of Yunnan pine using only two variables, and the test accuracy
of the discriminant rule based on this model was the highest: 87.50%. This study established a
simple framework to effectively identify the damage caused by PSB. In the future, we expect that the
framework can be further improved to realize automatic identification and monitoring of the damage
caused by PSB, combining LiDAR data, hyperspectral data, and satellite remote sensing data to achieve
large-scale monitoring of PSB damage.
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Abbreviations

The following abbreviations are used in this manuscript:

Canopy-DSR damaged shoot ratio of the canopy
DSR damaged shoot ratio
ENVI Environment for Visualizing Images
Ground-DSR damaged shoot ratio of ground survey
GSD ground sampling distances
LiDAR Light Detection and Ranging
MLR Multivariate Linear Regression
NDVI Normalized Difference Vegetation Index
NDVI705 Red Edge Normalized Difference Vegetation Index
one-way ANOVA one-way analysis of variance
POS position and orientation system
PRI Photochemical Reflectance Index
PSB pine shoot beetle
RGB Red-Green-Blue
ROI region of interest
S-G Savitzky-Golay
SR Simple Ratio Index
UAV Unmanned Aerial Vehicle
VIF Variance Inflation Factor
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